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Abstract

We study the stability and asymptotic behavior of transitional shock
waves as solutions of a parabolic system of conservation laws. In contrast
to classical shock waves, transitional shock waves are sensitive to the pre-
cise form of the parabolic term, not only in their internal structure but
also in terms of the end states that they connect. In our numerical inves-
tigation, these waves exhibit robust stability. Moreover, their response
to perturbation differs from that of classical waves; in particular, the
asymptotic state of a perturbed transitional wave depends on the loca-
tion of the perturbation relative to the shock wave. We develop a linear
scattering model that predicts behavior agreeing quantitatively with our
numerical results.

1. Introduction .

In this paper, we study the stability and behavior of transitional shock wave
solutions of a system of two conservation laws with a quadratic flux and a

viscous term with constant coefficients. Transitional waves arise in the study
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of Riemann problems for non-strictly-hyperbolic systems, for example in the
equations of multiphase flow in porous media. They comprise a new family of
traveling wave solutions, which are n.onclassical in the sense that they do not
satisfy the Lax characteristic criterion. As a consequence, the set of transitional
wave solutions obtained in the zero-viscosity limit depends sensitively on the
form of the viscosity matrix and not orly on the hyperbolic structure of the
cquations,

Our motivation in this paper is twofold: first, the need to assess whether
transitional waves represent physically meaningful solutions; second, the expec-
tation that these waves should exhibit unusual and interesting behavior in their
interaction with a perturbation. We address these issues hy solving the Cauchy
problem for the parabolic system using a finite difference scheme, As initial
data, we take a perturbation of a single strong transitional wave.

In the models considered, we observe that transitional waves exhibit robust
stability, emerging intact from interaction with even a strong perturbation.
Furthermore, the interaction of the perturbing waves with the shock wave can be
described simply as scattering phenomena. We develop a linearized scattering
model that predicts the resulting shock shift and asymptotic distribution of
mass. These predictions agree quantitatively with our numerical results, even

for perturbations with rather large amplitude.

2. Transitional Shock Waves

We consider a system of two conservation laws,
Uy + F(U)z = D Usa, (2.1)

where F(U) is quadratic in U and D is a constant matrix with positive eigen-

values. We focus on models such that the corresponding hyperbolic system
U, + F(U), = 0, (2.2)

is strictly hyperbolic except at an isolated umbilic point ¥ = 0 [8]. Thus the
Jacobian F'(U) has real eigenvalues A(U), i = 1, 2, which are diatinct if I/ # 0,
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and F'(0) is a multiple of the identity matrix.

A traveling wave is a solution of system (2.1) having the form U(z,t) =
Uz — st). Here s is called the shock speed, and the wave is said to connect
the end states U_ = limg,_ . U(£) and U, = limg_oo U (£). In order for U to
satisfy Eq. (2.1), U must be an orbit for the dynamical system

U'=D7[-s(U-U_)+ F(U) - F(U_)]. (2.3)

The end states U_ and U, are critical points for this dynamical system, which
means that (U_, U}, s) satisfies the Rankine-Hugoniot condition

—s(Uy = U.) + F(U,) - F(U_) = 0. (2.4)

Therefore (U_, Uy, s) represents a shock wave solution of the hyperbolic system,
Eq. (2.2).

Not all triples (U_, Uy, ¢) that satisfy the Rankine-Hugoniot condition arise
from traveling waves. Correspondingly, in the hyperbolic theory, shock wave ad-
missibility criteria, such as the classical Lax characteristic criterion, are needed
to restrict the class of solutions. The Lax criterion, which prescribes that all
but one characteristic must approach the shock wave, can be related to the
traveling wave dynamical system as follows. Near a critical point /., solutions

of the dynamical system approximately satisfy the linearized system
U=D-sI+ FU)(U-U.). (2.5)

If D = I, then the eigenvalues of system Eq. (2.5} are X(U)—s8,i=1,2
Thus the Lax condition requires that either U_ is a saddle point and U/, is an
attracting node, or U_ is a repelling node and U, is a saddle point. In other
words, the Lax condition implies the stability of the connecting orbit under
perturbations of the dynamical system. This stability is maintained if D is
close to a multiple of the identity matrix.

