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ON THE INITIAL VALUE PROBLEM FOR THE
ZAKHAROV EQUATIONS

Tohru Ozawa®  Yoshio Tsutsumi

Abstract

In this paper the following three problems for the Zakharov equations
are considered: (i} Solvability of the Zakharov equations. (ii) Smoothing
effect of solutions. (iii} The nonlinear Schrodinger limit of the Zakharov
equations. The authors present the results concerning the above three
problems, which have recently been obtained in the papers [17] and [18],
and the proofs of those results are illustrated.

1. Introduction

In the present paper we consider the initial value problem for the Zakharov

equations:
.OE N
tﬁ+AE=nE, t>0, zeR", (1.1)
z
%g_au AIEP, t>0, zeRV, (1.2)

E(Osz) = Eo(:!:), n(ol z) = “D(z)l (‘%‘n(oa m) = nl(Drx): (1'3)

where E(t,z) is a function from R} x RY to C¥, n(t,z) is a function from
R xRY to R and 1 € N < 3. (1.1)-(1.3) describe the long wave Langmuir
turbulence in a plasma (see [29]). E(t,x) denotes the slowly varying envelope
of the highly oscillatory electric field and n(t,z) denotes the deviation of the
ion density from its equilibrium.

Although there are many papers concerning the physical observations and

the numerical experiments for (1.1)-(1.3), there do not seem to be so many
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mathematical papers treating (1.1)-(1.3). When (1.2) depends on the jon sound
speed A, that is, (1.2) is replaced by

1 8%*n 2
A—,a—tz“ —An = A]E{ y (1.4)
it is thought that (1.1) and (1.4) converge to
i%‘? VAE=nE, n=—|BP (15)

a8 A — oo (see [2], [6], [20] and [20]). (1.5) is just the nonlinear Schrodinger
equation and this observation is one of the derivations of the nonlinear Schré-
dinger equation (see [29]). It is naturally conjectured that the solutions of (1.1)-
(1.2) and the solution of (1.5) have some common properties. Therefore, it seems
important not only to study the solvability of (1.1)-(1.3), but also to investigate
the smoothing effect of solutions for (1.1)-(1.3), which is a remarkable feature
of the dispersive wave equations such as the nonlinear Schrédinger equations
(see, e.g., [5], (11)-[13], [22] and [23]). It is also interesting and important to
study the nonlinear Schrédinger limit of the Zakharov equations, that is, the
limit process of (1.1) and (1.4) as A — co.

In [25] C. Sulem and P.L. Sulem proved by using the Galerkin method that if
{(Eo,no,m1) € H*"@H™ '@ H™*NH~,m > 3and 1 < N <3, then (1.1)-(1.3)
have the unique local solutions (E(t), n(t)) € L=(0, T; H™) @ L=(0,T; H™1)
for some T > 0. Here H™ denotes the standard Sobolev space H™(RY). Am™
denotes the homogeneous Sobolev space consisfing of all tempered distributions
u with |¢|™& € L? = L*(R™), where # is the Fourier transform of u. In [20]
Schochet and Weinstein showed the similar result for (1.1), (1.4) and (1.3) by
the different mehtod, but the existence time T of the local solutions does not
depend on the parameter A in [20] (see also [2]). In both [20] and [25], the
assumption n; € H~'is needed for the construction of the local solutions. This
assumption is rather strong, because S ¢ H-! for N = 1,2. For example,
e is not in A1 for N = 1,2. Furthermore, the uniqueness of the solutions
(E(t), n(¢)) for (1.1)-(1.3) is proved only in the class H™ @ H™ ! m > 3in the

