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HETEROCLINIC BIFURCATION THEORY AND
RIEMANN PROBLEMS

Stephen Schecter *®

Abstract

The role of heteroclinic bifurcation theory in solving Riemann prob-
lems for systems of two conservation laws is presented. This theory is
used to study shock waves with viscous profiles, which correspond to
heteroclinic orbits of vector fields.

1. Introduction

Solutions of Riemann problems contain shock waves, and shock waves with vis-
cous profiles correspond to heteroclinic orbits of associated vector fields. Thus
heteroclinic bifurcation theory should be a useful tool in the study of Riemann
problems. Of course, it is not a tool that can do the whole job. In the first
place, solutions of Riemann problems also contain rarefaction waves. In the
second place, information relevant to shock waves can be lost in passing from
the partial differential equation to a heteroclinic bifurcation diagram. Never-
theless, heteroclinic bifurcation theory provides important information about
the solution of Riemann problems.

In this paper, I propose to describe, with technicalities generally omitted,
the heteroclinic bifurcation theory approach to Riemann problems for systems
of two conservation laws. More details can be found in a series of papers by
myself and Michael Shearer [19-23]. T will also try to make some observations
on the virtues and limitations of this approach.

The paper is organized as follows. In Section 2 the relation of shock waves

to heteroclinic bifurcation diagrems is described. In particular, it is pointed
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out that unstable bifurcation diagrams can occur, and that the theory of sin-
gularities of maps can help analyze them. In Section 3 the singularity theory
approach to heteroclinic bifurcation.diagrams is presented. In Section 4 a par-
ticular unstable heteroclinic bifurcation diagram is discussed from the point of
view of singularity theory, and a proof is sketched that this diagram occurs in
a concrete system of conservation laws. In Section 5 various issues that arise

from the earlier sections are discussed more fully.

2. Shock Waves and Heteroclinic Bifurcation Diagrams

A system of two conservation lawsin one space-dimension is a partial differential
equation of the form
Ui+ F(U), =0 (2.1)

where U € R? and F : R® — R2. A shock solution with speed 8 of (2.1) is a

discontinuous function

_J U, z< st
U_{U+, z > st (22)

that satisfies the Rankine-Hugoniot condition

The shock (2.2) has a viscous profile if the equation

Ue + F(U), = €Uy, (2.4)
has a traveling wave solution
U (.1: - st) (2.5)
€
with
Jm U =0, lm U)o, (2:6)

If we substitute (2.5) into (2.4), integrate once, and use the left-hand boundary
conditions from (2.6), we find that a shock solution of (2.1) with left state U_,

speed s, and viscous profile corresponds to a heteroclinic orbit of

U= F(U)— F(U_) - a(U - U.) (2.7)
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from U_ to a second equilibrium U,.

It is thus natural to regard (2.7), with U/_ fixed, as defining a one-parameter
heteroclinic bifurcation problem; the parameter is 5. Notice that for each s, U_
is an equilibrium of (2.7). One wishes to identify all pairs (s, ;) such that the
Rankine-Hugoniot condition (2.3) holds (i.e., I/, is a second equilibrium of
(2.7)), and an orbit of (2.7) goes from U_ to U,.

Let us emphasize that the discussion is restricted to systems of two conser-
vation laws and to the simple viscosity ¥/,.. The restriction on the viscosity is
largely for convenience. Some work relevant to the extension of the discussion

to systems of n conservation laws is in [1].
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Figure 1. The left-hand equilibrium is U_.

In (2.7), suppose that for a fixed U_, as s varies in some interval, the phase
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portrait undergoes the changes portrayed in F igure 1. Then for s = s, and for
3; < 8 < 44, there are shocks with viscous profile with left state /.. Notice
that saddle-to-saddle heteroclinic orbits occur at s = s and & = 5, and a
saddle-node bifurcation occurs at 5 = 52. The bifurcation at s = 33, where the
unstable manifold of {/_ meets the strong stable manifold of a node, has no real
importance,

The sequence of phase portraits shown in Figure 1 can be encoded in the
heteroclinic bifurcation diagram of Figure 2. (Stability of the equilibria has not
been represented in order to simplify the picture.} The solid curve represents the
right hand equilibria; the dashed curve represents the position of the incoming
unstable manifold of the saddle at I7_.

