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GLOBAL SOLUTIONS TO THE EQUATIONS FOR
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Abstract

We prove a result on global existence in time for strong solutions to the
three dimensional stratified Navier-Stokes equations. These equations
describe the motion of nonhomogeneous incompressible fluids. For the
result, as in the usual Navier-Stokes equations, it is required small initial
velocities and external force fields with a weak form of decay.

1. Introduction

In this work we will be concerned with global existence in time of strong so
lutions to the three dimensional stratified Navier-Stokes equations, that is, the
equations fot the motion of a nonhomogeneous incompressible fluid (obtained
as a mixture of miscible incompressible fluids, for instance). Being 2 ¢ /R a

?3.regular bounded open set, T' > 0 these equations are:

o
p?,;—: + pu.Vu — Au — gradp = pf,
divu =0,
dp ) (11
.l Vp = . (1.1)
1 Bt+u p=0 in§,

v=0 on 80 x(0,T);
ple=o(®) = po(z) in £;
ulio(z) = up(z) m (1,

where [0, T) is the interval of time being considered; (0 is the container where
the fluid is in; u(z,t) € H® denotes the velocity of the fluid at a point = &
Q and at time ¢ € [0,T);p(z,t) € IR and p(z,t) € R denote, respectively,
the density and the hydrostatic pressure of the fluid; uo(z) and po(z) are the
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initial velocity and density, respectively; f(z,¢) is the density by unit of mass
of the external force acting on the fluid; here, without loosing generality, we
have normalized the viscosity to be one; the fluid adheres to the wall 80 of
the container which is at rest. The expressions grad, A and div denote the

gradient, Laplacian and di\rc?ence operators, respectively (we also denote the
u
ot

3 , 3
(w.Vu); =Y gfi; u.Vp= Zu,-ﬁ. The first equation in (1.1) corresponds
i=1 Oz; - O;

to the balance of linear momentum; the third to the balance of mass, and the

gradient operator by V and by u.); the ith component of u.Vu is given by

second stokes that fluid is incompassible. The unknowns in the problem are u,p

and p.

The classical Navier-Stokes equations corresponds to the special case where
p(z,t) = po is a positive constant; in this case the third equation in (1.1) drops
out. This case has been much studied (see Ladyshenskaya [7] and Temam
(12] and the references there in). Equations (1.1) have been much less stud-
ied, maybe due to their mixed parabolic-hiperbolic character. Antonzev and
Kazhikov [1], Kazhikov [5], Simon [11] and Kim [6] have studied local and
global existence for weak solutions to (1.1). Stronger local or global solutions
were obtained by Ladyszhenskaya and Solonnikov (8] by linearization and fixed
point arguments, and by Okamoto (9] by using evolution operators techniques
and also fixed point arguments. The more constructive spectral semi-Galerkin
method was used by Salvi [10] to obtain local.strong solutions and to study
conditions for regularity at ¢ = 0 and by Boldrini and Rojas-Medar [2] also to

obtain local strong solutions and to study their regularity for ¢ > 0.

In this work we present results of global existence for strong solutions (see
section 2 for the exact definitions) under certain regularity assumptions on the
initial data and external force field (see section 3 for the details). In particular,
as in the case of the usual Navier-stokes equations, we will require smallness
of the L*(2) norm of the initial velocity and of the L*(f x (0, T))-norm of the
force field.

Our result can be compared with the ones by Ladyzhenskaya, Solonnikov
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and Okamoto as follows. In their results the initial velocity can be a little less
regular then in ours, but, by working with fractional powers of the Stokes op
erator applied to the multipliers that we used, one could weaken our regularity
requiriments. On the other hand, Ladyzhenskaya and Solonnikov require ex.
ponential decay in time of the (small) L%(§1)-norm (g > 3) the external force
field f; Okamoto works with f identically zero, and, in order to obtain the
result with nonzero force field, at least an exponential decay in time of the
L*(9))-norm of f would be required. We require a weaker form of decay in the
sense that we allow a (small) f belonging to L*([0,cc); L?(2)). Concerning the
conditions on the initial velocity, Okamoto requires small initial velocities in
the H%H(Q)-norm, e > 0, and initial densities po with small enough L[*((1)
norm of Vpo; Ladyzhenskaya and Solonnikov demand small initial velocities in
the Wz_%"(ﬂ)-norm, g > 3. In our result it is enough to require small initial

velocity in the H'(Q)-norm.