previous results. In section 2 of this paper we give the unique local existence
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result in H* @ H! for (1.1)-(1.3). H? @& H! seems more natural than the class
in the previous results, because the solutions in H? @ H' are the so-called
strong solutions. The difficulty of solving (1.1)-(1.3) is that when we use the
standard iteration scheme, we meet with the loss of derivative, which comes
from the second derivatives of |E(t)|? in (1.2). In the case of the single nonlinear
Schradinger equation the LP — L9 estimate and the Strichartz estimate play an
important role (see [8], [9], [15] and [28]). However, in the previous papers [20]
and [25] they are not used, because the loss of derivative prevents us from using
them directly. In order to overcome this difficulty, we first transform (1.1)-(1.2)
into the system which does not have the derivative loss. For that purpose, we
apply the technique developed by Shibata and Y. Tsutsumi [21], which was used
to solve the fully nonlinear wave equation. After that we apply the LF — L¢
estimate and the Strichartz estimate to the resulting system, following Kato
[15]). In section 2 we also state several remarks concerning the global existence
and the asymptotic behavior of solutions for (1.1)-(1.3).

We next consider the smoothing effect of the solutions for (1.1)-(1.3). It is
well known that the linear or nonlinear Schrodinger equation has the drastic
smoothing effect (see, e.g., [5], [11]-[13], [14], [22] and [23]). In [11] and [12] it
is proved that if E(0) = Eq € HY,|z|*Ey € L%,k > 1 and 1 < N < 3, then the
solution E(t) of (1.5) is in HE_ = HE_(R¥) for t > 0 as long as E(t) exists. In
[5] and (23] the smoothing effect of the different type for (1.5) is proved, Lhat
is, if E(0) = Ey € H*, k> 1 and 1 < N < 3, then the solution E(t) of (1.5)
satisfies

T kf141fa 2
[ et = Ay mg) gde < 0

for ¢ € C’O‘”(RN) and 0 < T < Tz, where T, 15 the maximal existence
time of E(t). On the other hand, there seems to be no result concerning
the smoothing property of (1.1)-(1.3). The Zakharov system consists of the
Schrodinger equation {1.1) and the wave equation (1.2), and we can not expect
the smoothing effect of the wave equation part. Accordingly, we can not expect
the drastic smoothing effect for (1.1)-(1.3) like the single nonlinear Schrodinger

equation. However, we can prove that the solution E(t) of the Schrédinger
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part for (1.1)-(1.3) has some smoothing properties similar to those of the single
nonlinear Schrodinger equation. In section 3 we state the results concerning the
smoothing properties for (1.1)-(1.3).

Finally we consider the nonlinear Schrédinger limit and the initial layer of
(1.1), (1.4) and (1.3) as A — oo. Since this limit process is a singular pertur-
bation problem, it can happen that the initial condition (1.3) is not compatible
with the limit equation (1.5). In that case, the singularity occurs at ¢ = 0 as
A — oo. This singularity is called an injtial layer. It is important to investigate
the relation between the limit process and the formatjon of initial layer. In [20]
Schochet and Weinstein studied the nonlinear Schrédinger limit of (1.1), (1.4)
and (1.3) as A — co. But they treated only the case of no initial layer. In [2)
H. Added and S. Added have shown that if (Eoyno,mi) SR SOSNH-1 and
1 <N <3, then for any T with 0 < T < Tmez and any positive integer m there
exist two positive constants Cp and Ag such that the solutions (Ea(t), ma(t)) of
(1.1), (1.4) and (1.3) exist on [0,T] for A > Xo and satisfy

o528, [VBA(®) = E(O)llrmes + na(8) + [BA(OF? ~ cos(M(—A))(ng + |Eofa]

(1.6)
CoA—1/2 if nmo+|E)*#0 and N =1,2,
<4 Cor~tlog A if no+|Eol*#0 and N =3,
CoA? if no+|Ef?=0 and 1<N <3,

where E(t) is the solution of (1.5) with E(0) = Ey and T, is the maximal
existence time of E(t). Thereis a discrepancy between the non-compatible case
ng + |Ep)? # 0 and the compatible case ny + |Eo|* = 0 concerning the rate of
convergence as A — oo. This corresponds to the initial layer phenomenon and
the term cos(At(—A)/?)(ng + | Eo|?) represents the initial layer. But the rate of
convergence in (1.6} does not seem natural for the compatible case no+|Ey[? = 0,
because (1.4) depends on the square of A (see [6] and [16]). In section 4 we state
the results concerning the precise rate of convergence as A — oo, which give a

clear relation between the limit process and the formation of initial layer.