The following assumptions about Figure 1 are consistent with what has been

said so far:

1. The dashed and solid curves are regular curves that are transverse to the ver-
tical except at s = s;, where the solid curve has a quadratic intersection
with the vertical. This assumption expresses the fact that all equilib-
ria are hyperbolic except at s = 32, where one undergoes a saddle-node

bifurcation.

2, The dashed curve is transverse to the solid curve, Thus at s = s; and s = 34,
the saddle-to-saddle connection breaks in a nondegenerate manner as s

-

increases.

3. The dashed and solid curves do not meet at s — 82. This means that at the
moment of bifurcation of a right-hand equilibrium, the incoming unstable
manifold from U_ dees not meet the stable manifold of the bifurcating

equilibrium,

Under these assumptions, the bifurcation diagram of Figure 2 is stable to per-
turbation. Thus, if we change /. slightly, we will have qualitatively the same

bifurcation diagram over the s-interval shown.
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Figure 2. Bifurcation diagram for Figure 1.

When we speak of how a bifurcation diagram changes as U_ varies, we are
regarding s as a “distinguished” parameter and U_ as a vector of “unfolding”
parameters, in the terminology of [2]. Since U_ € R?, the family of vector fields
(2.7) has two unfolding parameters; additional unfolding parameters may be
present in the formula for F'. Because of the presence of unfolding parameters,
one expects to observe, for certain U_, bifurcation diagrams that are not sta-
ble to perturbation. It should be useful to be able to recognize the unstable
diagrams that frequently occur, to know what other diagrams occur for nearby
values of the unfolding parameters, and to understand how the space of unfold-
ing parameters is divided into regions in which different bifurcation diagrams
oceur.

In particular, I have studied bifurcation diagrams in which, at the s-value at
which the right-hand equilibrium bifurcates, the unstable manifold of {/_ meets
the stable manifold of the bifurcating equilibrium. In other words, at least the

third condition above is violated. The motivation for beginning with this type
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of instability is that it comes up in the study of hyperbolic problems with an
umbilic point (i.e., in (2.1), DF(U) has distinct real cigenvalues except at a
point U = U, where DF(U,) is 2 multiple of the identity.)

For this type of instability at least, the questions I have posed can be an-
swered using the theory of singularities of maps. This theory grew out of Whit-
ney’s work on maps from R? to itself, where the stable singularities are folds
and cusps [28]. Mather, in a classic series of papers [10-15), gave the theory its
modern form. A recent exposition is (9]. More directly relevant to the present
situation is the work of Golubitsky and Schaeffer (2], who adapted singularity
theory to the study of one-parameter problems, and the work of Vegter [27],
who showed how to use singularity theory to study heteroclinic connections to
semihiyperbolic equilibria in the plane (equilibria with one zero eigenvalue). The
Golubitsky-Schaefler and Vegter theories can be combined to vield & theory of
heteroclinic bifurcation problems with a distinguished parameter. This theory

is described in the following section.

3. Singularity Theory and Heteroclinic Bifurcation Dia-
grams

Let us consider a € vector field in R? with one parameter,
y:f(yla)’ y€R21 . AER (3.1)

We assume that for A = 0,
(1) there is a hyperbolic saddle at Po;

(2) there is an equilibrium at 9> with one zero eigenvalue and one negative

eigenvalue;

(3) the unstable manifold of p, meets the stable marifold of ¢, in an orbit
T
See Figure 3.

There are a number of consequences of these assumptions.
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1. For each A near 0 there is a hyperbolic saddle p(}) of (3.1); the map
p:R— R¥is O,

e 0

5 N

Figure 3.

2. Choose U™ coordinates y = (u,v) such that ¢, = (0,0) and such that
the u-axis is not the eigendirection for the eigenvalue 0 of D, f(g,,0). In these

coordinates (3.1) becomes
4= fl(usv! A):

v = fi(u,v,A).
The extended center manifold of § = f(y, A) at (¢.,0) then has the form

u = P(v, A).

(3.2)

See Figure 4. The function ¢ is CP, where p can be made arbitrarily large by
restricting the neighborhood of (0,0) on which it is defined, but is not in general

C*. The series expansion of 1 is computable [3].