A transitional wave is defined to be a traveling wave such that U/_ and U,
are distinct saddle points. The phase portrait of the corresponding dynamical

system is therefore unstable, in contrast to the case of 2 Lax wave. This implies
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an important difference between Lax and transitional shock waves: for a fixed
state U_, consider the Hugoniot curve of solutions (-, Uy, ) of the Rankine-
Hugoniot condition; then points on the Hugoniot curve that correspond to trav-
cling waves of Lax type form an open subset, whereas points corresponding to
waves of transitional type are generically isolated,

In the generic case, such an isolated point depends continucusly on /_. In
other words, the Rankine-Hugoniot condition and the condition that a connect-

ing orbit should exist can be combined into a single constraint
Uy =T(U) (2.6)

The function T is called the transitional map and plays a fundamental role in

the behavior of transitional waves. An associated function is the speed map
s =Z(U.) (2.7)

giving the shock speed in terms of the left end state.

In the present paper, we have focused on transitional waves in systems of
conservation laws with a quadratic flux. A broad class of transitional waves
has been identified for these systems, namely those for which the connecting
orbit in the dynamical system is a straight line segment [4]. The viscous profiles
for these shock waves, and therefore the transitional and speed maps, can be
calculated analytically, as we show below. For simplicity, therefore, our numer-
ical experiments and scattering model concern straight-line transitional waves.
Although these transitional waves are special, we believe that their behavior is
typical of general transitional waves. We emphasize that there is no obstacle to
applying our numerical method or to extending our scattering model to general
transitional waves. This is an object for future work.

There are two conditions for the existence of a straight-line shock wave.
First, (U_,U,,s) must satisfy the Rankine-Hugoniot condition, which for a

quadratic flux is

F(TAU = s AU (2.8)
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where U := }(U_ + Uy) and AU := U, — U_. Second, the line segment from
U_ to U must be invariant for the dynamical system. This amounts to the

condition that there should exist a g < 0 such that
1
EF"(O) (AU = uD AU . (29

The viscous profile is then U = T + pAU, where p(€) = 1 tanh(—g(¢ — zo)) and
xp is the shock wave location.

To calculate the transitional map T, we write AU = R (cos ¢, sin ga)T‘ Thus
Eq. (2.9) becomes a cubic equation in tan ¢ depending solely on the flux coef-
ficients and D. The solutions ¢ are called the viscosity angles, For each fixed
viscosity angle ¢, Eq. (2.8) is a linear equation that determines (R, s), and
thereby Uy, in terms of U_. More precisely [4] , we can write Eq. (2.8) in the

form

(adp), BT +4(p) =0, (2.10)

(&), BleNT +3(p) =5 . (2.11)

It follows that if a{yp)cos + B(p)sing # 0, which is the generic case, then

both the transitional map and the speed map are affine linear, with derivatives

. oy 2 cos
T =1 ot (9% ) ehBe) 21

and

B(U-) = (@lphAle) - R LEOIRE (10 ). (213)

Remarks.

(1) Equation (2.10) restricts I to lie on  line (the characteristic line at angle
), parameterized, say, by k. Consequently, the class of transitional shock
waves can be parameterized by £ and R. The traveling wave solutions
corresponding to pairs (x, R) that lie on a given ray through the origin
are all essentially the same, being related by scaling z and D in Eq. (2.1).
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(2) Although some straight line shock waves are Lax connections, there exists,
in general, an open wedge of points U_ such that (U-,T(U.),2(U.))
is a transitional shock wave [4]. That the boundary between Lax and
transitional shock waves comprises two straight lines follows from the

aforementioned scaling relationship.

(3) We emphasize that the viscosity angles, and thus the pairs of end states
(U-,T(U.)) that are allowable for transitional shock waves, depends on
the choice of the viscosity matrix D. This is markedly different from the
classical case, in which the viscosity affects only the internal structure of

a shock wave,

3. Stability

Although transitional waves can be constructed by solving the dynamical system
(2.3), the stability of these waves as solutions of the parabolic system is unclear.
Indeed, transitional waves might not occur in “typical” solutions of Eq. (2.1).
This could be because of their special nature as traveling waves connecting pairs
of saddle points: the set of transitional wave solutions has higher codimension
than the set of Lax traveling waves. If transitional waves were unstable, they
would be unsuitable as components in solutions of Riemann problems.

