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A SURVEY OF THE ANALYSIS OF IRREGULAR
SHOCK REFRACTIONS AND ITS APPLICATION
TO FRONT TRACKING METHODS

John W. Grove *

Abstract

The collision of a shock with a material interface produces a variety
of complicated refraction patterns. In this article, transitions from self-
similar refractions to more complicated configurations are studied using
an approximate scattering analysis. This analysis suggests that there
are five different regimes for the transition from a regular self-similar
wave to a composite irregular wave. Two of these five cases have been
incorporated into a front tracking code to provide enhanced resolution
computationa of such flows.

1. Introduction

Collisions between highly supersonic shock waves and material interfaces can be
identified with Riemann solutions for a supersonic steady-state flow. Waves of
this type have the property that they are self-similar in space, and have a well
defined translational velocity with respect to an inertial reference frame. Their
structure can be computed using shock polar analysis. Such waves, following the
terminology of Henderson [9], are called regular refractions. Shock refractions
which are not regular are call irregular. It is well established experimentally
[12] that the structure of regular shock refractions is in good agreement with
the mathematical theory. This theory breaks down for transsonic waves due

to the loss of hyperbolicity of the equations of motion for a steady-state flow,
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and the resulting refraction patterns become irregular. The loss of hyperbol-
icity is associated with a loss of existence to the shock polar equations. For
such transsonic interactions the general theory is only poorly understood, but
& variety of experiments (1, 2] and computations 3] have begun to shed light
on the structures formed by these waves. This article will focus on one aspect
of this problem, namely the transition of regular to irregular refractions along
@ smoothly curved interface. Here, the loss of existence of a solution to the
steady flow equations corresponds to a loss of time independence in the refrac-
tion pattern. A single self-similar wave scatters into a collection of individual
wavelets that propagate away from each other at separate speeds. These ideas
can be used in numerical methods such as front tracking to provide enhanced
resolution computations of these interactions. An important application is the
simulation of the acceleration of a fluid interface by a shock wave. This prob-
lem, known as the Richtmyer-Meshkov problem, studies the unstable mixing
between two fluids that occurs when the boundary surface between two fluids

is hit by a shock wave.

2. Equations of Motion

The continuum motion of an inviscid nor-heat conducting gas is described by
the classical Fuler equations that express the Jaws of conservation of mass,

momentum, and energy [4]:

Bp+V-(pq) =0 (2.1a)
(pa) + V- (pa® q) + VP = pg, (2.16)
O(p(3a* +€)) + V (p(34* + H)q) = pq - g. (2.1¢)

Here p is the mass density, P is the thermodynamic pressure, ¢ is the fluid
velocity, e is the specific internal energy, H = ¢ + P/p is the specific enthalpy,
and g is the gravitational acceleration.

In the case of the refraction of a planar shock at a planar interface, we obtain

an initial value problem for system (2.1) with scale invariant initial data. In the
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absence of gravity (g = 0) the Euler equations are scale invariant, and system

(2.1) reduces to the pseudo-steady Euler equations:

V (pa) +mp =0, (2.2a)
V-(pa®4a)+ VP +(n+1)pq =0, (2.25)
V- (p(38° + H)@) +np(3d" + H) + 3 =0. (2.2¢)

Here § = ¢ — x/t is the self-similar fluid velocity, and n is the space dimension
of the flow.

The equations for regular refractions are further simplified since such waves
are both acale invariant and time independent (or more precisely are Galilean
equivalent to a scale invariant steady-state flow). If the flow upstream of the
point of interaction is supersonic, regular refractions correspond to Riemann
solutions for the supersonic steady-state Euler equations. For a planar flow
this system is a set of four conservation laws, with timelike direction given
by the stream direction. The standard Riemann analysis (7] shows that this
system has two genuinely nonlinear wave families in the sense of Lax [13], and a
doubly linearly degenerate wave family consisting of contact discontinuities and
slip lines. The pressure and flow direction are common Riemann invariants for
the linearly degenerate family. The Riemann problem is solved by finding the
intersection of the projections of the wave curves of the two nonlinear families
in the pressure-flow direction phase space. This is exactly the classical method
of shock polars [4]. The solution is stable with respect to small perturbations
in the flow parameters provided both the upstream and downstream flows are
supersonic. However, the formation of transsonic waves in the Riemann solution

can lead to the breaking up of the self-similar wave.