Graph of 1?1 = y(v,0)

Figure 4. Phase portrait of & = fi(u,v,0), ¢ = fo(u,,0).
3. The flow of (3.2) on the extended center manifold is

v= 93(!"’ ’\) = fz((‘*:b{'-":)): '-"!A))
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where g, is C?,

4. For fixed A near A = 0, equilibtia of § = f(y,A) near y = ¢, lie in the

invariant curve u = ¢(v, ). Thus they can be found by solving the equation
gi(v,A) =0 (3.3)

We always have g,(0,0) = %2}(0, 0)=0. I %31(0,0) # 0, the equation (3.3)
can be solved for A, so solutions of (3.3) are parameterized by v. In the case of

saddle-node bifurcation, for example, if we have
b= a( )= Aot

then
Ap) =214

see Figure 5. The equilibria of (3.2) are then (g(v), Av)), A(v) given by (3.3),
q(v) = (#(v, A(v)), »).

If %‘f(o, 0) = 0, one needs additional parameters in order to be able to param-

eterize the equilibria. An example is discussed in Section 4.

v

Figure 5.  Equilibria of # = —A + v2 4 -+ .,

5. The equilibrium (g(v), A(v)) of (3.2) has a unique invariant manifold
W(v) near the stable manifold of (g,, 0). If g(v) is a saddle, W (v} is its stable
manifold; if g(v) is a node, W(v) is its strong stable manifold. See Figure 6.
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Figure 8. -P'hase portrait of y = f(y,A(v)) showing invariant

manifolds and the separation function.

6. The signed separation 5(v) between the unstable manifold of p(A(v))
and W(v) can be measured at a convenient cross-section 1o the flow. See Figure
6. The function § is C?. Its first derivatives can be computed as “Melnjkoy
integrals”, except that a boundary term must be added to the integral since g,

is not hyperbolic [19].

Melnikov [16] derived the integral formula now named for him in his study
of the separation between the stable and unstable manifolds of a hyperbolic
saddle in a one-degree-of-freedom Hamiltonian system subject to small time-
periodic forcing. Holmes [4,3] extended and popularized Melnikov’s work. At
an IMPA conference it is perhaps appropriate to note that at about the same
time as Melnikov, Sotomayor, in his IMPA thesis [26], derived the same integral
formula. He was studying the splitting of heteroclinic orbits Joining hyperbolic
saddles of planar autonomous systems.

Let us define

(v, A) = 5(v).
Then the map (g,4;)(v,A) from R? to R?, which we shall call the bifurcation
mapping, encodes the behavior of § = f(y, ) near I'. In fact:

1. Equilibria of § = f(y,A) near (g,,0) correspond to solutions of g, = 0,
as we have seen. The solution corresponds to a saddle if %"‘E > 0, a node if

%ﬂ‘} < 0, and a semihyperbolic equilibrium if %ﬂl = 0.
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2. Connections from p(A) to a hyperbolic saddle near g, correspond to

solutions of g; = g = 0 at which %{1 > 0.

3. Connections from p(}) to a node near g, along the strong stable manifold

of the latter correspond to solutions of g, = g; = 0 at which %‘j < 0.

Bifurcation diagrams like Figure 2 show the curve g; = 0 dashed and the curve
gz = 0 solid.

In order to analyze the mapping (g1, g2) it may be convenient to make co-
ordinate changes to simplify it. One wanis to allow a large enough class of
coordinate changes to make simplification possible, but not such a large class
that important information may be lost. These two objectives can be in conflict,
and that appears to be the case here. Motivated by (2] and [27], we proceed as
follows. We shall say that a bifurcation mapping (91,92} is C* U-equivalent to
(h1, k2) if there are real-valued C* functions A(v, ), B(v, A), C(v,A), V(v,A),
A(), defined on neighborhoods of the origin, with 4 > 0, ¢ > 0, V(0,0) =
0, 3 >0, A(D) =0, A’ > 0, such that

( gl(v,)\)) _ ( Av, }) B('v,A)) (h,(V{v,,\], A(A)) ) . (3.4)
g2(v, A) 0 C(v,A) ha(V(v,2), A(X)

Note that, because of the role of A as a parameter, the change of coordinates

in A can only depend on A, but the change of coordinates in v can depend on

both v and A. The conditions % > 0 and A’ > 0 preserve the orientations of
A B
v-space and A-space. The required 0 in the matrix ( 0 C ) means that the

coordinate change (v, A) — (V(v, A), A())) takes zeros of g, to zeros of kj, and
takes solutions of gy = g5 = 0 to solutions of &, = h; = 0. The conditions A > 0
and C > 0 preserve the signs of the derivatives of ¢ and go at these points.

