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THE BILLIARD ON AN ELLIPSOID AS AN
INTEGRABLE SYSTEM

P. A. Deift® L.C.Li® C. Tomei*®

Abstract

‘We show that the diffeomorphism induced by the billiard map on an
ellipsoid is the time one map of an evolution equation with remarkable
algebraic properties. The description of the evolution contains a non-
local operator similar to a Hilbert transform and the associated flow can
be explicitly written by making use of the solution of a singular Riemann-
Hilbert problem.

The Korteweg-de Vries equation is the archetypical example of an evolution
cquation for which an underlying algebraic structure gives rise to conserved
quantities ([L]). These quantities in turn provide a priori estimates which were
employed in the proof of (long time) existence and uniqueness of the Cauchy
problem for initial conditions in a variety of spaces ([BS]). Later, researchers
in PDE’s became interested in the analogous problems for evolution equations
which are not necessarily described by differential operators, as in the case of
the Benjamin-Ono equation ([I]). There are new evolution equations of a similar
nature: some well known diffeomorphisms in numerical analysis, like the QR
step in the computation of eigenvalues of symmetric matrices ([P]), have been
shown to be the time one maps of evolution equations with an equally rich
algebraic structure ([S]),[DNT]), but in this case, usually, the natural phase
space is a subset of the set of n x n matrices (see however [DLT] for a similar

evolution in the space of bounded operators in £3( V).
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In this short note, we show that the diffeomorphism induced by the billiard
map in the n-dimensional ellipsoid (to be described in detail below) is (essen-
tially) the time one map of an evolution equation in an infinite dimensional
functional space with remarkable algebraic properties. The description of the
evolution equation contains a non-local operator similar to a Hilbert transform
and the associated flow can be explicitly written by making use of the solu--
tion of a singular Riemann-Hilbert problem (corresponding to a Bruhat-type
group factorization). Details and similar evolutions associated in particular to
Heisenberg models with classical spin can be found in [MV] and [DLT2].

Consider the elliptical region
E={z:(z,0%) <1}

in R?, where C is positive diagonal. If a ball strikes OE at a point z, from a
direction g, || %o ||= 1, then, after reflection, the ball strikes AE at a second

point z; from a direction y,.

Figure 1.

The billiard map is the map ¥ : ¥; — Y, , where {(»,y)|z ¢ 8E,
Il ¥ [|= 1,(z,Cy) > 0}, taking (o, o) to (z1,%1). It is & remarkable discovery
by Moser and Veselov ([MV],[V]) that v can be described (up to signs, see

below) as follows. Define the matrix polynomial

Lo(A) =0 B yo + Azo A yo ~ NC?, (2, w ey
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where z @ y = zy7 and = Ay = 23T — y27, factor,

Lo(A) = (AC + 30 ® O 20)(—AC + C 120 ® 10),
(note that || C~'zp ||= 1) exchange factors,

LL(A) = (—AC + 20 ® 5)(AC + 3o ® O'o)
and factor again,

Li(3) = (AC 454 8 C'ab)(—3C + G-z @ 1)
with g = C™zq and || C;'"lr{, [|= 1. This construction defines a mapping

¢: Y, Y,
(z0,¥0) — (20, %)

with the property that ¢* = —s.

Consider now the function

Ay 1 iR > Mat(C,n)
Lo(X)

1-22

so that Ag(A) > 0 for A # 0, and look for a factorization

A—

et o4 = g, (8, X)g-(t, )
where the matrix functions g, and g_ are determined by the properties below.

(i) g+(t, A) have invertible analytic extensions to Re: > 0, Red < 0 respec-
tively,

(ii) g«(t, A) are continuous and bounded in {ReA > 0} \ 0, {Rel < 0}\ 0,
respectively.
(iii) as A — 0 in Rel > 0, ReX < O respectively,

di

-1
< W|Sn < o0,

for some constant independent of ¢,
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(iv) g2(t,A) —» Ct as A = oo.