3. Two Dimensional Riemann Problems and
Elementary Waves

An elementary wave (or node) [6] is a self-similar solution to the Euler equa-

tions that is Galilean equivalent to a steady-state flow. Such waves are building
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blocks out of which more complicated flows are constructed. The elementary
waves for two dimensional gas dynamics with a polytropic equation of state
were classified in [5]. However this classification was incomplete due to an
overly restrictive genericity assumption on the flow. For planar flows, the ele-
mentary waves can be divided into two classes depending on whether the flow
around the wave is supersonic or transsonic. The supersonic clementary waves
correspond to regular refractions of shocks at fluid interfaces, and the crossing
or overtaking of two shocks. The transsonic waves consist of regular Mach re-
flections, shock transmissions at a fluid interface, and total internal reflection.
Shock transmission is distinguished from a regular shock refraction in that the
flow behind the incident shock wave is subsonic, thus precluding the existence
of reflected waves. Total internal reflection is a shock refraction where there is
no transmitted wave, the incident wave being entirely reflected as a Prandtl-
Meyer wave. The total internal reflection node was originally dismissed in [5] as
unphysical, however subsequent experiments and computations [2, Fig. 9] and
(3, Figs. 13|, clearly indicate its occurrence in certain situations. Furthermore,
total internal reflection is a well known phenomena in the refraction of waves in
acoustics between materials with a suitable impedance mismatch [14, pp. 196].
None of the transsonic elementary waves are commonly found in isolation, but
instead occur in composites of elementary waves produced by the scattering of

a regular wave.

We are interested in describing the beha.vic;r of irregular refractions that are
perturbations of regular refractions. For this purpose we can consider the prob-
lem of a shock propagating through a slightly curved interface. For sufficiently
short periods of time this curvature can be neglected in computing the shock
refraction. Other variables being fixed, the shock refraction configuration will
be a function of the angle between the incident shock and the fluid interface.
There is a loss of existence to the shock polar equations for a stationary flow for
sufficiently large incident angles and hence such refractions must be irregular.
On the other hand, regular refractions always occur for sufficiently small inci-

dent angles. Thus there must be some smallest angle where a transition from
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a regular to irregular refraction will occur. When a regular refraction reaches
this irregular tramsition point, its spatial self-similarity breaks down and the
solution near the refraction becomes fully time dependent. This transition can
be interpreted as a scattering of the original shock refraction into a set of nodes
that propagate away from the initial point of interaction. Each of these scat-
tered nodes in turn corresponds to the interaction of a pair of waves, that is
interactions between pairs of shock waves or contact discontinuities. Although
the flow in the regions between the scatiered waves may not be constant, the
leading order behavior of each scattered node will approximate that of a pure
elementéry wave, This is a consequence of the fact that the elementary waves
ate just Riemann solutions to a steady flow Hiemann problem and the piece-
wise smoothness of the flow near the node. Interactions that involve rarefaction
waves, or other more complex unsteady waves are also possible. These are more
problematic since the local wave configurations are not self-similar. In the nu-
merical simulations, the leading edge interactions of such configurations may
be tracked as degenerate (zere strength) wave interactions with the remaining
structure captured by a finite difference method. An important observation is
that each scattered node is in relative motion with respect to the others, and
it is not possible to apply shock polar analysis to the wave ensemble. However
if the velocity of an individual node is known, its local wave configuration can
be computed using shock polars. Thus the problem of computing the scattered
wave configuration can be thought of as a set of shock polar equations that are

coupled by their relative node velocities.

4. Regular to Irregular Refraction Transitions

Regular refractions are classified according to whether the reflected wave is a
shock or a rarefaction, and whether the interaction is fast-slow or slow-fast [1,
2, 10]. Let M;, M,, and M, denote the Mach numbers of the flow behind the
incident, reflected and transmitted shocks respectively. It should be noted that

for most equations of state, and for the polytropic equation of state in particular,
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transmitted rarefaction waves are not possible for regular shock refractions since
they would turn the flow in an incompatible direction. Indeed the transmitted
wave must be of the same family as the incident wave, while the reflected wave
is of the opposite wave family. Furthermore the base state of the reflected wave
Lies on a wave curve of the same family as the transmitted wave, and at a higher
pressure. Thus if the equation of state is such that the supersonic portions of
the wave curves are monotonic in the pressure-flow direction phase space, and
the solution to the supersonic steady state Riemann problem between the state
behind the incident shock and the state on the transmitted side of the fluid
interface exits and is supersonic, then the wave on the transmitted side of the
interface must be a shock wave. A regular refraction is said to be fast-slow or
slow-fast according to whether the Mach numbers increase or decrease ncross

the fluid interface.
(Fast-Slow Refraction)  max(M;, M) < M, (4.1)
(Slow-Fast Refraction)  max(M;, M,) > M, (4.2)