We conclude this section by giving several notations. Let W™ denote the
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Sobolev space
W™ = {f € 8[| fllwmes = (1 - A)™*f||1s < o0}

formeRand 1 <p < oo. Weput H™ = W™? Let H™* denote the weigted

Sobolev space
H™ = {f € S [ fllams = I(1+ 2)*(1 — AY™/f|| 2 < o0}

for m,s € R. For a Banach space X and T > 0, we define W™*((), T; X) by
. mo.T g y
W™ (0,7 X) = {f(t) € LT3 XKL [ 5= (0) [ def s < oo},
=0

ifl<p<oo.

2. Solvability of the Zakharov equations

In this section we describe the results concerning the local solvability of (1.1)-
(1.3). We also state several remarks concerning the global existence and the
asymptotic behaviar of solutions for (1.1)-(1.3).

We first describe the main theorem in this section.

Theorem 2.1 Assume that 1 < N < 3.
(1) Let (Eg,ng,m1)} € H* @ H' @ L2. Then for some T > 0 there exist the
unique strong solutions (£(t),n(t)) of (1.1)-(1.3) such that

E(®) € () C3(0, T £P°5) 2.1)
E(t) e [11 WSIN (0, T, W2-24), 2.2)
(t) € () 70,7 1), (23)

where T depends only on || Eo|{gs, ||nollaa, ||n1]|zs and N.
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(2) Let m be an even integer with m > 4. If (Ep,ng,m) € H™ @ H™' @
H™2 then the solutions (E(t),n(t)) of (1.1)-(1.3) given by part (1) satisfy

mji2

E(t) e (N C¥([0,T); H™ %), (2.4)
i=0
m/2
E(t) € () W (0, T; wm-24), (2.5)
i=t
n(t) € [E‘IC"'([O,TI;H'“""'), (2.6)
j=0
and if m > 6,
mi2+1 . )
n(¢) € rl C([0, T); Hm+2-34y, (2.7)

(3) Let m be an odd integer withm > 3. If(Eo,ne,n1) € Hm@H™ '@ H™2,
then the solutions (E(t),n(t)) of (1.1)-(1.8) given by part (1) satisfy

{m-1)/2 .
E(t) € ﬂ GJ([O: T];Hm_h)l (28)
=0
(m-1)/2 )
B(tye (] W0, T wmmuid), (2.9)
i=o
3 ¥ -
n(t) E n C’([U, T];H""l“"), (2.10)
i=0
and tf m > 7,
(mi1)/2 .
(e () CH(0,T); H™) (2.11)
=4
Remark 2.1.

(1) The solutions (E(t),n(t)) of (1.1)-(1.3) in Theorem 2.1(1) satisfy {1.1)
in the L? sense, while they satisfy (1.2) in the distribution sense. Therefore, the
solutions in the class of Theorem 2.1(1) are called the strong solutions (for the
weak solutions, see [20, Theorem 4] and [25, Theorem 1]).

(2) Theorem 2.1 (1) shows that the solutions of (1.1)-(1.3) are unique in the

class of the strong solutions.
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(3) In Theorem 2.1 we do not need the condition n; € H~', which was
always assumed in the previous papers [20] and [25].

(4) In Theorem 2.1(2) and (3) the existence time T of the more regular
solutions than the strong solutions is the same as that of the strong solutions. In
the previous papers [20] and [25], T depends on the higher order Sobolev norms
of the initial data, when the solutions are regular. Theorem 2.1(2) and (3) imply
that if (Eo, no,m1) € NG2, H, then the solutions (E(t), n(t)) € C=([0,T] RM).