The zero set of g, is not, however, taken to that of 4;. In fact, from the
definition of the separation function, g; should really be thought of as defined
on the zero set of gy, i.e., as equivalent to g, plus any function times g,. This
is why we allow B(v, A) to be nonzero.

These coordinate changes generally allow simplification of (g1, g2) to a poly-

nomial normal form (&, ;). Unfortunately at least one key piece of information
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for conservation laws has been lost: the Hugoniot locus, which is the projection

of
{(e,v,2): 2(v,A) =0 and u= P{v, A)}

to the uv-plane, cannot be recovered from the normal form (hy, hs), unless we
also keep track of the coordinate changes (V(v,), A(A}) used to produce the
ncﬁ-mal form. The reason is that the coordinate change V(v, A) is not a function
of v only. Another difficulty is discussed in Section 5.

A shorthand notation for (3.4) is

g(viA) = S(v, ’\)h(V(Ur’\)r A(’\)):

where g and & map R? to R? and S maps R? into U, the space of upper
triangular 2 x 2 matrices with positive diagonal entries. A k-parameter un-
folding of g is a map G : R? x R* — R? such that G(v,4,0) = g{v,A). Let
G(v,A,8) and H(v, A, a) be two unfoldings of g, possibly with different num-
bers of parameters. We say G C'*-factors through H if there are C* maps
§(v,A,B8) into U, V(v,},8) into R, A(}B) into R, and A(B) into a-space,
with §(v,4,0) =1, V(v,2,0) = v, A(),0) =X, A(0) =0, such that

G('v1 A)ﬁ) = S(v,A,,@)H{V(v,A,,@], A(’\:ﬁ)l A(ﬁ))

H is (s, p)-universal if every C? unfolding G of ¢ C*-factors through H, and
the number of parameters is minimal. If g has a universal unfolding with &
parameters, then g is said to be of codimension k; if g does not have a universal
unfolding, then g is of infinite codimension. (f gis C7and 1 < s < p < g,
it turns out that the codimension of g is independent of s and p as long as
the difference p — s is big enough.) If g is of codimension %, then bifurcation
mappings equivalent to g should occur in typical problems with & unfolding
parameters. A universal unfolding of g then exhibits all the perturbations of g,
or any germ equivalent to it, that can occur, modulo the equivalence relation
(3.4). Moreover, consider the division of the parameter space for a universal

unfolding into subsets representing equivalent bifurcation mappings. Via the
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mapping § — A(f), this division can be pulled back to a division for an arbi-
trary unfolding of g.

The apparatus of singularity theoi'y, which I shall not describe here, can
produce, for a polynomial normal form & of finite codimension, criteria for
recognizing maps g equivalent to &; a simple polynomial universal unfolding
of h; and criteria for recognizing when an unfolding of a map g equivalent to
h is a universal unfolding of g [19,20]. Universal unfoldings of g and & are
equivalent (under an extension of the equivalence relation (3.4) to mappings
with unfolding parameters), so the polynomial universal unfolding of % can be
studied as a prototype.

The recognition criteria for normal forms and universal unfoldings gener-
ally have geometric interpretations as transversality conditions. This will be

illustrated in the following section.

4. An Example

In order to indicate the power of these ideas, let us consider the two normal

forms

hi(v,A) = —v + 8},

(4.1)

ha(v, A) = v® —w,
with § = 1. These normal forms represent an equilibriem undergoing a pitch-
fork bifurcation at the moment when the unstable manifold of a distant saddle
meets its stable manifold; see Figure 7. If 1 < g < pand p—sis large enough, a
C¥ bifurcation mapping (g,(v, A), g2(v,A)) is C* U-equivalent to (4.1) provided
at (0,0),

51= 92 = G20 = 92x = G203 = Y200 = 0; (4.2)

Jiw < 0; Jaua < 0: S2vve > U: 5811(91-:92» - 291).920A) =4 (43)

{This and other results in this section are from (21).) The criteria involving only
g2 ate recognition criteria for a pitchfork bifurcation; see [2]. The condition

Grvg2ax — 2g1ag2ex # 0 says that the curve g1 = 0 is transverse to the curve
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of “trivial equilibria” for the pitchfork bifurcation. The sign of the inequality

indicates how the curves cross.

