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DOUBLY PERIODIC MINIMAL TORI WITH
PARALLEL ENDS
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Abstract

Let K be the space of properly embedded minimal tori in quotients of R3
by two independent translations, with any fixed (even) of parallel ends. After
an appropriate normalization, we prove that K is a 3-dimensional real analytic
manifold that reduces to finite coverings of the examples defined by Karcher,
Meeks and Rosenberg in [5, 6, 10]. The degenerate limits of surfaces in K
are the catenoid, the helicoid, the Riemann minimal examples and the simply
and doubly periodic Scherk minimal surfaces.

1 Introduction

In 1988, Karcher [5] defined a 1-parameter family of minimal tori in quotients of R?
by two independent translations. Each of these surfaces, called toroidal halfplane
layer and denoted in Section 3 by My, 6 € (0, %), has four parallel Scherk-type
ends, is invariant by reflection symmetries in three orthogonal planes and contains
four parallel straight lines through the ends, see Figure 2 left. Thanks to this richness
of symmetries, he gave explicitly the Weierstrass representation of these surfaces in
terms of elliptic functions on a 1-parameter family of rectangular tori. Inside a brief
remark in his paper and later in another work [6], Karcher exposed two distinct 1-
parameter deformations of each My, by losing some of their symmetries (denoted
by My a0, Mo in Section 3).

In 1989, Meeks and Rosenberg [10] developed a general theory for doubly periodic

minimal surfaces with finite topology in the quotient, and used a completely different
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approach to find again the examples Mpy s (before [13], it was not clear that Meeks
and Rosenberg’s examples were the same as Karcher’s). In fact, it is not difficult to
produce a 3-parameter family of examples Mp , s containing all the above examples,
see Section 3. We will refer to the surfaces My, g and their k-sheeted coverings,
k € N, as KMR examples.

Hauswirth and Traizet [2] proved that the moduli space of all properly embedded
doubly periodic minimal surfaces with a given fixed finite topology in the quotient
and parallel (resp. nonparallel) ends is a real analytic manifold of dimension 3 (resp.
1) around a nondegenerate surface, after identifying by translations, homotheties and
rotations. Since each My, 3 will be nondegenerate (see Section 3), we get a local
uniqueness around My, 5. Pérez, Rodriguez and Traizet obtain in [13] the following

global uniqueness result.

Theorem 1 If M is a properly embedded doubly periodic minimal surface with genus

one in the quotient and parallel ends, then M is a KMR example.

Theorem 1 does not hold if we remove the hypothesis on the ends to be parallel,
as demonstrate the 4-ended tori discovered by Hoffman, Karcher and Wei in [3]. Also
remark that any KMR example will admit an antiholomorphic involution without
fixed points, so Theorem 1 also classifies all doubly periodic minimal Klein bottles
with parallel ends.

In this paper, we are only going to sketch the proof of Theorem 1, which is
explained in detail in [13]. The proof of Theorem 1 is a modified application of
the machinery developed by Meeks, Pérez and Ros in their characterization of the
Riemann minimal examples [9].

For k € N fixed, one considers the space S of properly embedded doubly periodic
minimal surfaces of genus one in the quotient and 4k parallel ends. The goal is to
prove that S reduces to the space K of KMR examples. The argument is based
on modeling S as an analytic subset in a complex manifold W of finite dimension
(roughly, W consists of all admissible Weierstrass data for our problem). Then the

procedure has three steps:
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e Properness: We obtain uniform curvature estimates for a sequence of surfaces
in S constrained to certain natural normalizations in terms of the period vec-
tor at the ends and of the flux of these surfaces (this flux will be defined in

Section 4).

e Openness: Any surface in & — K can be minimally deformed by moving its
period at the ends and its flux. This step depends on the properness part
and both together imply, assuming S — K # @ (the proof of Theorem 1 is
by contradiction), that any period at the ends and flux can be achieved by

examples in S — K.

e Uniqueness around a boundary point of S: Only KMR examples can occur
nearby a certain minimal surface outside S but obtained as a smooth limit of
surfaces in S. This property together with the last sentence in the openness

point lead to the desired contradiction, thereby proving Theorem 1.

We consider the map C' that associates to each M € S two geometric invariants:
its period at the ends and its flux along a nontrivial homology class with vanishing
period vector, and prove that C|s_x is open and proper (recall we assumed S — K #
() by using curvature estimates as in the first step of the above procedure, together
with a local uniqueness argument similar to the third step, performed around any
singly periodic Scherk minimal surface considered as a point in S. We conclude
the third step in our strategy with a local uniqueness result around the catenoid,
also considered as a point of 0S.

