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THE CAUCHY PROBLEM FOR A CLASS OF 2x2
NONSTRICTLY HYPERBOLIC SYSTEMS

Hermano Frid * Marcelo M. dos Santos &

Abstract

In this paper we solve the Cauchy problem for the systems 8,z —
0,Z% = 0, where 2 = u+ v € C and ¥y € 1 < 2, These systems
are nonstrictly hyperbolic possessing an isclated umbilic point at z =
0. We use the vanishing viscosity method with the help of theory of
compensated compactness. Uniform bounds in L* for the solutions of
the viscous systems are not available, but such bounds can be found in
L?. This makes necessary the use of the generalized Young measures
and improvements in known techniques of the compensated compactness
theory applied to conservation laws.

1.Introduction

In what follows we will be interested in solving the Cauchy problem {or the class

of 2 x 2 nonstrictly hyperbolic systems given by:
Bz — 8,27 =10, (1.1)
where z=u+iveC,t>0,2¢c R and
1<v<2 (1.2)
For the initial condition we set
z(z,0) = zo{). (1.3)

Our main result states that there exists a global weak solution to (1.1)-
(1.2) , provided the initial data satisfy:

(£) z € L* N L™(R; R?)
*Partially supported by CNPq proc. 302307/86-9
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(i) 2o takes its values in some closed wedge €' of the plane, with vertex at the
origin and angle SH
solved in [14]. This is & particular case (a = —1, & = 0) of the systems
O + Bu(av® + 2buv + v?) = 0
{ G + G.(bu? + 2uv) = 0.

that give canonical forms of the quadratic systems which posses an isolated

radians. The Riemann problem for (1.1) with v = 2 is

(1.4)

umbilic point at the origin (see [17]). As it is shown in [17] they can be classified
in four cases according to the range in which vary the parameters ¢ and 4. In
each case, the wave curves and the solutions to the Riemann problems have
the same structure from a qualitative point of view. The solution of Riemann
problems for systems included in the general form (1.3) was the subject of a
number of works (see, e.g., [9], [14], [19]). Up to now, the only result proving
the existence of a global weak solution to the Cauchy problem for a system of
the type (1.3) is due to P. Kan [13], for the case a = 3, b= 0.

As we will see, systems (1.1), with 1 < 4 < 2, form a beautiful example
of the far-reaching power of the techniques developed in connection with the
application of the compensated compactness theory to the nonlinear hyperbolic
systems. Besides the fact of being nonstrictly hyperbolic, these systems present
as an additional complexity the lack of available bounded invariant regions.
This is due to the fact that the level curves of the Riemann invariants, or,
briefly, the rarefaction curves, have their concavities turned to the origin and
so they do not bound any finite convex région. Because of this we are led
to consider uniform bounds in L?, instead of L*, and to use the generalized
Young measures which were introduced in [18] and later extended in (8). The
fact that these measures may have unbounded support, imposing certain cares
with the growth of the functions to be integrated, is an important aspect to
be considered in our procedure for reducting these measures to point masses,
which constitutes a slight improvement in a technique originally due to D. Serre
[21] (cf. §5).

To get a sequence of approximate solutions to (1.1} we use the vanishing

viscosity method, that is, we consider solutions of the systems formed by the
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addition to the right-hand member of (1.1) of the viscous term 3.

The initial value problem for the viscous systems presents two interesting
features. The first is due to the fact that the flow function z”, with 1 < v < 2, is
not even twice differentiable at the origin. The curious thing here is that the very
fact that the convex part of the plane delimited by any rarefaction curve, not
passing through the origin, is that not containing the origin, plays now a decisive
positive role to surmount this difficulty. It permits us io define extensions of
the function Z¥ out of invariant regions, which are C* in all the plane (see §3).
The second is due to the already mentioned lack of a priori L™ bounds for the
solutions of the viscous systems. This demands a careful verification on the way
in which the constants, appearing in the process of extension of local solutions
to global ones, depend on the viscous parameter . More precisely, we have to
show that these constants can be choosen independent of € (cf. §3).

This work is divided in five sections. After this introduction which consti-
tutes section 1, we state in section 2 the basic facts about the system (1.1)
and an important result which gives a direct way to get Riemann invariants
for systems of a more general type including (1.1). In section 3 we solve the
Cauchy problem for the viscous systems. In section 4 we show how to construct
entropies for system (1.1) of certain types, which will be useful in section 5
where we expose the process of reduction of the Young measures, proving that
they are in fact Dirac measures, that is, their masses are concentrated in only

one point. At the end of section § we then state our main result as theorem 5.7.