Before discussing the stability of transitional waves, it is worthwhile re-
viewing stability considerations for classical shock waves. The weakest type
of stability is what we term hyperbolic stability. For a given traveling wave
solution of the parabolic system (2.1), there is a shock wave solution of the
associated hyperbolic system (2.3) with the same speed and end states. Hyper-
bolic stability requires that the Cauchy problem for the hyperbolic system be
well-posed for initial data being smooth, compact support perturbations of this
shock wave,

In the hyperbolic stability problem, the shock wave represents & moving
boundary with associated constraints linking the shock speed and the states on

either side. By the method of characteristics, the Cauchy problem is well-posed
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if the shock constraints exactly determine the shock speed and the amplitudes
of waves emerging along outgoing characteristics. For classical shock wavesin a
system of n conservation laws, the shock constraints are simply the n Rankine-
Hugeniot conditions, and hyperbolic stability reduces to the Lax criterion, which
requires precisely n — 1 outgoing characteristics at the shock wave.

" A stronger requirement is that the Cauchy problem for the parabolic system
be well-posed for compact support perturbations of the traveling wave; this
we term parabolic stability. For weak classical shock waves, Liu [5, 6] has
shown that the Lax criterion also implies parabolic stability. In fact, he shows
that the time-asymptotic state for this problem consists of a translation of
the originel traveling wave together with “dissipation” waves moving along the
characteristics leaving the shock wave. The dissipation waves decay in L* but
carry finite mass in the corresponding characteristic field.

An important feature of classical waves, which is essential to Liu’s analysis,
is that the shock shift and the masses for the n—1 cutgoing dissipation waves are
determined from the total mass of the perturbation by the n equations of mass
conservation. In other words, the asymptotic state is completely determined
by the mass of the perturbation. This makes feasible the strategy that Liu
follows to prove stability: in the simplest terms, one linearizes around the known
asymptotic state and seeks mechanisms of stability that dominate the nonlinear
behavior.

The case of transitional shock waves is different. Focusing on n = 2, the Lax
criterion is not satisfied because there are two outgoing characteristics. Thus for
the hyperbolic problem, the two Rankine-Hugoniot conditions are not sufficient
to determine the shock speed and outgoing waves. Likewise, even if the solution
of the parabolic equations tends to an asymptotic state of the type described by
Liu, the two equations of mass conservation do not determine the shock shift and
two outgoing masses. Stated another way: just as local conservation of mass,
as embodied in the Rankine-Hugoniot condition, is inadequate to determine
the instantaneous behavior of the shock wave, global conservation of mass is

inadequate to determine the time-asymptotic state.
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We can easily resolve the indeterminacy at the instantanecus level by re-
placing the n Rankine-Hugoniot conditions by the n + 1 conditions given by
the transitional map together with the épeed map. This establishes hyperbolic
stability. However, the indeterminacy at large time remains. Any condition
that supplements conservation of mass would seem to depend on the dynamics
of wave interaction, integrated over time. In particular, the analysis of Liu is
not applicable to transitional waves.

Nonetheless, we believe that transitional waves are also stable in the parabolic
sense, and further that the indeterminacy of the asymptotic state, rather than
being only a technical obstacle to proving stability, reflects interesting new
behavior for these waves. These conjectures are supported by our numerical
results, to be described in Sec. 5, which demonstrate both the stability of tran-
sitional waves under perlurbation and the sensitivity of the asymptotic states
to the distribution, and not only to the mass, of the perturbation. In the next
section, we interpret the response of transitional waves to perturbations zs a
scattering phenomencon, and predict the asymptotic state to first order in the

perturbation amplitude.

4. Scattering Model

The qualitative response of a transitional wave to a perturbation can be pre-
dicted by a simplified version of the hyperbolic model of Sec. 3. We consider a
transitional shock wave from U_ to Uy, in coordinates where the shock speed
is zero. In our simplified model, we fix the shock wave at z = 0, and linearize

about the constant states on either side. More precisely, we solve the equations
U+ FUYL=0 forz<0, (4.1}