(a) Bifurcation Diagram

5+ 4+ 13

A<oO A=0 Aso0

th

(b} Phase Portraits

Figure 7. A(v, A) = (v + A, v® — vA). For A = 0, the right hand
equilibrium is semihyperbolic, with cubic behavior on its vertical center
manifold.

A universal unfolding of (hy, k) is
Hi(v, M a1,00,03) = —v + 64 + ay, (14)
Hy(v, X, 01, 02,08) = v® — 02 + azv? + ag.
Several transition varieties in a-space can be identified, which correspond to
unstable bifurcation diagrams. In general these transition varieties are given by

the simultaneous vanishing of three functions.

L. The equilibrium bifurcation variety B is the set of a for which there is a
point (v, A) where H; = H,, = Hyy = 0.
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2. The hysteresis variety H is the set of a for which there is a point (v, A)
where Hy = Ha, = Hyo = 0.

3. The equilibrium fheteroclinic bifurcation vatiety € is the set of a for which
there is a point (v, A) where H; = Hy = Hy, = 0.

4. The variety of simullaneous equilibrivm and heteroclinic bifurcations F is
the closure of the set of « for which there is a point (v, A) where Hy = H; =0
and a distinct point (vs, A) (same A) where Hy = Hy, = 0.

5. The degenerate heteroclinic bifurcation variety A is the set of a for which
there is & point (v,A) where H; = 0 and H; = 0 are tangent, i.e., where
Hy, = Hy = HyyHa — HiaHaw = 0.

Figures 8 and 9 show the intersection of these varieties with a plane oy =
constant < 0, and the stable bifurcation diagrams that occur in the various
connected components of the complement of the union of these varieties. Note
in particular that B is the aj-axis; H has cubic contact with B at the origin;
F has quadratic contact with B; and £, F, and H shate a point of quadratic
contact. The simple form (4.4) facilitates the discovery of these facts.

Let (Gi, G2) (v, A B1,B2,8:) be an unfolding of a germ (g1,92) (v,4)
that satisfies the recognition criteria (4.2-3). Define G: R* —» Rf by G =
{G1, Gz, Gy, G2z, Gauww); compare (4.2). Then (Gh, Ga) is universal if and only
if DG(0) is invertible. If (Gy,G;) is universal, there is a diffeomorphism of
B-space to a-space that takes the transition varieties for {Gy, G2) to those for
(Hy, Ha).

To conclude this section we shall show that the normal forms (4.1) and their
universal unfoldings occur in a concrete system of conservation laws.

Consider the system of partial differential equations

ue + (—u? + 2piuv + v?). =0, (45)
v+ (pau® + 2uv). = 0,
py & parameter, which is a much studied simple example of a system of hy-

perbolic conservation laws having, for each g, an umbilic point at the origin
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[5,6,17,18,24,25]. In fact, consider the perturbation

e+ (12 + 2puv + 0*)e = 0,
' ) (4.6)

ve + (p1? + 2uv + pau® + paut)e = 0.

(&)

Figure 8. H(v, A, an,y @z, @3) = (-v+ A+ oy, v — v+ agv? +
3). Transition varieties in & plane a; = constant < 0 and two unstable
bifurcation diagrams.
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G

a3) = (-—v-]—)-}-al, u"—v'\-}-azuz-{vag]‘

H(‘U, A: ay, ay,
Stable bifurcation diagrams that occur for a; < 0.

Figure 9.
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Then a shock solution of (4.6) with left state (u_,v_), speed s, and viscous
profile corresponds to a heteroclinic orbit of
= —(u? —u?) 4 2 (uv —uov )+ (2 —v?) —a(u —u),

U= m(u? —ul)+ 2uv —u_vl) + pa(ed — wd) 4 pafut —ut) —s(v - ),
(4.7)

from (u_,v_) to a second equilibrium.

In (4.7) we let u_ be a fixed negative number, let & = (g1, g1, pa), and regard
(v-, ) as a vector of unfolding parameters. If we then set (v_,u) = (0,0), we
obtain a one-parameter family of vector fields in the uv-plane,

2= —(2?—ul)+vP—s(u—u)), (18)
¥ = 2uv — sv,
with the following properties (see Figure 10):
1. There is symmetry about the u-axis. As a result, the u-axis is invariant

for each 5.
2. There are equilibria on the u-axis at (u_,0) and (—u_ — 3,0).