The paper is organized as follows. In Section 2 we recall the necessary back-
ground to tackle our problem. Sections 3 and 4 are devoted to introduce briefly the
3-parameter family K of KMR examples, the complex manifold of admissible Weier-
strass data W, and natural mappings on W. In Section 5 we sketch how to obtain
the curvature estimates needed for the first point of our strategy. Sections 6 and 7
deal with the local uniqueness around the singly periodic Scherk minimal surfaces
and the catenoid, respectively. The second point of our above strategy (openness)

is the goal of Section 8, and finally Section 9 contains the proof of Theorem 1. We
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refer the interested reader to [13] for a detailed proof of the statements we are going

to use in order to obtain Theorem 1.

2 Preliminaries.

Let M C R® be a connected orientable! properly embedded minimal surface, in-
variant by a rank 2 lattice P generated by two linearly independent translations
T, T, (we will shorten by calling M a doubly periodic minimal surface). M induces
a properly embedded minimal surface M = M /P in the complete flat 3-manifold
R3/P = T x R, where T is a 2-dimensional torus. Reciprocally, if M C T x R is
a properly embedded nonflat minimal surface, then its lift M C R® is a connected
doubly periodic minimal surface by the Strong Halfspace Theorem [4]. Existence
and classification theorems in this setting are usually tackled by considering the quo-
tient surfaces in T x R. An important result by Meeks and Rosenberg [10] insures
that a properly embedded minimal surface M C T x R has finite topology if and
only if it has finite total curvature, and in this case M has an even number of ends,
each one asymptotic to a flat annulus (Scherk-type end). Later, Meeks [8] proved
that any properly embedded minimal surface in T X R has a finite number of ends,
so the finiteness of its total curvature is equivalent to the finiteness of its genus.

When normalized so that the lattice of periods P is horizontal, we distinguish
two types of ends, depending on whether the well defined third coordinate function
on M tends to oo (top end) or to —oo (bottom end) at the corresponding puncture.
By separation properties, there are an even number of top (resp. bottom) ends.
Because of embeddedness, top (resp. bottom) ends are always parallel each other.
If the top ends are not parallel to the bottom ends, then there exists an algebraic
obstruction on the period lattice, which must be commensurable as in the doubly
periodic Scherk minimal surfaces. If the top ends are parallel to the bottom ends,
then the cardinals of both families of ends coincide, therefore the total number of
ends of M is a multiple of four. See [10] for details.

We will focus on the parallel ends setting, where the simplest possible topology

From now on, all surfaces in the paper are supposed to be connected and orientable.
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is a finitely punctured torus (properly embedded minimal planar domains in T x R
must have nonparallel ends [10]; in fact Lazard-Holly and Meeks [7] proved that
the doubly periodic Scherk minimal surfaces are the unique possible examples with
genus zero). Theorem 1 gives a complete classification of all examples with genus
one and parallel ends, after appropriate normalization.

Given k£ € N, let S be the space of all properly embedded minimal tori in
R3/P = T x R with 4k horizontal Scherk-type ends, where P is a rank 2 lattice
generated by two independent translations (which depend on the surface), one of
them being in the direction of the z,-axis. Given M € S and an oriented closed
curve I' C M, we denote respectively by Pr and Fr the period and flux vectors
of M along I'. By the Divergence Theorem, Pr, Fr only depend on the homology
class of I" in M. The period and flux vectors H, F' at an end of M (i.e. the period
and flux along a small loop around the puncture with the inward pointing conormal
vector respect to the disk that contains the end) satisfy F = H A N,, where N
is the value of the Gauss map at the puncture. In our normalization, each of the
period vectors at the ends of M is of the form H = £(0,7a,0) with @ > 0. The
end is called a left end if F = (—ma,0,0), and a right end if F = (7a,0,0). As M is
embedded, each family of “sided” ends is naturally ordered by heights; in fact the
maximum principle at infinity [11] implies that consecutive left (resp. right) ends
are at positive distance. Furthermore, their limit normal vectors are opposite by a
trivial separation argument.