2. Riemann invariants

We initiate our study of the systems (1.1) by stating some preliminary facts
about these systems such as what are their eigenvalues and the corresponding
eigenvectors. We will end this basic discussion with a result which gives a direct
way of obtaining Riemann invariants for a class of systems including (1.1). For
these purposes the following cxpedient is very convenient. Take the conjugate

in both sides of (1.1), set Z = w, and thus form the following 2 x 2 systems of
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complex equations in the dependent variables z, w:

agz - 3,w‘f = 0,
{a,w BT =0 (2.1)

The Jacobian matrix of (2.1) is

A(z,w):( 0 ‘“"6’"’). (2.2)

71

Its eigenvalues are then:
A= —y(zw)F, A = y(zw) T (2.3)
The corresponding eigenvectors are easily seen to be:
= (wz;_l,zx;_:), ra = (w'T,—2). (2.4)

Now, setting w = 7, we get

A= =]z, Az = .lel'r—l, (2.5)
Ty = (z'l;_l,z:"}l'), 7y = (2~ I_:,—-z:;_l). (2.6)

It is easily to check that (2.5)-(2.6) really give eigenvalues and eigenvectors
to the original systems (1.1). We remark that, since (1.1) is symmetric, r; and
72 given by (2.6) are also left—eigenvectors. A quick look on the expressions
giving 7y, 73 in (2.4) can provides us with candidates to Riemann invariants
for (1.1) which then are easily comproved to be actually Riemann invariants for

(1.1). We have in fact the more general result below.

Proposition 2.1. Let us consider a 2 x 2 system
Oz — 8. f(2) =0, (2.7)

where f is any holomorphic function. If G = wy + tw, is a primitive to (F)2

then (wy,w;) is a pair of Riemann invariants for (2.7}, ie

VudF = (~1)*|f |Vw, (2.8)
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k=1,2, where F ¢ —F is the map from dom.(f) C IR® to IR* whose coordi-
nates are (—Ref, Imf).

Proof: In this proof we are using the following formula which is valid for

complex numbers 2y = e +iband zp =c+id :

@87 ‘:) - —5%. (2.9)

We are using the Cauchy-Riemann equation also.
We have that

(f)? =G’ = 8wy — iBwy = Bows +iuwy, (2.10)

80,

Vu, = (F)" and Vwa =il . (2.11)

By the other side,
~G.Ref Oudmf

¥ =(g,imf ouRef) (2.12)
Then
Vandf = —(f)/OuRef —iBuIm])
—(F)F
= -1 (213)
= —|f'|Vu.
Analogously,
VwdF = |f'|Vws. (2.14)

By noting that £|f’| are the eigenvectors of df, we have finished the proof.
Note that (2.8) says that Vwy, is the left cigenvector associated to the eigen-
value (—1)*|f /| of dF. By the proposition (2.1) we have, in polar coordinates

{(u = rcosf,v = rsend), that
w? ¥ e cosad (2.15)

and

wd & rsenad, (2.16)
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where
ry+1

a=s ——

2 ¥

form a pair of Riemann invariants for (1.1). Then
wy ¥ —r%cop?0f = —(w?)?

and

w; X 1 2enlnd = (wd)?

form also such a pair. This last is more convenient for our work,

(2.17)

(2.18)

(2.19)

These Riemann invariants will provide us with invariant regions and will

furnish & suitable system of coordinates for the construction of entropies.
By the theorem of Chueh—Conley—Smoller ([2]) we have that the convex

regions limited by the rarefaction curves, i.e., the level curves of w, and wg, are

positively invariant regions for
B,z — B(2F7) = e8pp2®, € > 0,
3. The viscuos system

Let C be some wedge

C¥{:eR &

T
< < (k _—
T Sersls) < (k4 DT,

where k € Z.

Let

L N
Q¥ expli(* ) 1)

(or any vector pointing to the interior of C).
Consider the Cauchy problem

{ Oez® — O (2F)T = €8,.2%, €>0
z‘(:c,O) =z5(z), z€ R,

where

def
25 = zp+ €Q.