Consider a shock of given strength that is incident on an interface between
two fluids. The steady state Mach number ahead of the incident shock is related
to the angle 8; between the incident shock and the fluid interface by the relation
M;sin |8;| = m/pgco, where m? = —AP/AV is the mass flux across the incident
shock, and V = 1/p is the specific volume, If 8; small, the interaction will be
highly supersonic and regular. The limiting case as §; — 0 is that of a head on
collision of a shock with a contact discontinuity [7]. Transitions from regular to

irregular refractions oceur at three possible points,

(Fast-Slow Refraction) min(M;, M.} =1, M,> 1, (4.3)
(Slow-Fast Refraction)  min(M;,M,)>1, M, =1, (4.4)
and the mechanical equilibrium point, which is defined by the condition that the
intersection between the reflected and transmitted wave shock polars coincides
with an intersection between the incident and transmitted wave shock polars,

Experimental and computational evidence suggests that the transition from

regular to irregular refraction occurs at the smallest angle f; for which one of
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the above conditions holds. Figure 1 shows representative shock polar diagrams

for the five transition cases.
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Figure 1: Shock polar diagrams for transitions from regular to
irregular refraction. Transition occurs when one of the waves expe-
tiences a sonic iransition, or the flow reaches the mechanical equi-
librium point. The subsonic portion of the shock polar for the tran-
sitional wave is shown as a dotted line. The figures show the log of
the pressure verses the flow direction.

The scattering behavior of regular refractions at the transition points can
be divided into five classes depending on whether at transition, the interaction
is fast-slow, slow-fast, or mechanical equilibrium, and on whether the reflected
wave ia a shock or rarefaction wave. In the following, we will describe five po-
tential configurations for the scattered waves produced for a shock refraction
near, but just past, transition. This list is exhaustive only in the sense that

all regular refractions are of either the fast-slow or slow-fast variety, with either
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reflected shocks or rarefaction waves, and thus fall into one of the first four basic
categories. The descriptions should be generally interpreted as being gqualita-
tive. Furthermore, the structure of the waves can be complicated by additional
bifurcations. For example, shock crossing may oceur as pairs of Mach reflec-
tions instead of a single cross node. The inclusion of the mechanical equilibrium
condition as a transition case is based primarily on experimental evidence [11).
Addition weight is given to the choice of the mechanical equilibrium condition
as a transition criterion by the fact that the fluid flow can change continuously
from a regular to irregular refraction with a reflected Mach wave at that point.
However the exact description of the transition point for this case is compli-
cated, and depends on the interaction of the waves with the viscous boundary
layer near the contact, as well as (in unsteady flows) the boundary conditions

downstream from the wave.

4.1 Fast-slow transition with reflected rarefaction

This interaction, discussed in [8], occurs for a regular refraction with a reflected
rarefaction wave when M; = 1 and M, > 1. Here the leading edge of the
reflected rarefaction wave is moving faster than the incident shock wave. Self-
similarity is broken as the rarefaction wave overtakes the incident shock. The
flow immediately behind the incident shock consists of the nonlinear superpo-
sition of a set of weak overtake interactions as the rarefaction overtakes the
shock, The composite wave appears as two sections, a region of interaction
between the reflected rarefaction and the incident shock, and & nearly regular
refraction behind this region. This wave typically occurs when the incident
shock is progressing from a dense fluid into a lighter more compressible flnid.
Figure 2 shows a detail from a front tracking computation that produced such

an interaction.

4.2 Slow-fast transition with reflected rarefaction
Slow-fast transitions occur when the transmitted shock becomes transsonic. At

this point the refraction can be influenced by perturbations in the flow that are
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downstream from the point of interaction on the transmitted side of the fluid

interface.

‘%:Reﬂected le’acﬂon'i;

Y Overtake Node

Y

y
Incident shock %

Propagation Anomalous
Direction Reflection

l

Diffraction Node

Contact

dx=dy

Figure 2: Detail from a computation showing the fast-slow transi-
tion from regular to anomalous reflection. The picture is taken from
a full simulation of a shock colliding with a bubble. Note that front
tracking allows the interaction to be resolved on the order of one grid
block. Prior to transition, the wave was self-similar in space, with
the incident, transmitted and reflected waves meeting at a point on
the fluid interface.

