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Abstract

We show that the Cauchy problem for the {perturbed) ILW, w, +
2uu, + Lue + Aufg = 0 is globally (on any real interval where ¢ is
integrable) well-posed in the topology of ¥, , = H*(R)n L}R,wldz),
where w,(z) = (14 z?)*/? forany s > 3/2and 0 < 7 < 4, (Lf) = S§F,
S(€) = 1/a — fcoth{af) = —af?/3 + O(a®}) as a — 0 and S(§) —| ¢ |
as & — oo. The solution u.. converges to the solution of the (perturbed)
BO equation (as @ — o) in H* and Y, ,, for 1/2 < v < 2, while i,
approaches the solution of the {perturbed) KdV equation (as a — 0)
in ¥, for 0 < v < 4/2, where G(t) = 3u(3t/a)/a. For 2 < v € N,
the limit @ — oo holds if u,(¢,2) is such that a’uu(ﬂ t) = 0 for every
Fe{0,1,...,v—3}. For j > 1, the limit is zero.

Notation
wo(z) = (14 2%, yeR, 20
J'={(1-A)"? scR
f=tim- 7= Jr f(z)e”*"dz = Fourier Transform.
L»=LXR), [ flio=fr|fIFde, 1<p<oo
H* = H*(R) = Sobolev Space, | f |z-=| w.f lt2=| J*f |u2.
P, = L}(R, w:d:c) = Weighted L? Space, | f lp,=| wy f |ga
Y.y = H* (1 P, = Weighted Sobolev Space, | f [§, =|f | + |7},
Simplification
ls .-f~| ¥
l=1" H
|=I |u=| : |ou=| 2= - |7

|-
|-
-
(-,-): = z-inner product.
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1. Introduction

In this work, we consider the Cauchy problem

e+ 2uu, + Lu+ Adufg=0, tel)\{t.} (1.1)

{ ue C(1,Y,,)
u{tg) — ¢

where {t,} = {to,t1,...} C I is a discrect sequence with {¢,} = {t.}, 1=1,is
a real interval such that A/g € L'([), g: 1\ {tn} — R\ {0} is continuous, z,¢, )

and u = u(z,t) are reals, and L is one of the following operators

(g —ILW) Lu=tpfa+ Totze, a>0
(9 — BO) Lu = oy,
(g - KdV) Lu = Uzzs
(g-295) Lu=(J -1y,
(g ~ILW) Lu = 3(uz/a + Taug)/a,
with
_ 1 m(y — =)
Tof(z) = Bap,v./n coth | ZE=221 f(y)dy, (1.2)
of(z) = %p.v‘ e ;L_y‘l—dy‘ (1.3)

According to several authors (see [J], [KKD], [JE|, [CL), [B], [0], (KdV], [8]),
(9—ILW) describes long internal gravity waves in stratified fluids of finite depth
(a), (g — BO) represents the deep water limit (a — 00), (g — KdV') represents

the shallow water limit (@ — 0) and (g— §) governs the continental-shelf waves.
We can resume this work in three main results:

Result 1.1. The problem (1.1) is globally well-posed.
Result 1.2. (9 - ILW) — (g — BO), as a — .
Result 1.3. (¢ ~ JLW) — (g — KdV), asa — 0.
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2. Well-posedness

In this section, we present (in an exact sense) the Result 1.1 and give a sketch

of its proof.

Theorem 2.1 (ezislence-uniqueness) If s > 3/2, 0 <y <sandp €Y, ,, then

there ezists a unique solution u for (g — ILW). Moreover,

SuecC(IP) ifs>keNand0<r<(l—k/[s]) (2.1)

Sketch of proof: We use the parabolic regularization

{ 1w+ 2uny + Lu + Aufg = pue., p#£0
u(0) = ¢,

and write (2.2) in the integral form
t
ult) = GO,0EE)p — [ Glr,t)E(t - r)lu(r)dr,
)
where
2 toA
E(t) = e 4%} Q(r,t) = ex [-/ ---da:l
(t) (nt)=exp |~ [ -5
The properties of t — E(t) and the Fixed Point Theorem show that there
exists a small interval J(= I,) dependent on p such that the theorem holds
for u # 0. By using a Kato's inequality (see [K], Lemma A5), u = u, can be
extended to some Iy interval (independent on ).
A limit argument (¢ — 0) (see [I3], sketch of the proof for Theorem 2.1)

implies that the theorem holds in the interval Jy. In order to extend u to {,

once again we use parabolic regularization, the Hamiltonian structure
4y = O (4) + ptes — Mu/g (23)
and the conserved quatities 1% and  such that
(#'(u), Be'(n)) = 0, (24)

where ¢’ is the directional derivative given by

(), £) = 2o+ 2)lemo



12 M. P. DE BORBA
So, by (2.3) and (2.4), we have

Z0(6)) = () w0) = W), ) + (o (), ).
By integration over [0, t], we obtain

plu(t)) = ¢)+.uj (¢'(u), “u)dr-h\f u), )