U+ F(U)Ue =0 forz>0, (4.2)

and at 2 = 0, we impose the boundary condition

U*,8) = Uy +T'(U-) [U(0,1) - U] (4.3)
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obtained by linearizing the transitional map U(0%,t) = T(U(0,1)).
Although the underlying discontinuity is held fixed at # = 0, we can define
an effective shock location using the linearized speed map. Thus our model

predicts the speed of the shock wave to be
a(t) = T(U-) [U(07,t) - U_] (4.4)

and the shock shift to be the time integral of s(t). As we shall see below, the
error incurred by neglecting the motion of the discontinuity is of second order in
the amplitudes of the perturbation, so that it may be ignored in the linearized
problem. Moreover, by making this approximation, we obtain a linear problem.
Notice that we have neglected the dissipation term in Eqs. (4.1) and {4.2).
Were these terms to be included, the principal effect would be the decay of
outgoing waves, However, the outgoing masses and shock shift would be un-
affected. The effects of dissipation are included in our simplified model only
through the transtional map, Eq. (4.3). The success of our model indicates
that the key to the behavior of transitional waves is the transitional map.
The first step in solving the model is to express the amplitudes of cutgoing
waves in terms of incoming amplitudes. Let #(U), : = 1,2, be right eigen-
vectors of F(U) corresponding the the eigenvalues X;(IF). On the left side of
the discontinuity, the eigenvectors corresponding to the incoming and outgoing
characteristic directions are 7% := ro(U_) and 72 := r,(U_); similarly, on the
right side, we have r‘;_ = ry(U;) and #$ := ro(U} ). The states can be expressed

in terms of the incoming and outgoing amplitudes:
U™ ,¢)=U.+a' .+ +a°r°, (4.5)
U(0*,8)= Uy +airi +agrs . (46)

In these terms, Eq. (4.3) can be solved to express the outgoing amplitudes as
a’® } at
(5)=»(%). “n

M= (~T(U-)r,3) " (T(U-) e, ) . (4.8)

where
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The speed is given by
i
a=N ( :i ) ) (4.9)

with N being the tow vector
N =3S(U.) [ (M, Muz) +ri (1,0)] . (4.10)

In the second step we derive a scattering matrix that relates the incoming
masses of the perturbations on the left and right sides to the outgoing masses,
Notice that the outgoing masses in the perturbation remain outgoing and do
not interact with the shock wave; without loss of generality, we can assume
that the perturbation has only incoming mass. Let us first treat the cage of a
square pulse incoming from the left, with amplitude a' and width ¢. Referring
to Fig. 4.1, the length of time during which the pulse interacts with the shock
wave ie £/|AL|, and the lengths of the outgoing pulses on the left and right are
£]2° /AL | and £|X3./AL), respectively. The outgoing amplitudes are obtained
from Eq. (4.7). Finally, the outgoing masses are given by

ml = "\:/'\‘_i My mi ' (4.11)
ml = "\1/»_““21 mi (4.12)
in terms of the incoming mass m¢ = £4¢ . Since the shock speed is zero except
during the interaction, the shock shift is the speed & = Ny a’ times the inter-
action time, i.e., (N, /A% [)mi. Similar considerations apply on the right side
of the shock wave. Furthermore, the same formulae apply when the incoming

pulses are not square; this follows from the linearity of the problem.

Thus we are led to a linear scattering relationship
(’“‘;):S(’“}), (4.13)
ms mi,

_f P2/AL My |00 My,
5= ( [A3/AL] M3y Hi/-\ilM:, ) ' (4.14)

The shock shift is given by

where

Az =X ”‘"-), 4.15
(n w19
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where
X = (My/ V], Noflai ) (416)
t
}
12 15 /A%
-——— -—
."._\ \\.. ,-'.,.-" ) -~

o
TR

- FARN I
incomingpuise /¥

\ / / shock wave

Figure 4.1. Characteristic portrait of a shock wave interacting with
a perturbing pulse. In the linearized theory, a square pulse entering the
transitional shock wave is converted to outgoing pulses on either side of
the shock wave.

Remarks.

(1) Observe that neglecting shock movement amounts to approximating the
true interaction time £/(|A% | — Ny 4’ ) by £/|Af |. The difference between
these times being O(a' ), the error incurred by neglecting the motion of
the discontinuity is of second order in the amplitudes of the perturbation,

as claimed earljer.

(2) The reader can check that the total mass of the outgoing state predicted by

the simple model is the same as the ingoing mass. This is a consequence of
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the linearized Rankine-Hugoniot condition, which follows from Egs. (4.3)
and (4.4).

(3) For a Lax wave, the simplified model predicts the shock shift exactly. This
follows from conservation of mass, since the characteristic speeds and

eigenvectors of the end states are the same as for the parabolic model.

(4) We have implicitly assumed that M is defined, i.e., the vectors TU_)re
and rl are transverse. This is precisely the condition that the Riemann
problem be well-posed for lefi and right states near I and U,, respec-
tively.