It is conjectured that in this case the solution near the point of refraction is un-
stable with respect to the disturbances from behind the incident shock. In any
case, the point where the transmitted shock becomes transsonic is close to the
point of maximum extension of the transmitted shock polar beyond which the
steady state Riemann solution will cease to exist. After transition, the transmit-
ted shock moves ahead of the incident shock becoming a precursor that is itself

refracted by the interface. Since the transmitted shock is transsonic, the re-
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fraction pattern produced by the precursor shock must be a shock transmission
node. The transmitted precursor wave in turn collides with the original trans-
mitted shock, leading to a cascade of wave interactions. One of the reflected
waves from the shock crossing is directed towards the fluid interface where it

experiences a total internal reflection. The rarefaction

Reflected Shock Cross Node

-

ay,
Reflected i L.
“--Rarefactibn Propagation Direction
“.M""'-‘-'f'u Incident shock
Contact ¥
Transmitted Precursor
Contact
Total Internal

Reflection Node Transmission Node

0.36 dx =0.36 dy

Figure 3: Detail showing the implementation of the slow-fast re-
flected rarefaction case. The figure is taken from a full simulationof
the Richtmyer-Meshkov problem. Note that at the shock crossin,
only the reflected wave directed toward the fluid interface is tracked.



A SURVEY OF THE ANALYSIS OF IRREGULAR SHOCK 63

from this total internal reflection overtakes the other reflected shock from the
crossing, and is dampened back to nearly the strength of the pretransition rar-
efaction. Figure 3 shows an example of the sort of configuration produced by

this interaction.

4.3 Fast-slow transition with reflected shock

This interaction typically occurs for weaker interactions that produce reflected
shocks. The transsonic reflected shock breaks away from the fluid interface to
produce a Mach type reflection. The slip line from the Mach reflection will be
swept up by the materal interface. This regime is probably the most compli-
cated from the point of view of interpreting its structure using node analysis.
In many cases the shock waves appear to break up into bands of compression
waves on either side of the interface, as shown for example in [12, Fig. 14d],
and the scattered nodes are more correctly interpreted as interactions between
leading edges of compression and rarefaction waves, rather than between dis-

crete waves.

4.4 Slow-fast transition with reflected shock

As in case 4.2, the transmitted wave becomes a precursor, and in this case the
precursor propagates through the interface as an anomalous reflection. Behind
this wave, the pressure is returned to approximately that behind the original
gshock. The transmitted precursor collides with the incident shock producing a
shock crossing interaction. One of the reflected waves produced by the shock
crossing is directed towards the fluid interface and is reflected in a total internal
reflection node. The rarefaction from this total internal reflection overtakes the
other reflected wave from the shock crossing downstream, and is dampened back
to a neighborhood of the pretransition reflected shock. Nodes of this type have
been observed in both computations and experiments, for example see Figure
9 of [2] and Figures 13 of [3]. The configuration shown there is somewhat more
complicated than the above description, since the shock crossing node is now

replaced by a pair of Mach reflections,
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4.5 Mechanical equilibrium point

The situation here is almost identical mth a transition from regtﬂa,r to Mach re-
flection. A Mach reflection is formed between ihe incident and reflected waves.
The Mach stem produced by the Mach reflection is transmitted through the
interface as a transmission node. The slip line produced by the Mach reflection
is directed towarde the fluid interface, where it is asymptotically sweep up by

the interface.

Initial Interface Fluid Interface After
time=0 35 microseconds
Pro agation
Direction
Shock Wave 1
e i

Fluid Interface

b Y

Figure 4: A Richtmyer-Meshkov unstable interface. A fluid accel-
erated by a shock wave experiences an unstable growth. An analysis
for wave refraction is a key element of the application of front track-
ing to such problems. The horizontal resolution is 60 cells across
the computational domain,
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5. Conclusion

The qualitative description of the wave scattering given above can be incorpo-
rated into numerical methods that use front tracking. The tracked fronts allow
a precise computation of the local reference frame of each node, and allow the
inclusion of the information obtained from the shock polar analysis into the
numerical solution near that node. Transitions are detected by checking the
results of the shock polar analysis for one of the five transition cases. When a
transition is detected, the single node is split into its constituents corresponding
to the given transition. This is done on a case by case manner, but the small
number of cases make the process feasible. Currently two of the five cases have
been implemented in our front tracking code. Figures 2 and 3 show the local
structure of the wave scattering. Figure 4 shows the result of the acceleration
of a fluid interface by a shock wave. As can be seen, front tracking provides a

high degree of resolution relative to a given computational mesh.
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