2. Preliminaries

In what follows we will assume 0 of class C®. We will consider the usual Sobolev

spaces

W™(D) = {f € L(D); |167|lz4p) < +oo,(la| < m)},

m=012..,1<g<o00,D="F%0Ro00x(0,T)o<T < +oo, with the
usual norm. When g = 2, we denote H™(D) = W™?(D) and H5*(D) = closure
of C(R) in H™(D). If B is a Banach-space, we denote by L([0,T), B) the
Banach space of the B-valued functions defined in the interval [0,T) that are
L%-integrable in the sense of Bochner.

Let C= () = {v = (v1,v3,v3) € CF(02)% div v = 0in O};V = closure of
C&, () in H}(N)?, and H = closure of Cg5(Q) in L*(Q)?

Let P be the orthogonal projection from L*(Q)® onto H obtained by the
usual Helmholtz decomposition. Then the operator A : H — H given by
A = —PA with domain D(A) = H*(Q)"NV is called the Stokes operator. It is
well known that A is a positive definite self-adjoint operator and is characterized
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by the relation
(Aw,v) = (Vw,Vv) forall we D(A),veV.

From now on, we denote the inner product in H (i.e., the L?-inner product) by
(,)- The LP-norm will be denoted by || ||z»(n).

The following assumptions on the initial data will hold throughout this pa-
per.

(A.1) The initial value for the density pp belongs to W'°(£1) and
satisfies 0 < & < po(z) < A < o0 aein Q.

(A.2) The initial value uq belongs to V N H*()
Now, using the properties of P, we can reformulate problem (1.1) as follows:
find p € W'(Q x (0,T)) and u € C([0,T), H) N C((0,T), D(A)) such that

%§ +u.Vp=10 forae(z,t) € Q x (0,T)
(pue, v) + (pu.Vu,v) + (Au,v) = (pf,v), 0<t< T, Yoe H (2.1)
w(0) = uo, p(0,2z) = po(z)

By using spectral semi-Galerkin approximations, Boldrini, Rojas-Medar [2]

proved the following local existence theorem:

Theorem 2.1. Suppose (A.1) and (A.2) are true and that f € L*(0,T, H'(Q2)),
fo€ L*(0,T,L*()). Then, there is 0 < Ty < T such that the problem (2.1) has

a unique solution in the interval [0, T}).

Remark.

(i) Actually the solution has a little better regularity. For instance, it is
proved that v € L*(0, Ty, H3(0)).

(ii) From the proof (2), one sees that

Ty = Ti(llwol | (n), llpollwi.(n)) increases as ||uol|m1(n) decreases.

In the next section we will prove that under more stringent conditions, the

above solution is global in time.
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3. Global Existence

We have the following result:

Theorem 3.1: Suppose that (A.1) and (A.2) are true and that
f € L ([0,00); H(R)) N L=([0, 00); L*(12)) 1 L7([0, 00), L*(€2)),

fo € LE.(0,00),L%(0)). Then, if |[uollmi(ay and ||fllr2nx(o) are small
enough, the solution described in Theorem 2.1 exists globally i time, that is, it

ezists for all t € IR and for any 0 < T < +oo it 15 in the required spaces.

Proof: We will combine arguments used by Kim [6] with a variant of argu-
ments used by Heywood and Rannacher [4].

We take @ip € V N H(Q), and will prove that for small enough A € (0, 1], the
solution (uy, px) to (2.1), with initial data (Mo, po) and external force Af, exists
globally in time. The crucial estimate will be the one for ||Vux(t)||z2(n); and to
obtain it, we proceed as follows: from the proof of the local existence theorem

(Theorem 2.1}, for any s in the interval of existence, we have the estimate

‘;““A(-’)Hb(n) + fu. | Vea(r)l[}aaydr < A? gllﬁﬁ“iz(n) + 8 /(; '|fl-*)|=2m_n-.d‘f_
(3.1)
(this was obtained by taking u, as a multiplier in (2.1) (11) with Af in place off
and A, in place of up).
Also, working as in Kim [8], (Proposition 2.4, p. 93), for ¢ in the interval of

existence of the solution, one obtains
d 10 q e
2 19()llzz(@) < ClIVue®)l [y + CA11F ()220 (3.2)

We will show by contradiction that for A small enough, the above two in-
equalities imply that ||Vua(t)|| is bounded for finite times.