(2.20)

(3.1)

(32)

(3.3)

(34)
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Note that, since the image of zy is contained in the wedge C, the image of
28 defined by (3.4) is also contained in C and can be bounded away from the
origin by some rarefaction curve, for instance the level curve w; = wy(£Q). So,

z& will take values in the positively invariant region:
S (U e B : wa(U) 2 wa(eQ)}. (3.5)
To avoid the singularity of the second derivatives of the map
) = (3.6)

at the origin, in order to obtain a global solution to (3.1), we consider F € C°
satisfying: :
F(z)= f(z) Vze § (3.1

and
F'(z) = of|z]), F*(z) = O(1) and F"(z) = O(1) when [z > co. (3.8)
Following [11} and [12] we obtain a local solution to

{ Biz° + O, F(2°) = ez, (3.9)

2°(z,0) = z§(z), € R
and, accordingly [L1] and [12], this local solution can be extended globally if we
have that

lzals < le,7) (3.10)

for some constant ¢(e,r) which can depend on & and 7 > ||zg[|z=. Using the
above growth conditions (3.8) we calculate for our case this constant explicitly
and we show that,

lim ¢(g,7) = oo, (3.11)

for each fixed ¢, so the condition (3.10) can be omitted and we obtain a global
solution 2* for (3.9) (see [16]). Moreover, since § is invariant for (2.20) we have
that this solution 2 belongs to S everywhere, so z° is in fact a global solution
to (3.3).
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Since (1.1) is symmetric we have, as it is well known ([71,[13]), that z* satisfies

I2°(¢) — €Qllz2(m) < l|2o]les (3.12)
Vit > 0,Ve > 0, and
2€)|802°|| sz y < | 20]lxa (3.13)
Ve > 0.
4. Entropies
Consider a 2 x 2 system of conservation laws
U+ o, F(U)=0, {4.1)

U=(uv)e R

Definition 4.1. A function 9 : R? — R is called an entropy for (4.1) if there
exists another function ¢ : /R?* — IR, which is called entropy fluz, such that

Vn(U)F(U) = Vg(U) (4.2)
VU edom (F).
Note that (4.2) is equivalent to
8m(U) + Beq(U) e (4.3)

for every classical solution U of (4.1).
In terms of Riemann invariants, it is well known that a pair (#,%) is an

entropy—-entropy flux pair for (4.1) if

g
V6= (g, ha o) (4.4)
Eliminating 4 in (4.4) we obtain that ¢ satisfies
2
P 1 _omos omos o s

6101310: a\g - Al 6w1 aw; ng 6w1
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Now taking the pair of Riemann invariants in (2.18)-(2.19) we have
wy —wy =2 =77 (4.6)

and
=A== —y(w; — w,]‘r::r_: (4.7)
80, the equation (4.5) becomes

#6 __a (0 _ 0

. 4.8
8w18w= wy — \31!12 awl =0 ( )
with |
ar 71
= 4.9
TR 49)

Note that 0 < a < 1/6.

The equation (4.8} is {he Euler (—Poisson—Darbouz) equation ([3], [5],
[25]). We will only consider the Euler equation (4.11) in the quadrant w; €0 <
wy where our Riemann invariants take their values. We consider the Goursat
problem for (4.11) which consists in solving it submitted to the conditions

{ qﬁ(wl,w;) = 91[“’1)1 u <0,

(wy, wa) = Ga(w2), w2209, (4.10)

where 8;, 6, are given smooth functions, w} < 0 < w} are fixed constants and
we impose the compatibility conditions #(w}) = 8;(w3).

The solution for (4.8)-(4.10), obtained using the Riemann's method, is given
by

$wi, wa) = 01wy )G(wy, w3, wy,w2)

+ [ 6t wy, i, w6 () — alw; - ) M0()]dE (411)

Wy

+ [ Glwi,mwn, w6 ) + alr —wi) ()

([25], p.24) where G is the Riemann function, which in our case is

G(21,%2,®3,24) = ( )"‘H(o‘) (4.12)
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where ( X )
Ta— PNy — 2
o = o2y, T2, 23, 24) = (2 = 23)(ze = z:) {4.13)

and
H(o) ¥ F(1 - a,a; 1;0) (4.14)

is the hypergeometric function (see [25], p.20 and properties of hypergeometric
functions).

The constants w; and wj will be called kimits of the entropy.