We will denote by M C R3 the doubly periodic minimal surface obtained by
lifting M. Since points in M homologous by P have the same normal vector, the
stereographically projected Gauss map g : M—-T=CU {oo} descends to M. As
M has finite total curvature, g extends meromorphically to the conformal torus M
obtained after attaching the ends to M, with values 0,00 at the punctures. As P
is nonhorizontal, the third coordinate function x3 of M is multivalued on M but
the height differential dh = %Ljdz defines a univalent meromorphic differential on
M (here z is a holomorphic coordinate). Since M has finite total curvature and
horizontal ends, dh extends to a holomorphic differential on M. The next statement

collects some elementary properties of the surfaces in S. Given v € P — {0}, M Jv



104 M. RODRIGUEZ

will stand for the singly periodic minimal surface obtained as the quotient of M by

the translation of vector v; and II C R? will be a horizontal plane.
Proposition 1 Given M € S with Gauss map g, it holds:

1. g : M — C has degree 2k, total branching number 4k, does not take vertical

directions on M and is unbranched at the ends.

2. The period lattice P of M s generated by the period vectors at the ends, H =
+(0,7a,0) with a > 0, and a nonhorizontal vector T € R3, this last one
being the period vector along a closed curve 3 C M such that [y1] # 0 in the
homology group Hy(M, Z).

3. Let € be the set of Scherk-type ends of M/H. Then (M/H) UE is conformally
C* = C — {0}, and the height differential writes as dh = ¢ in C*, with
ce R*=R—{0}.

4. IfII/H is not asymptotic to an end in &, then (Mﬂ I)/H is transversal and
connected. The period vector along (M NTI)/H either vanishes or equals +H.

5. We divide € in right ends and left ends, depending on whether the flux vector at
the corresponding end (with the inward pointing conormal vector) is (a, 0, 0) or
(—a,0,0), respectively. If 11/ H is asymptotic to an end in €, then (M NII)/H
consists of one properly embedded arc whose ends diverge to the same end in
&, or of two properly embedded arcs traveling from one left end to one right

end in E.

6. There exists an embedded closed curve vo C M such that {[11], [2]} is basis of
H\(M,Z) and P,, = 0. Up to orientation, Yo represents the unique nontriv-
ial homology class in Hy(M,Z) with associated period zero and an embedded

representative.

7. Let [y] € H\(M,Z) be a homology class with an embedded representative that
generates the homology group of (M/H) UE&. Then the second and third com-
ponents (F, )2, (Fy)s of the fluz of M along any representative v € [y] do not
depend on [y] (up to orientation), and (F,)s # 0.
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Next we describe all possible limits of surfaces in S with the additional assump-
tion of having uniform curvature bounds. For alln € N, let M,, € S and Mn denotes
its lift to R®. This is, M, = Mn /P, where P, = Span{H,,, T,,} satisfies statement
2 of Proposition 1 for M,,. We will denote by Ky the Gaussian curvature function

of any surface 3.

Proposition 2 Let {Mn}n be a sequence in the above conditions. Suppose that for
all n, M, passes through the origin of R® and |K]\7n(6)| =1 is a mazimum value of
|K57. | Then (after passing to a subsequence), M, converges uniformly on compact
subsets of R® with multiplicity 1 to a properly embedded minimal surface M., in one

of the following cases:

(i) M is a vertical catenoid with fluz (0,0,27). In this case, both {H,}n, {Th}tn
are unbounded for any choice of T,, as above.

(i) My, is a vertical helicoid with period vector (0,0,2wm) for some m € N.
Now {H,}, is unbounded and there exists a choice of T, for which {T,}, —

(0,0,27m) as n — oco.

(i1i) My, is a Riemann minimal example with horizontal ends. Moreover, {H\}n is

unbounded and certain choice of {T,}, converges to the period vector of MOO.

(iv) ]V[;o 18 a singly periodic Scherk minimal surface, two of whose ends are hori-
zontal. Furthermore, any choice of {T,,}, is unbounded, {H,}, converges to
the period vector Hy, = (0, a,0) of M (with a > 0), and J/\\/IJOO/HOO has genus

Zero.

(v) ]Tfoo is a doubly periodic Scherk minimal surface. In this case, {H,} n, {Tn}n
converge respectively to period vectors Heo, Ty of MM, and M;o/{Hm,Tm}
has genus zero with at least two horizontal ends and exactly two nonhorizontal

ends.

(vi) ]\700 1s a doubly periodic minimal surface invariant by a rank 2 lattice P,
My = Moo /Poo has genus one and 4k horizontal Scherk-type ends, and {H,}, —
Heo, {T }n — T, where Hy, Ty, are defined by Proposition 1 applied to M.
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From now on, we will consider one more normalization on the surfaces in S:
Given M € S, Proposition 1 gives a nontrivial homology class in H; (M, Z) with an
embedded representative 7, C M such that P, = 0 and (F,,)s > 0. In the sequel,
we will always normalize our surfaces so that (F,,); = 27, which can be achieved
after an homothety. Note that this normalization is independent of the homology
class of v, in Hy(M,Z) (up to orientation), see item 7 of Proposition 1.