(5) (2.2), (2.5) and (2.9) show that E(t) has a smoothing property in a
certain gense like the solution of the single nonlinear Schradinger equation (see
[9], [15], [24] and [28]).

(6) (2.7) and (2.11) imply that l;1-::.7;,_1 2 3 lose the regularity of Sobolev
order 2 with respect to the spatial variables, each time we differentiate them
in t. This may seem strange, since n(t) is a solution of the wave equation.
But (1.2) contains the solution E(t) of the Schridinger equation as the external
force, which is why (2.7) and (2.11) occur.

When we use the standard iteration scheme to solve (1.1)-(1.3), the loss
of derivative occurs, as stated in section 1. In fact, if 1 < N < 3 and
E(t) € L=(0,T;H™) for some m > 2 and T > 0, we solve (1.2) to have
n(t) € L=(0,T; H™'). However, we have only E(t) € L=(0,T; H™ 1) by
(1.1), when n(t) € L>=(0,T; H™ ).

Thus, we first consider the following system:

OF n ¢
i +AF —nF - a(Eﬁj; Fds) =0, (2.12)
8n
S~ On- A|E]* =0, (2.13)
(~A+1)E =iF — (n — 1)(E, +£ Fds), (2.14)
. a9
P(0) = i(AEy — noBy), n(0) = no, a—’:(o) =n,. (2.15)

If we formally differentiate (1.1) in ¢ and put F = 2 E, we obtain (2.12).

(1.1) is also rewritten as (2.14) in terms of F'. The loss of derivative does not
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occur for (2.12)-(2.14). This technique was used to solve the fully nonlinear
wave equation in [21]. In order to obtain Theorem 2.1, we can directly apply
the L? — L estimate and the Strichartz estimate to the system (2.12)-(2.15),
following Kato [15]. For the details of the proof of Theorem 2.1, see Ozawa and
Y. Tsutsumi [17).

We also have the following theorem concerning the global existence of solu-
tions for (1.1)-(1.3).

Theorem 2.2

(1) Assume N = 1. Let m be an integer with m > 2. If (Eo,no,my) €
H"@QH™ '@ H™* andn, € H™', then the existence time T of the salutions in
Theorem 2.1 can be chosen as T = +oo. Furthermore, if Eg,no,n; € N, H™
and ny € H™', then the solutions E(t,z) and n(t,z) are in C=([0, 00) x R).

(2) Assume N = 2. Let m be an integer with m > 2. There ezists § > 0
such that if (Eg,no,n1) € H* @ H™ 1@ H™ 2, ny € H~* and || Eo||1a < 6, then
the ezistence time T of the solutions in Theorem 2.1 can be chosen as T = 4oc.
In addition, if Eo, no, and n, are in NZ_, H™, then the solutions E(t,z) and

n(t,z) are in C**([0,00) x R?).

The a priori estimates needed for the proof of existence of global solutions
are already established by C. Sulem and P.L. Sulem [25, Proof of Theorem 2]
and by H. Added and 8. Added [1, Proof of Theorem] (see also [20]). The proof
of the a priori estimates requires the assumpt'ion ny € H™!, because the energy
identity of (1.1)-(1.3) contains the H~! norm of n,. Those a priori estimates
and Theorem 2.1 show Theorem 2.2,

We conclude this section by stating the following remark concerning the

asymplotic behavior of solutions for {1.1)-(1.3).

Remark 2.2. There seems to be no result concerning the asymptotic behavior
of global solutions for (1.1}-(1.3). It is difficult to treat the scattering problem
for (1.1)-(1.2), since the nonlinearity is quadratic. However, in the case of

N =3, we can construct the wave operators for certain scattered data, which are



THE ZAKHAROV EQUATIONS 157

not necessarily small. The proof is based on the improved decay estimates of the
interaction term which take account of the difference between the propagation
of the Schrédinger wave and that of the acoustic wave. The proof is similar to
that of the result in [19] for the coupled Klein-Gordon-Schrodinger equations,

but it is more complicated. The details will appear elsewhere.