We observe that the Euler equation (4.8) is invariant under the transforma-
tion (w1 — wi, ws — w}), k = 1,2, s0 we can restrict our attention to the case
where wj = 0 or w; = 0.

We recall that we have the following integral representation for H:

H(o) = m [ et —oaytids, (a35)

since 0 < a < 1,

From this we have that H is analytic on the interval (—oc, 1), H{o) >
0V o€ (—oo,1) and H is bounded on (—o0,7] ¥ p < 1.

For our purposes, following [21] and [18), we will consider four types of
special entropies, solutions of (4.11)~(4.13), namely east, west, south and north,

East type: It is defined by choosing w} < 0,8, = 0, 61(uy) =0 if w, < w}
and 8wy} =0 if —§< w <O foragiven 0 <8< —w!. By (4.11)-(4.13)
we have that an east type entropy ¢ is given by

wy
$wr, wa) = (w; — ;) / " H(o)8 '(t)dt (4.16)
iy
if the limit w} =0, where
B(t) = (~2)76(2), (4.17)
H satisfies (4.15 ) and « and o are defined in (4.9) and (4.13), respectively.
From (4.16) we immediately have that the support of ¢is contained in {w,; >
wi} and we see that the terms contributing to singularities are (w; — w;)=

at the umbilic point w; = wy = 0 and the Hypergeometric function when

o — 1.
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In (4.16) we have

o e (419
c=18w =0 (4.19)

Then the singularity of ¢ is concentrated on the axis w;, = 0, away from
which ¢ is smooth and bounded.

The others types of entropics are defined as follows:

West: w} <0,62=0 and & (uw) =0 if w >wj;

South: w} > 0,8; = 0,62(w:) =0 if wy > waxey(wy) =0if 0<wa <6
for a given 0 < § < wj.

North: w; > 0,8, =0 and f3(w;) = 0if wz > w;.

All these entropies have similar integral representation to (4.16) and the
suitable vanishing pré)perties: east is supported to the right of the line w, = wy;
west is supported to the left of the line w, = wj; south is supported below the
line wy = w; and; north is supported above the line w; = w;.

To control the singularity of the east entropies on the axis w; = 0, we make
use of the two following lemmas due to P. Kan [13]. The proof of them can be
found in [13] or also in [16].

Lemma 4.3. Given an east entropy ¢ , consider the operator
()% [ (0w (4.20)
Suppose that for somen € IN,n > 1,
T((—t)) =0 (4.21)

vi € {1,2,..,n—1}. Then in some small box 0 < —wy,w; < € < § we have
that
¢ = O(r((zn—I]T+2n+l)}2)

¢f-lf1. = O(T((zn-a)'j-l—hl-l)/?)

¢w: — O(r{(2n—3)1+2n—1)}2)
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¢w1w3 — o(r((zn—5]1+2n—3)/2)
qswl“’l = O(r((!n—s}'r+2ﬂ-3)/2)
stgw: = O(f((!n—ﬁ)y{-!nn!i]/ﬁ),

where r = ||(u,v)|| = (w; — wl).,%_

Lemma 4.4. Let (u,v) = ¢(w;, w2) an cast entropy on the (u,v) space. Sup-

pose that (4.21) happens for some n > 3. Then 7,d%, d’n are bounded.

We have similar results for the south entropies. The west and north types are

regulars , since they vanish on the singular axis, and so they and their derivatives

will be bounded if we assume that £[(—t)°6,(t)] has compact support.

Another integral representation for our special entropies which will be used

in the next section is obtained from {4.16), through integration by parts. In

fact we have
$wr, wz) = I(wn, w2)8(w,) +f_l J(¢, wr, wa)br(t)de,

where

I(wl,w-,s)déf ( wy )n

Uy — W2

def fwlw;(—t)“—Z r

e 1Y T e,
(wa—un)=+1 (@)

for an east or west entropy with flux

J(tn wy, Wz)

W{w, wy) = K(wy, wa)by{w,) + fl L{t,wy, wp)8:(t)dt,

where

K(wll wz) l‘!.éf "“.l (1.!}1, wz)I(WI: w:)

and
L(t, un, w;) d_”e:i' A1(t, ‘w;)J(t,E, w;) - gz‘?—(t, wg)I(t,w;)
1

wy aJ
+‘/t A1(a,w;)%;(t,5,ﬂh)d8.