3. For 2u_ < s < —32u_, both equilibria are hyperbolic saddles, u_ <

—u_ — 3, and there is a heteroclinic solution from (u_,0) to (—u. — 5,0) along

3

(a) (b)

the u-axis.

0

Figure 10. Flow of (4.7) near the u-axis, (a) for 2u_ < s < -2u_,
and (b) for s a little larger than —4u_. When s = —Zu_, the right hand
equilibrium is semihyperbolic, with cubic behavior on its vertical center
manifold.

4. At s = —Zu_, one eigenvalue at the right-hand equilibrium (—lu_,0),

with eigenvector (0, 1) transverse to the u-axis, becomes zero; in fact, a pitchfork
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bifurcation occurs. There is still a heteroclinic orbit from the hyperbolic saddle

(u-,0) to (—ju_,0) along the u-axis, which is the stable manifold of the latter.

This one-parameter family is of inf.'lnite codimension because the connection
between the equilibria does not break as s varies. To make this statement
a little more precise, we note that for the corresponding bifurcation mapping
(91,92), the curve g; = 0 (a line) is contained in the curve g2 = 0 (& pitchfork).
No perturbation with a finite number of parameters can capture all possible
perturbations of this picture.

Theorem There is a smooth curve C through the origin in (v_, ) space,
(v-(2), 1(t)) = wt 4 O(e),

with each component of w positive, such that if (v_,n) s a fized point on C
then the one-parameier family (4.7) has, at a unique s near —2u_, a pitchfork
bifurcation af an cquilibrium near (—3u_,0), together with a heteroclinic orbit
along its stable manifold from the hyperbolic saddie (u-,v.). At any point on C
other than the origin, the normal form for this bifurcation is ({.1); & is the sign
of t. Moreover, a universal unfolding of ({.1) occurs on any three-dimensional

slice of parameter space transverse to C through a nonzero point of C.

The proof of this theorem goes as follows. We perform center manifold

reduction on (4.7} at the point

1 2
(u,v,s,v_,,u) = (‘——'H._,U, -gu-,0, 0)’

3 3
then let
3= —gu_ + A,
obiaining
&= Galv, A, v_, ). (4.9)
It turns out that
0G,

K(U,U, 0,0) # 0,
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so that equilibria of (4.9) are parameterized by (v, A, p). Thus there is a sepa-

ration function S(v, A, g}, and we define
Gi(v, A, v, 1) = S(v, A ).

G, is easily computed to any order using a symbolic manipulation program,
and first derivatives of G, with respect to v and the y; can be computed at any
point on the A-axis as Melnikov integrals.

For fized (v*,p*}, the germ of the C” mapping (G1,G:} at (v%, A", v", ") is
C* U-equivalent to one of the normal forms (4.1), s sufficiently smaller than p,
provided at (v*, A", v*, u*),

G =Gz = G3, = Gaa = Gaww = 0,
G1s <0, Gaa <0, Gapyy >0, G1oGaar — 2G1Gaua #0;
these are the recognition criteria (4.2-3).

For (v=, p*) = (0,0), all these criteria are satisfied at (v=, A*) = (0, 0) except
the last. The failure of the last criterion is due to the fact that when (¥2,p") =
(0,0), the heteroclinic orbit does not break as A varies.

Now G = (G, G2, G2y, G2x, Gavy) is @ function from R® (vAv_p-space) to
RS, It turns out that DG(0) is surjective, so by the implicit function theorem
there is a unique smooth curve € through the origin in R®, tangent at the origin
to w, a null vector for DG(0), on which G =0.

By continuity, points on ¢ near the origin have Gy, < 0, Gaua < 0, and
Gayoe > 0. The projection of € to v_p-space is the curve ¢ whose existence
is asserted in the theorem. The statement about the normal form at nonzero
points of C' is proved by showing that D(G,Gzas — 2G12G2,1)(0,0,0, 00 > 0;
thus the last recognition criterion is satisfied at nonzero points of C. The
statement about universal unfoldings follows from the recognition criterion for

universal unfoldings and the fact that G is transverse to €.

b. Discussion

Let us consider a system of conservation laws (2.1) with associated ordinary

differential equation (2.7) and corresponding heteroclinic bifurcation diagram.
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The stable bifurcations that occur in these diagrams should in turn correspond
to local existence-uniqueness theorems for solutions of Riemann problems, pro-
vided additional assumptions are made.” A Riemann problem is of course (2.1)

with piecewise constant initial conditions,

U,f,, z< 0

u(z,0) = { (5.1)

Ur, z>0.