3. Smoothing effect of solutions for the Zakharov equa-
tions

In this section we describe the result concerning the smoothing effect of solutions
for (1.1)-(1.3). We have ihe following theorem.

Theorem 3.1 Let m be an integer with m > 2. Assume that | <N <3
and (Eo,no,m1) € H™ @ H™ ' @ H™ 2. Let (E(t),n(t)) and Theo > 0 be the
solutions of (1.1)-(1.8) given by Theorem 2.1 and their mazimal ezistence time,
respectively.

(1) Let o(2) € CF(RYN). Then, E(t) satisfies

@B(t) € L*(0,T; H™+/7) (3.1)

forany T with0 < T < Thax.
(2) In addition, let m > 4. Putk=14fm >4 and k = lor2 fm > 6. If
Ey € H™ then
E(t)e HH Y, 0<t < Thas. (3.2)

Remark 3.1. Theorem 3.1 shows the smoothing properties of the Zakharov
equations (1.1)-(1.3). Part (1)is completely the same as in the case of the single
nonlinear Schrédinger equation (see [5] and [22]). On the other hand, part (2)
is not so good as in the case of the single nonlinear Schrédinger equation (see
(11]-(13]). This is because the Zakharov system contains the wave equation and

it has the form such that the derivative loss occurs.

In order to show Theorem 3.1(1), we rewrite (1.1) as the integral form and
evaluate the resulting equation by using (2.2), (2.5) and (2.9). In the proof
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of Theorem 3.1(2), we use the commutator method (see [14], [11]-[13]) and
the difference of the derivative in £ between the Schrodinger equation and the
wave equation. For the details of the proof of Theorem 3.1, see Ozawa and Y.
Tsutsumi [17).

4., The nonlinear Schrédinger limit of the Zakharov
equations

In this section we state the result concerning the limit process of (1.1}, (1.4)

and (1.3) as A — co. We have the following theorem.

Theorem 4.1 Assume that 1 < N <3 and (Eg,ng,n)) ES@®SBSN H-1.
Let E(t) be the solution of (1.5} with E(0) = Ey and let T, be the mazimal
existence time of E(t). Let (Ex(t),na(t)) be the solutions of (1.1}, (1.4) and

(1.9).

(1) For any T with 0 < T < T,z and any positive integer m there ezist
two positive constants C and g such that for any A > Ag (Ex(t), na(t)) ezist
on [0, T] and satisfy

sup_[lma(t) + |Ea(t)]” — @P(t) — Q) < €AY,
0<t<T
where

QL) = cos(At(—AY*)(mo + |Eof*),
Q) = AN(-A) "V sin(At(—A) ) (n, + 2S(Ey - AE,)).

In particular, for any A > Ap
sup [[ma(t) + [Bs(H) ~ Q(e)llam < OX7",
0<e<T

(2) Assume ng + |Eg|? # 0. Then, for any T with 0 < T < Ty,a. and any
positive integer m there ezist two positive constants C and Ag such that for any
A2

S 1Ex(t) — E(t)lam < CA7".
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(3) Assume ng + |Eo|* = 0. In addition, wkhen N = 1,2, assume that
m =V.¢ forsomedpe S Then forany T with 0 < T < T and any

positive integer m there ezist two positive constants €' and Ay such that for any

AZ2 X
sup ||EA(t) — E(t)||lg~ < CA 72
0<t<T

Remark 4.1.
(1) The assumption ny € SN H~! is redundant when N = 3, since S € H~!
for N = 3. This fact follows by using the Hardy inequality in the Fourier space.
(2) Qaj)(t),j = 1,2 in part (1) of Theorem 4.1 solve the wave equation

Y

ai? _AQU):U: t>0, zeR", j=1,2

with the initial conditions Q{(0) = no + |Ea|?, 2Q{"(0) = 0 and Q{P(0) =
0, %Q&z)(ﬂ) = ny + 23(Eyp - AE,), respectively. The terms Q{"'(t) and Q{)(¢)
represent the first initial layer and the second linitial layer, respectively, in the
nonlinear Schrédinger limit of (1.1), (1.4) and (1.3). While the analysis of the
first initial layer is important in the proof of Theorem 4.1(2), the analysis of
the second initial layer is important in the proof of Theorem 4.1(3).