Theorem: The factorization above erists and is unique. Moreover,
(v) 9-(¢,2) = g3 (t,A),A € iR\ 0.
The expression
A5 2) = 9,6, ) Ao(A)gi (8, A)
is always of the form

Al 2) = X8 + ?t(tj!A ¥(t) - NC?

with (x(t),y(t)) € Y, and solves the evolution equation
d
A 2) = [(m_logA(t, .))(2), A%, A)]

A(0,A) = Ag(A),

where )
) 1 . v X{(AVdN
m-X(}) = EHJI 2_1;;"]52}0 ./_.'r A—(A—¢)

Finally, the induced flow

(0, 30) — (2(t),9(¢)) e Y*

interpolates the mapping ¢ at integer times, i.e.,

(=(1),9(1)) = é(2o, yo).

The proof of the theorem begins by showing by standard techniques that for
the perturbed loop A§(A) = Ag(A) +6-1,6 > 0,) € iR, consisting of strictly
positive matrices, there is a standard (unique) factorization exp(t logAS(A)) =
gi(t,))g"_(t,)) with the usual requirements of analicity on both half-spaces
(the analogous to properties (i) and (ii) with additional continuity at 0) and
prescribed asymptotic behavior (the analogous to property (iv)). A rather del-

icate limiting procedure obtains the factorization in the case § = 0. The fact
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that the evolution defined through the factorization is the solution of the dif-
ferential equation above again follows by standard techniques in (loop) group
factorizations and a limiting procedure. Finally, the interpolation claim is a
consequence of the explicit solution of the differential equation for ¢ = 1, com-

bined with the Moser-Veselov description of ¢ by (polynomial) factorization of
AN,

There is more than one way to introduce & sympletic structure for which
the maps ¢ and ¥y are canonical (and the evolution equation is completely

integrable).

Theorem: Let wy be the (non-degenerate) restriction of the standard two-
form in R¥™ w = 10, dz; A dy;, to the submanifold Y, C R*™. Consider the

Hamiltonian

1 B " - 1- A2
Hev) =4 [ Len{A(N)IogA() — AN) + 1~ )N,
where o . .
A(A)=y®y+«\z/‘\y—)\6’,é= E ]

4=
1-A etz |’ Iyl
and Cg is the contour in Figure 2, for any sufficiently large R.
The flow generated by H.on (Y, ,w,) coincides with the induced interpolating

flow for ¢. Moreover, the Hamilionians

1 : - (1= A%)dA .
L= i PR ST i) ey
L= fc (A o AQP) S 2 < G <n
are n. — L commuling integrale of H in Y., so the flow generated by H on Y, is

completely integrable.

The proof of the theorem is a calculation which obtains the evolutions of
z(t) and y(t) under the flows induced by H and the Iis (the lengthy details
can be found in [DLT2]). Note that the phase space ¥, is finite dimensional,
but the rather explicit solution of the H-flow requires imbedding Y, into an
infinite-dimensional space of functions {B(A)}. The integrals I; are equivalent
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to the eigenvalues of the matrix polynomial L{}) = y @ y + Az Ay — X107,
Those integrals were used in [MV] to show the integrability of the map ¢ for
an (apparently) different sympletic structure. By the way, when n = 2, the
form w,. coincides with the 2-form wy used by Birkhoff ([B]) in his study of the

billiard map (which happens to be canenical with respect to wg).

1R

—_— 1‘ R
Figure 2

The interpolating flow has another sympletic interpretation. For adequate
choices of (loop) group G and R-matrix structure, together with a representation
of the dual of the R-Lie algebra, the (finite dimensional) coadjoint orbit through
Ao(A) admits a Lie-Poisson symplectic structure for which the interpolating flow
is canonical and belongs to a large class of commuting Hamiltonian flows that
can be solved by group factorization techniques. The differential equation and
its explicit solution then become an example of the formalism relating group
factorizations and R-matrix structures ([STS|,(DLT2]).
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