5. Numerical Experiments

To study the behavior of transitional waves we have implemented a finite-differ-
ence scheme to solve the parabolic system (2.1) numerically. In order to have
second-order accuracy, we use a linearized Crank-Nicholson scheme, as imple-
mented by Beam and Warming [1].

The scheme is specified more precisely as follows, Let the space and time
grid spacings be Az and Af, respectively, and let U := U(jA=z,nAt) denote
the solution values at the grid points. Then for each time step #, the increments
§Uf := U™ — U} in time are obtained as the solution of the block-tridiagonal

linear system

1 n 1 L] ™ 1 ¥ n L) l ! n n
2105 + g {F W) = F(UR) + 3 F(U7) UG, — 3 F(UL) 807, )

—"'—1 - i n 1 n n
- G pfup, —20p + Uz, + 3 [6Up —2eup +aup ]l )

(In other words, we have made the approximation F(UF*') = F(U})+F/(Up) SUT
to avoid having to solve a nonlinear system of equations.)
The results from typical experiments are shown in Figs. 5.1-5.3. The model

used in these experiments is

1 1
U+ (?lt’ + 2uv — 81'.&) =€ (uec + Evu‘) 1 (52)
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v+ (%u’ —vT— av)w =¢ (%u“ + u,,) , (5.3)

with ¢ = 1.5 and s = —0.197.

For this model, there is a stationary transitional wave joining the states
U. =(1, —O.I)T and U = (-1, —ﬂ.l)T. (The linear terms in the fluxes of Eqgs.
(5.2) serve only to keep this transitional wave stationary.) The eigenvalues and

eigenvectors are

o o _ (—083
X =035, o= ( 0‘56) ,
. ; —0.94
A= 17, = ( ) : 5.4
i’ 1.74 r 035 (5.4)
Ap=-182,  r= ( 0.25) ’
o o 0.72
X = 091, 3= (_0.69) .
The scattering matrix for this transitional wave, which corresponds to viscosity
angle ¢ = 0, is
-0.0823  0.201
§ ‘( 0.440 —0.206) ' (3:5)
and the shift vector is
X = (—0.662,0.642) . (5.6)

The initial data for the experiments were perturbations of the Riemann problem
with U, =U_and Ug = U,.

In the experiment of Fig. 5.1, the Riemann problem was perturbed by a
square wave containing only an incoming wave on the right. (The state inside
the perturbing pulse is U = (—1.395, —0.199)T.)

The four frames of Fig. 5.1 show the first component u of U plotted vs =.
The initial data is shown in Fig. 5.1a, and Fig. 5.1b shows the solution at a
typical time during the interaction of the perturbation with the shock wave.
Figure 5.1c shows the solution at a late time, which we interpret as the time-
asymptotic state. We see that the transitional shaock wave has emerged intact,
and that the asymptotic state consists of a shifted shock wave together with

outgoing dissipation waves. In the final frame, Fig. 5.1d, we show the asymptotic
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state in finer detail near the shock wave. In this picture, we have superimposed
the viscous profile determined analytically and positioned as predicted by the
scattering model: ¥ = U + pAU, where p(€) = Ltanh(—u(€ — Az)), p is
determined from Eq. (2.9), and Az is given in Eg. (4.15).

1.2 1.2
1 P —

u t=0 u t=60
O 0}

=1 _l |.__ -1 /‘\._.—__
L.

1-Syg 4 00 200 " 1S b b o] —Y T
. X
(@) {b)
1.2 1.2
1 .
t=200 1= 200
U u magnifiect
unshifted
0 d / g
theery computation theory computation
‘._/ \
-1 =3
-1.5 -1,
=TT t 00 200 =0 =3 7030
b & X
(© {d)

Figure 5.1, The results of the interaction of a transitional shock wave
with a perturbation. Plots of u vs = are shown at different times: (a) the
initial data; (b) during the interaction process; {¢) after the interaction
(with outgoing pulses shown); (d) after the interaction, on a magnified
spatial scale. Superimposed on plots (c) and (d) are the profile at the
initial position and the asymptotic profile predicted by the scattering
model of Sec. 4.