According to [ABFS], ¢(u) =| u |, +R. Moreover, R, (¢'(u), %zc) and (¢'(u), u)
can be estimated in terms of | u |,. Therefore, the Gronwall’s inequality implies

that
|uy |,< Cult,| ¢ lay] A/g |12), VYte€ I, independent over | pu|< 1. (2.5)

In order to estimate | u, |o,, we use linear interpolation and obtain the

following estimative for the commutator
| [wy, LIF IS C(Y) | f loyy, VS E Yy (2.6)
Now we consider © = u, and obtain
d 2 2A
E | u(t] |D_-,: zﬂ{u:utz)ﬁ,'r 4(“’: uu:)l!."r - ?(u:u)o."r - 2(“’! Lu]ﬂ,‘y- (27)
Since E} = -—ihf, with h odd and u is real, we have
| ("’) Lu)ﬂ.'r |z| (w.,,u, Lw'ru + Iw.,, L]u) |E| u lU.'r C('Y] | u |a.'v .

The other three terms of (2.7) are easier Lo estimate. It follows from (2.7), by

integration over [0,¢] and Gronwall’s inequality, that
|ty loy< Calty| @ loyy | A/g |Le), Vi€ I, independent over | g [< 1. (2.8)
Once again, a limit argument (g — 0), with (2.5) and (2.8), can show that

| u’(t) |I.TS ler(t?l ¢ II,TJ ’\/g |Ll)l Vt € I

The last statement is a consequence of [K], Lemma AT.
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Theorem 2.2 (continuous dependence) Let s > 3/2, 0 < v < 5. Given a

compact interval I, C, if ¢o — ¢ in Yoy, 22 — 2 in LY() and an — q,

then there is a tnieger Ny such that ¥n > Ny, t € I, there erists uy(t), the

correspondent solution for g, — ILW,
sup | tn{t) — u(t) ey— 0 25 n — oo,
1.

and (2.1) implies

sup | B¥ug(t) — u(t)] lo,— 0 as n — co.

Sketch of proof: We consider the regularization of the initial data ¢, given
by . = p.é, where we(€) = ¢(c€) and p: R — [0, 1] is such that ¢ € S(R) and
¢H(0)=0,Vj > L

Now, let u* be the solution of

{ e + 2une + Lu + dufg =10 (2.9)

4(0) = ¢.

Asin [ABFS], u* — v and uf — u, (as ¢ — 0} uniformly on n (see Proposi-
tion 5.3.6), in the L™([,, H*) topology. Since u, also approaches u® (as n — o)
in L®(I., H"), we complete the argument by

| tn —w oSl =g |y + lug w4 [ -,

To obtain a similar result for P,-norm, we consider the following regulariza-
tion

¢ = @yile18]Y — ¢in Y., as j — oo,

and use continuous dependence in L™(1,, H*).

3. The a-limits

By using arguments similar to those described in the preceding sketch of proof,

we show the following results:
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Theorem 3.1 (BO-limit) Let v =0, or1/2< 7 <2, ¢€ V., and . C [ bea
compact inlerval. Then there ezisis u,(t), solution for g — BO, Vt € I, and

5P | Ua(t) = Yan(t) 1 0 38 @ — o0,
where u, i3 the solution for g — ILW, and
sup | O [ta(t) — co(t)] lo,— 0 88 @ — oo
if (2.1) holds.

Remark 3.2 According to [I1], we can also obtain that for v € {3,4,5,...},
Theorem 3.1 holds if and only if 6&’4&»(0) =0,v5€{0,1,...,y—3},and vy > 4
implies u(t) =0, Vt € ..