Such an existence-uniqueness theorem is worked out for the nondegenerate
saddle-to-saddle heteroclinic bifurcation in [23]. In this bifurcation, (2.7), with
U_ = U; and s = s, has a heteroclinic orbit from a hyperbolic saddle at U, to
another hyperbolic saddle /. The orbit breaks in a nondegenerate mt;nner as
s varics. A normal form for the associated bifurcation mapping is

hi(v,A) = —v,
ho(v, ) = v+ §A,
§ = +1, which has codimension 0.

To describe the result of [23], let us assume in addition that (2.1) is strictly
hyperbolic and genuinely nonlinear near U, and U>. For Uy, near Us let Wy (Ur)
be the usual slow wave curve through Up. For each U_ ¢ Wi(Ug) there is
a unique pair (s,U,) near (s,,U;) such that the differential equation (2.7)
has a heteroclinic orbit from U/_ to U,. The collection of such U, forms an
undercompressive shock curve Z(Ug). Let us make one final assumption, that
Z(U,) and the fast wave curve through U: are transverse. Then for each U,
near U and Ug near U, there is a unigue solution of the Riemann problem
(2.1}, (5.1) that consists of a slow wave from Uy, to some I/_ in Wi(UL), a shock
from U_ to U, near U} (of course U, € E(Up)), and a fast wave from U, to
Up. See Figure 11.

Note that this result requires two assumptions in addition to those encoded
in the normal form of the bifurcation mapping. This illustrates the principle
that information is lost in passing from the PDE (2.1) to the bifurcation dia-
gram, or, more precisely, to the normal form of the bifurcation mapping. At

least some of the loss of information can be traced to the largeness of the class of



HETEROCLINIC BIFURCATION THEORY 185

transformations allowed in putting the bifurcation mapping (g, g;) into normal
form. In particular, in addition to information about the Hugoniot locus, as
was mentioned in Section 3, all information about the undercompressive shock
curves is lost in passage to the normal form. Unfortunately, it is not clear how

to get by with a significantly smaller class of transformations.

U Ug Us
. U
U\ % - °

W,(U) W, (Uy) E(Uy (U

Figure 11. Solution of a Riemann in the presence of undercom-
pressive shocks. Fast wave curves are shown as light curves. Given Uy,
and Ug, (1) locate Uy on E(U/L) such that the fast wave curve through
U, meets Ug; (2) locate U_ on Wy(Ut) such that there is an undercom-
pressive shock from U_ to U,. The solution is then a slow wave from Uy,
to U, a shock from U_ to U, and a fast wave from U, to Ug.

A result similar to that in [23] can presumably be proved for saddle-node
bifurcation at {7, when the unstable manifold of ¥_ does not meet the stable
manifold of U/;. The Riemann problem solution would use shock-rarefactions
and rarefaction-shocks, constructions introduced by Liu for problems without
genuine nonlinearity [8].

In the same spirit, it would be interesting to try to relate low codimension
bifurcation diagrams to bifurcations in the pattern of solutions of Riemann
problems, under additional hypotheses.

Next we remark that in a concrete problem, even if there is no noermal form,
it may be possible to produce descriptions of transition varieties like those in
Section 4. An example occurs in [21], where cubic perturbations of the flux
function in (4.5) were studied. As noted in Section 4, the bifurcation mapping

of (4.8) has infinite codimension, so as far as I know there is no normal form. In
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[22) we put G; into normal form, but (3, could not be reduced to a polynomial,
Nevertheless it was possible to compute the transition varieties rather explicitly.

In this problem we also computed fo low order the coordinate changes that
converted the problem to partial normal form. Thus we were able to recover
information about the Hugoniot loci and undercompressive shock curves. This
indicates some of the additional work that may be necessary in using heteroclinic
bifurcation theory to study Riemann problems.

Finally we note that since the normal forms for bifurcation mappings corre-
spond to transversality conditions, heteroclinic bifurcation theory should have
a natural role to play in the new geometric theory of Riemann problems being

developed by Isaacson, Marchesin, Palmeira, and Plohr [7].
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