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

We have similar integral representation for the south and north entropies.
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5. Generalized Young Measure, Compensated Compact-
ness and Reduction of Measure.

Associated to the family {z}.,0 of solutions to (3.3) satisfying (3.12) we have

the generalized Young measure
{V(ﬂ.t)} y 8.8, (xat) € Ri (51)

([18] and [8]). This means that for a.e. (z,t) € R}, v, is a probability
measure and we have the following representation for limits of nonlinear com-
posite functions of {z°} when ¢ — 0, in the sense of the distributions (taking

subsequence if necessary):
(=) = (v, g), (5.2)

for every g € C(JR?) such that

o(%) = o) (5.3)

when |A| — oo.

The notation in (5.2) stands for

(o 9) E [ a(X)duan(3), (5.4)

ae. (z,t) € R:.
Taking in (5.2) g = id. and g(z) = z7 we have

P {v, idye L}, (5.5)
and
(F) = (v, X). (5.6)

Then to show that z is a (weak) solution to (1.1) what we need is to proof
that
v d=ef Vlz.1) (57_}

is a Dirac measure for a.e. (z,¢) € R+,
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The growth condition (5.3) at infinity is a sharp one. It is not difficulty to
find a function that grows exact as |A|? at infinity such that (5.2) does not occur
(see [18]). .

To reduce the Young measures io Dirac measures we use a slight improve-
ment of the method of Denis Serre ([21]). This method consists in showing
that

suppvN {wy=a} = 0 Va ¢ (uwy,uw}), (5.8)

and

suppvN {wy =b} = B Vb € (w;,uwy), (5.9)

where wy and w] are the inf. and sup., respectively, of the projection of
supp v on the axis wy = 0, I, k = 1, 2. This means that the rectangle R
whose vertices are (wi,wy),(w{,w;),(wf, ), and (wi,ws) is the minimal
rectangle in (w),w;) space containing the support of ». The cases Wy = —go
or w§ = +oo are also allowed.

After the proof of (5.8) and (5.9) we will have that there exist points A;, [ =
1,...,4 belonging to the quadrant w, < 0 < w, and constants Bi=z0,1=1,..,4
such that T, ;= 1 and

v=Y B4, (5.10)

1=1
By the theorem 6.1 in [21], (5.10) implies that there exists at least one
B = 0. Having supp v concentrated in three polnts, we will show then how to
reduce it to 2 unique point in the (w1, w2) space, using the entropies in section
4. If vz is a Dirac measure in (wy,w;) space for a.e. (2,8} € R, then

this is also true in the (u,v) space and
Vi) = biap) , 2. (x,t) € RE, (5.11)

for z given in (5.5), because the wedge C, where the initial data takes its values,
is a positively invariant region for the viscous approximations of (1.1) and the
map

(u,v) — (wy,ws) (5.12)
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is 1-1 on this region.

We will assume that R contains the umbilic point wy = wy = 0, i.e., wi =
w; = 0. The other case is similar and less complicated. We will show (5.8) by
using the east and west entropies described in the section 4. Analogously one
can show (5.9} by using the south and rorth entropies.

The basic fact used in the theory of Compensated Compacteness that per-

mits to reduce the Young measures to Dirac measures is the commutation relation:

.85 - ) = (1, 8) 0, 8) — (0, B 0), (5.13)
6 b\ _[nd) (e
(=5 $|>‘ (@) () ‘ (5.14)

valid for any entropy-entropy flux pairs (q5,'qb),( ) satisfying the lemma 4.4,
since we have (3.13).

With a slight adaptation of an argument in [21], using the integral represen-
tations (4.22)-(4.27), we have ([16])

Lemma 5.1. Given —o0 < e € [w,0,let0 < §<a For0O<e <« 1, let
{#,%) and (3,1;5-) be an east and west entropy-entropy flux pair, with limits
a+¢ and a — ¢, respectively, where the Goursat datas satisfy 6,(t) % ¢(¢,0) >

0, Gl(t) qb(t 0) < 0ifte(a—e,a+c)andby(t)=0iftc(—60) Under

these conditions, on the stripa — ¢ < wy < ¢ + ¢, w2 > 0, we have

- b = oo, w (o, 0o (wn) 4 () — wn)°0(e),  (5.15)
where
t 1+ 4
10t ws) = (;—-) (5.16)
and
(1) % 6, (1) j« :‘ Ba(t)dt ~ Bs(wy) f f‘ 8,(t)dt. (5.17)

Now let us fix a € [wy,0] witha < —§ < 0,
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Lemma 5.2. Let ($,1) and ($,9) as in the lemma 5.1. If
(hed -y =0 Yo<ex], (5.18)
then (5.8) helds.