Theorem 3.3 (KdV-limit) Let s > 2,0 < v < 5/2 and ¢ € Y, .. Consider

I =Rorl=1[0+4c0) orl = (-00,0], Afg € L'(I) or A/g € L}OC(I) and

lim, Tﬁ) < o0, and define
g(t) = 3g(3t/a)/a, wz,t)= Ju.(z,3t/a)/a,

where u, is the solution for g — ILW. Then given a compact interval I, C I,

there exists 9,(t), solution for g ~ ILW, ¥t € I,, and
sup | %a(t) — uo(t) [iy— O as a — 0,
I
where g 1s the solution for g — KdV. Moreover, (2.1) implies

sup | % [@alt) — ua(t)] Jo,— 0 as a — 0.

e

Note that Lf = —iha f, with
ha(€) = €coth(ag) — &/a — £7sgn(€) = hoo(£), a8 @ — o0
while (see figure 1, where S = &)

ha(£) = 5(€) + O(a®) s a - 0.
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This is sufficient to study the H*-limit. In order to consider P,-limit, observe
that

ho(€) = 2(8) = ho(€),  hq(€) — 2egn(£) = heo(€),
h:'(f) — 48 = h‘:(e): as a — o0,

and the derivatives of h, approach the derivatives of 2(¢?), close to the origin
(see figure 2, 3 and 4).

4. Some previous results

4.1 with A=0, in H*

The first results about KdV, BO and S were obtained in (KdV - 1895) D.I.
Korteweg and G. de Vries — [KdV]; (BO - 1967) T.B. Benjamin - [B]; (1977)
H. Ono - [O]; (S - 1972) R. Smith - [S].

The ILW equation has arised in 1977, when R.1. Joseph [J] analysed its soli-
tons, i.e., solutions of the form u(z,t) = ¢(z — &), where ¢(y) = C/[cosh?(ay)+
c*sinh?(ay)/162%), atg(aa) = ¢/4, and ¢ = 1/a — da*fe+c/4 + 1.

This equation was also considered in 1978 by T. Kubota, K.R.S.Ko, D.
Dobbs [KKD], R.I. Joseph and R. Egri [JE], and in 1979, by H.H. Chen and
Y.C. Lee [CL].

The Hamiltonian Structure and Conservation Laws for the ILW equation
were studied in 1979-83 by J. Satsuma, M.J. Ablowitz, Y. Kodama [SAK]]
[SAK2], D.R. Lebedev and A.O. Radul [LR].

The firot limits (ILW — BO, ILW — KdV) were considered by J.P.
Albert, J.L. Bona and D.B. Henry [ABH], in 1986, in the study on stability of
the solitons for the ILW equation, with o close to zero and a very large.

Recently (1989), L. Abdelonhab, J. Bona, M. Felland and J. Saut [ABFS]
have studied the limits @ — 0 and @ — oo as in Theorem 3.1 and 3.3 in H*,
using parabolic regularization of the form p+ p83, with regularization ¢* of the
initial data ¢.
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4.2 with A £0, in H*
According to S. Maxon [M] (1978), F. Calogero and A. Degasperis [CD]
(1982), the coefficient A/g(t) is related to the change in the depth of botton layer
of the stratified fluid. In the case of KdV, with A/g(t) = 1/t and A/g(t) = 1/2¢,
we obtain the spherical KdV and cylindrical KdV respectively.
Note that, with

g_;‘t—) =1 u(t) = f(t)u(t),

problem (1.1) becomes

v+ 2f(t)vv. + Lv =0
v(to) = f(to)¢,

which, in the KdV and BO cases, was studied (in #*) by W.V.L. Nunes [N], in
1991.

{ ve C(l,Y,,)

4.3 with A=0,in Y,

In 1983, T. Kato [K] studied the KdV equation in Y3, n € N. The BO
equation (except continuous dependence) in ¥, ,, n € N, has been considered
by R.J. Iério Jr., in 1986 [I11]. In 1989, R.J. Iério Jr. (I2] has considered
the BO equation in Y3, 0 < y < 2, using Kato’s theory for linear equations
of “hyperbolic” type, to obtain continuous dependence. By using nonlinear
interpolation theorem of Tartar, Bona and Scott, in 1990, R.J. Iério Jr. (13]
obtained well-posedness of the Cauchy problem for § equation in Y, ,, s > 3/2,
0 < v < 5. The BO and KdV equations have been also considered. Finally, in
1990, L. Abdelonhab [A] analysed the Cauchy problem

{ ug + 2ut, + Lu + f(z,t) = eJ*u
u(0) = ¢, € H; N H*,
where H] = (w,J")"'L*(R), k > 2 for the ILW and BO cases, and k > 3 for
the KdV case. He has also studied the limits ILW — BO and ILW — KdV
in L=(I., H; N HT).
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