In fact, suppose the opposite, that is, that for any A € (0,1] the function
¥a(t) = ||Vu,\(t)||f5-.m) blows-up in a finite time t*(A) (which, according to the
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Remark (ii) above, is necessarely larger than the 7; > 0 given in Theorem 2.1,
corresponding to the initial data (g, po)).
Now, we observe that c/§ +¢;A? < 2cy§ for yx > (¢1/¢)Y/*2%/8 = I(A), where
c¢1 = c sup ||f(¢)]|z2(n). Therefore, we have 0 < ¥x(t) < I(A) or d_; < 2cyl.
t€lo,Ty]

Now we consider the equation &, = 2¢#% and its solution ®,(t) that
blows-up exactly at ¢t"(A). We will prove that the graph of () stays bellow
the graph of ya(¢t) for t € Ay = {t € [0,¢7(X)),¥a(t) > [(A)}. In fact, take
a sequence £, > t*(A),n € IN, converging to t*(A), and consider the solutions
3. (t) to the problem ¢’ = 2c¢® that blows-up exactly at £,.. Since ¥a(t) = +o0
as t — t*(A)” and ; () are finite for such ¢, we have e (t) < ¥a(t) for
t < t*(A), close enough to ¢*(A). On the other hand, by using well known
results on differential inequalities, as well as the definitions of ¥a(t) and ¢y (¢),
we see that there cannot exist 7 € A, such that ¥A(T) = ¥3,(7), and, therefore,
®i.(t) < ¥a(t) for t € A, Since, for 0 < ¢ < t"(2), we have ¢; (t) — ®,(t) as
n goes to +oo, we finally conclude that &,(t) < y,(t) for t € A,.

Now, &,(t) = [8c(t*(A) — t)]/* and we observe that &,(¢) > I(A) for ¢
t1(A) = t*(2) — (8¢1*(2))™*, and for such that ¢t we necessarely have ¥a(t)
$,(t). Moreover, since {(A) — 0+ as A — 0+, for small enough A we have
[8el*(A)]™! > Ty, and we also know that ¢*()) grows as A — 0+. We conclude
that ¥1(t) > ®,(t) for ¢t > t*(A) — T; therefore,

v v

4T3/ () ()
—_— = dr < {. dr.
3(8c)1/4 ./:‘(.\)-Tl Bar)dr < /e'(a}—'n ¥a(r)dr

Now, if we take A satisfying

. 4Taf4
f[glrmuua L £ By < e

estimate (3.1) implies that

[nrsar < 2 [Qiwaline +8 [ 115 ineyt]

AT )
—_—<
< 3@ < /vm—n ¥a(r)dr,
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for 0 < s < t*(}), which by taking s — t*(A)” is a contradiction. There-
fore, for small enough A, ||Vus(t)l[z2(ny does not blow up in finite time and
Vuy € LE([0,00),L3(R)). Now, with this estimate, the proof of the lo-
cal existence Theorem will furnish that gy € L*([0,00), L=(2)), uy, Auy €
Lz ([0, 00), L3(12)) and Vuy, € L ([0, 00), L*(2)). These results imply that
palune +ua.Vuy— Af) € L2 ([0,00), L3(Q)) for some € > 0. Thus, the equiv-
alent form of (2.1) (ii):

Auy = P(pa(uae + ua.Vuy — Af))

and Cattabriga’s estimate for the Stokes operator, [3], will give that u, ¢
L1 _([0,00); W33+¢(£1)). Therefore, by Sobolev Imbedding we have Vu, €

1([0, 00); L=(R2)) which, by Ladyzhenskaya and Solonnikov estimates (8],
imply that V,, and py: € LZ.([0,00); L®(R)). Finally, from the above ar-
gument, we observe that how small A must be depends only on ||Vik||;:g)
(for fixed py and f), that is, if we have another initial condition %; such that
||Vl = ||VHy||, the above condition on A will be the same. In other words,

the result depends only on the H!-norm of the initial velocity.
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