We draw two conclusions from a visual comparison of the numerical and an-
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alytic profiles. First, since the shape of the numerical profile so closely matches
the analytic profile, any numerical viscosity in the scheme is small compared to
D. Second, since the positions of the waves agree, the simple scattering model
of Sec. 4 is accurate, even though the perturbing wave has a large amplitude.
In Fig. 5.2 is shown a contour plot of u as a function of both z and ¢, which
shows how the transitional shock wave shifts as a result of interacting with the

perturbation. Note the similarity between this figure and Fig. 4.1.

200

1501

100}

level curves of v

50

o i
-100 0 100 200 275

Figure 5.2. A contour plot of u in the (=, {)-plane for the interaction
problem described in Fig. 5.1.

In the experiment of Fig. 5.3, the Riemann problem was perturbed by square
waves on both the left and right sides, the total mass of the perturbation being
zero. (The state inside the perturbing pulse on the left is U = (1.1,—0.3)T,
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whereas on the right the perturbing state is U = (—1.1, U.l)T.) The {our frames
of Fig. 5.3 are as in Fig. 5.1. i

The final {rame (d) of Fig. 5.3 shows that there is a nonzero shift resulting
from the interaction of the transitional wave with the perturbation, deapite that

the total mass of the perturbation is zero.

1.3 1.3
e . _q
u te0 u t= 50
0 0
-1 T ] -1
1.3 -
S0 ) 360 5 350 173 zow 5 T8 350
(a) (b)
1.3 1.3
1 1=200 1 t= 200
u u magnified
unshifted
o /"A/WH on 0 computation |
theory / putath llie‘:»ry\k
_1 s =1
-1.13 -1.3
~200 0 200 , 350 -50 =20 0 20 , &0
(c) (d)

Figure 5.3. The results of the interaction of a transitional shock wave
with a perturbation with zero total mass. Plots of u vs ¢ are shown at
different times: (a) the initial data; (b) during the interaction process;
(c) after the interaction (with outgoing pulses shown); (d} after the inter-
action, on a magnified spatial scale. Superimposed on plots (<) and (d)
are the profile at the initial position and the asymptotic profile predicted
by the scattering model of Sec, 4.
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By contrast, a Lax wave interacting with & perturbation with zero total
mass would suffer no shift. Notice that the shift is rather small even though
the perturbing masses are large. (The shift is —3.30 theoretically and —2.84 in
the computational experiment, while the incoming masses are 13.6 on the left
and 8.85 on the right.) This is because the two components of the shift vector
X are nearly equal and opposite.

In fact, the shift is the result of balancing a shift of —8.98 cansed by the left
pulse and 2 shift of 5.68 caused by the right pulse. In this light, the discrepancy
between the theoretict;.l and computationally observed shock shift is less than
10%.

8. Conclusions

We may draw several conclusions from our numerical studies. At the least, the
resulis appear to confirm the suitability of transitional waves as components
of solutions of Riemann problems. Indeed, the large-time limit of a solution
of 2 Riemann problem for a parabolic system is equivalent, by scaling, to the
zero-dissipation limit: if V(z,t) := U(z/¢,t/¢), then V satisfies Eq. (2.1) with
D replaced by €D, as well as the same Riemann initial conditions as does [ :
the limit ¢ — 0 gives the large-time Kmit for I/ and the zero-dissipation limit
for V. Thus the observed convergence to traveling waves at large time implies
that transitional waves are vanishing-viscosity solutions of Riemann problems.
(This result is much stronger than mere existence of a viscous profile, which
ie obtained as the limit of solutions whose initial data vary with viscosity.)
Further, the stability of transitional waves under perturbation indicates that
transitional waves should be persistent and recognizeable features in solutions
to the parabolic equations.

More intriguing is the nonclassical response of transitional traveling waves to
perturbation, which illustrates the richness of behavior possible in non-strictly-
hyperbolic systems. We have demonstrated a close correspondence between the

computed asymptotic behavior of a perturbed wave and the predictions of our
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scattering model. One prediction is that the asymptotic state of a transitional
shock wave is not determined by the perturbing mass alone, in contrast to
the case of a classical shock wave [5]. Qur scattering model quantifies the
asymptotic state to fizst order by accounting for the masses on the two sides
of the wave separately; this is accomplished by invoking the transitional map.
Further details about the asymptotic state presumably depend on finer structure
of the perturbation, in a complicated and essentially dynamic way,

We note that the concept of the Riemann problem as a scattering phe-
nomenon has been advanced by Glimm in more general contexts (see, e.g.,
Refs. [3, 2]}).
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