Proof. The support of ¢4 —¢np is contained in the strip a—e < wy < a+e,w; >
0,. Let x. denote the characteristic function of this strip. Then

$h -9 = (¢ - Hxe
= (8r(a, wa)(a, wa)?p (wr))xe (5.19)
+ (P (wi)(we — w1)*)x.O(e)
by (5.15). If we have (5.18) then (5.19) implies that

0= (v, B{ws)p*(w1)(wz — a)*xc} + (v, p*(wr1)(ws — a)*x)O(e)  (5.20)

where

at OM
3w1

A .

h(w,) = (wy — a)*e

(5.21)

Suppose that (5.8) does not occur. Then (v, p*(w; J(wz—a)*x.} > 0 Ve >0,
so we have a well defined probability measure p* on the half line w; = a,w, > 0,

given by:

e m det (¥ $p°(wn)(wa — a)®xc)
b (= o) —a)xe) (5.22).
We observe that
(w2 — o)* = O("T) (5.23)

when r = ||{%, )| —+ oo and 1;—' < 2, 50
{r, (w2 —a)*) < oo. (5.24)

From (5.22) we have that u° — p, where u is a certain probability measure

on w; = &, wz > 0, which we call the trace of ». Then, by (5.20) we get

{g, ) =0, (5.25)
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This is a contradition since k > 0. ]

So, in order to prove (5.8) il suffices to show that (5.18) is true. We do this

by means of the following three lemmas:

Lemma 5.3. For all @; € (wy,0) there exists a west entropy ¢ bounded with
Emit w} = 1, such that
(v, ¢)#0. (5.26)

Lemma 5.4. Let w; € (wy,0). There exists a constant ¢ such that

(v, ¥} =clv, ¢) (5.27)

for all (¢,4) east eniropy-entropy flux pair with limit w;}.

Lemma 5.5, For every east entropy~entropy flux pair ($,%) with limit w] €
(wy,0), we have
v, ¢) =y, ¥)=0. (5.28)
The lemma 5.5 and the commulation relation imply (5.18). The lemmas 5.3
and 5.4 are used to prove the lemma 5.5.

Proof of the lemma 5.3. Consider

qﬁ(wh ‘w:) = (‘w: - w;)_" /‘;1 H(O’)g '(I'.)dt (529)

a west entropy with limit w} = i, where 6(t) % (—t)*6,(t) for some smooth

function #, vanishing in (#),0) and H satisfies (4.16). By choosing 6; # 0 in
(w7, %) such that ¢ results to be a monotone function having compact support,

we get ¢ # (0 with constant sign and bounded. Then (v, ¢} # 0 as required. m

Proof of the lemma 5.4. Take wy* € (wy,0). By lemma 5.3 we have a west

entropy—-entropy flux pair ($,) with limit @; < w} such that (v, §) # 0. Since

that suppr N supp$ ={), we get the result with
c:lgf (V: ﬁ)

) (530
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by applying the commutation relation to the pairs (¢,v), (4, 12;) |

Remark 5.8. It is clear from the above proof that the constant ¢ in the lemma
5.4 can be taken independently of the limit w{ varying in any interval of the
type (n,0) with w < n < 0. In the case wy finite, if there exists an east
entropy—entropy flux pair (&, xb) with limit w} = 4, larger than wy such that
(v, ¢) # 0 then we can extend this independence of ¢ on w} up to w] by a
limiting argument. Besides, in this case the relation (5.27) is also valid for west

entropy-entropy flux pair with the universal constant ¢ 2 (v,q!;) [, qﬁ}

We note that the existence of an east entropy ¢ such that {v,é) # 0 is
possible only if supp.v it is not contained in the union of the lines {w; = wi'}
and {wy, = 0}, since east entropies vanish on these lines.

Proof of the lemma 5.5. Suppose that there exists an east entropy-entropy
flux pair (¢,%) with limit w} = 1, such that wi < 1y < 0 and (v, @) # 0.