(3) Fort >0 le)(t) tends to zero locally in space for N = 1 and globally
in space for N = 2,3 as A — oo. Accordingly, Theorem 4.1 implies that for
0 < t < Tmge, 7a behaves like —|E,|? and so like —[E]? as A — oo. In the
compatible case ng + |Ep|? = 0, Q&l)(t) = 0 and so n) behaves like —|E|? on
the time interval [0, Tmee) including ¢ = 0 as A — co. This difference between
the time intervals for convergence is due to the initial layer phenomenon. The
formation of initial layer is also reflected in the convergence rate of the solution
Ey a3 A — oo (see Theorem 4.1(2) and (3)).

(4) The results in Theorem 4.1 (2) and (3) are optimal concerning the rate
of convergence with respect to A. Indeed, there exist nontrivial solutions E,

satisfying
liminf A sup ||Ex(t) — E(t)|z= > 0
oo pgt<T
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in the non-compatible case ng + |Eqg|* # 0 and
liminf A? sup [[Ex(t) - E(t)]am > 0
A—oo 0<E<T

in the compatible case ng + |Eg|* = 0 (see [18, Theorem 1.3]).

(5) The maximal existence time T.,.. of E(t) is infinity for N = 1, but
Tonaz can be finite for N = 2,3 (see Glassey [10] and M. Tsutsumi [26]). It is
conjectured that for N = 2,3 there are also solutions of the Zakharov equations
blowing up in finite time (see [29]).

Our proof of Theorem 4.1 depends essentially on the apecial propagation
properties of the Schradinger wave and the acoustic wave. An outline of the
proof is roughly illustrated as follows. We put Qs = ny + |Bs?. Let w =
(=A)'72 (1.1), (1.4) and (1.3) are rewritten as the system of integral equations:

. LI
Bx(t) = By +i [ OB\ B, - QuE)(a)ds,

¢ 5
() = Q1) + Qe) + [ () sin(A(e ~ s) 5 Eal*(e)de,
where Qg” and QY are defined as in Theorem 4.1(1). Therefore, we have

BA(t) - B(o) = | "8 (| B, 2B,  [E|E)(s)ds, (4.1)

~if B, (5) Ba(o)ds.

Our main task is to evaluate the second integral in the right hand side
of (41). In [2] H. Added and S. Added use the time decay estimate of the
solution of the acoustic wave equation to show that @y — 0as X — oo and so
@sExy — 0as A — oo. This argument is the same one as used for the problem
of the incompressible limit of the compressible Euler equation (sec Asano [3]
and Ukai [27]). But this argument is not sufficient for the optimal result in our
problem. In fact, the product of @, and E, tends to zero faster as A — oo than
@ alone tends to zero as A — oo,

The integrand @, B, in the right hand side of (4.1) corresponds to the in-

teraction between the acoustic wave 5 and the Schrodinger wave Ey. Q)
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propagates according to the Huygens principle and is localized in a neighbor-
hood of the sphere |z| = At. Hence Q, propagates very fast as A — oo. On
the other hand, E, propagates with group velocity independent of A and is well
localized in a neighborhood of the origin. Therefore, the main part of the sup-
port of Qa(£), say {=;]|Qx(t,z)| 2 €} for some & > 0 and that of E\(t) become
almost disjoint and so the product @, F) can be proved to co This is a main
idea of our proof and a different point from the proof of [2]. For the details of
the proof of Theorem 4.1, see Ozawa and Y. Tsutsumi [18).
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