By the definition of wy, there exists —oc < @ € [wy, 1) such that ¥({a <
wy <a+¢})>0 V0<e¢ <l By thelemma 5.4 and remark 5.6, there exists

a constant ¢ such that
(v, ¥} = c(v, @) (5.31)
for every east entropy-entropy flux pair (¢, %) with limit w] = a and

v By =clv 6 (5.32)

for every west entropy—entropy flux pair (3,6} with limit wi = a + ¢ < iy,

Then the commutation relation implies that
(v, 65— ) = 0. (5.33)
for these pairs. So we get a contradicttion with lemma 5.2. [ |

We have shown (5.10). By theorem 6.1 in [21] at least one 8 = 0. Let us
consider the Figure 5.1 below.
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The commautation relation now is

4 - . 4 - -~
(8 — BE) e — dushe) = Y BiBrldrdn — dive) (5.34)

1= ;,11;1
where, if f is a function, f; denote f(A:).

Suppose 8; = 0. From (5.34), we have

(Bs — B3} baths — darpa) = 0 (5.35)

V(é, ¥} (a, ) west entropy—entropy flux pairs with limits w} = % and w; = 0.
Note that

g
7|b3 = . 1# wy = f f\1 -——dw1

Ay Bw1

= Mds)ds ~ WA - [ 0 g,
= MAs)ps — f ) m‘;é (5.36)
Then
dods =t = [ s~ buB) g, (5:37)

Since ¢ and $ are arbitrary on the segment A; As, from (5.34) it follows that
B3=0 or B5=1 (5.38)
Suppose 1 = 0. From (5.34), we have
(Ba — B)($utbe — utbs) = 0, (5.39)

Y{g,¥), (5,@) west entropy—entropy flux pairs with limits wy = % and w; = by,
Then
ﬁ4 =0 or ﬁ4 =1. (540)

If 83 = 0, analogously we have 8y = 0 or f; = 1 by using (¢, %), (¢, xb-) north

entropy-entropy flux pairs with limits w§ = ay and w} = %
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Figure 5.1

Now suppose 8, = 0. Here the arguments above do not apply with east
or south entropies because these vanish when w; = 0 or wy = 0, But we can

combine west and north type to obtain, from (5.34),
(B4 — BI)($a%e — dapa) = 0, (5.41)
(¢, ) west with limit w{ = % and ¥(¢, %) north with limit w} = % such that
b3 = 3= go = Py = 0. (5.42)

Further, it is not difficult to prove that the functions J(- a2,b3), L(-,82,8;) and
%:‘(‘,ﬂg,bl) in the integral representations (4.22)~(4.27) are linearly indepen-

dents, so we can choose

= ‘/;l J(t, 23, bg)¢(t,b1)d£ =1, (5.43)



NONSTRICTLY HYPERBOLIC SYSTEMS 49

and
¥s = jﬂ’ L{t, az, b2)d(t, by )dt = 1. (5.44)
T
Analogously, we can choose
$r=—Pu=1 (5.45)
So
Ba=0 or f4=1 (5.46)

In all cases, we conclude that v is the sum of at most two delta functions,
ie.,
v = p1bp, + p2bs;, (5.47)
where Fo0s + P2 = 1, P11, P2 2 U, B] = (Cl,d1) and B; = (Cz,d:) with Cz é Cy é
d] Sdg and B1 7é B;.

A2

B -

g
Wy

Wr-—-—————-——-
[ Sp—

Figure 5.2
Now, if ¢; < cy, taking west entropy-entropy flux pairs with limits ¢; <
w} < ¢; and w; = d, (5.34) implies that

(p2 — £3)(¢2¥02 — pava) = 0, (5.48)

and s0 p; =0 or p; = 1, i.e., v is a Dirac measure. If e; = cy, since By # By,

we have d; < d;, so, taking north entropy—entropy flux pairs with limits dy <
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w3 < d; and wj = ¢, we conclude also that v is a Dirac measure. This was our

objective. We have then proved the following:

Theorem 8.7, Let v € (1,2) and 20: R — IR? such that z € 2N L* and
kg < arg(w(z)) < (k+ 1);55 V= € R, for some k € Z. Then the family
{2°}e>0 of solutions of (3.3) contains a subsequence that converges weakly as

€ — 0+ to a solution of (1.1).
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