We label by S the set of marked surfaces (M, D1, .. P, Qs - - - Qons [Y2]) Where

1. M is a surface in & whose period lattice is generated by H,T € R?, where
H = (0,a,0)7 T = (Tl,TQ,Tg) and a, T3 > 0;

2. 4{p1,- -, 0} = g7 H0), {q1, - ., g} = g7 (00) and the ordered lists (p1, ¢, - - -
s Dk Gk)s (Dht1s Gt 1s - - - » Dok, @ox) are the two families of “sided” ends of M,

both ordered by increasing heights in the quotient;

3. [] € Hi(M,Z) is the homology class of an embedded closed curve vo C M
satisfying P,, = 0, (F,,)s = 2r. We additionally impose that 7, lifts to a curve
contained in a fundamental domain of the doubly periodic lifting of M lying

between two horizontal planes II, I1+ 7.

We will identify in S two marked surfaces that differ by a translation that preserves
both orientation, the “sided” ordering of their lists of ends and the associated ho-
mology classes. The same geometric surface in S can be viewed as a finite number
of different marked surfaces in S. We will simply denote as M € S the marked
surfaces unless it leads to confusion.

Consider M € S with Gauss map ¢ and height differential dh. An elementary

calculation gives the periods P, P, and fluxes F),;, I, at the ends of M as follows:
, dh . ‘ ,
£ S, = WResp]? (i,—1,0), P, +iF,; = —mResy,(gdh)(i,1,0),

where Ress denotes the residue of the corresponding meromorphic differential at
a point A. The fact that P,
Res,, (g dh) € R. By definition of the ordering of the ends of M as a marked surface,

P, point to the xp-axis translates into Resp]%,

57
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we have that
dh j
Respj? = —Res,,(gdh) = { ¢ ( =d =3 (1)

for certain a € R* (the case a > 0 corresponds to pi, ..., Dk, q1,- -, Qe being right
ends of M). Recall that P,, = 0 and (F,,)s = 2r. Thus,

/ i =/ gdh  and /dthm’. (2)
72 g Y2 72

3 KMR examples.

We dedicate this Section to introduce briefly the 3-parameter family of KMR ex-
amples L C S to which the uniqueness Theorem 1 applies. A more detailed study
of K can be found in [14]. The analysis of the space of KMR examples K with
4k parallel ends can be obviously reduced to the case k = 1 by taking k-sheeted
coverings. So assume from now on that k = 1; this is, K = {Myps}ea,s Each
My o is determined by the 4 branch values of its Gauss map, which consist of two
pairs of antipodal points D, D', D" = —D, D" = —D’ in the sphere S2. Since the
Gauss map of any surface in § is unbranched at the ends, D, D', D", D" must be
different from the North and South Poles. Let us introduce some notation in order

to understand who are 0, o, 3:
1. e denotes the equator in S? that contains D, D', D", D";
2. a € [0, 3] is the angle between e and the equator S* N {z; = 0};

3. P € §? is the point that bisects the angle § € (0, %) between D and D', and it
also corresponds to the image of the North Pole through the composition of a
rotation by angle 3 € [0, 5], (a, 5) # (0,6), around the ;-axis with a rotation

by angle av around the x,-axis, see Figure 1 left.

We will call a spherical configuration to any set {D, D', D" D"} as above. The

spherical configuration associated to (6, 0,0) projects stereographically into the four
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Figure 1: Left: Spherical configuration of My, 3. Right: Behavior of the pole
A(a, 8) of g in the dark shaded rectangle R (here, 0 < 3, <0 < 2 < 5, a € (0,%)
and 3 € [0, 7]). The remaining ends of My, 3 move in the light shaded rectangles
as a, 3 vary.

roots of the polynomial (22+X?)(22+ 55 ) where A = A(f) = cot §. Therefore, the un-
derlying conformal compactification of the potential surface My o is the rectangular
torus ¥y = {(z7 w) €T | w? = (22 + \)(22 + %)}, and its extended Gauss map is
the 2-projection (z,w) € ¥ — z € C on X,. Note that the spherical configuration
for angles (6, o, 3) differs from the one associated to (6,0,0) in a Mdbius transfor-
mation ¢. Thus the compactification of any My, g, which is the branched covering
of §? through the z-map, is ¥y as well. Furthermore, the composition of the Gauss
map of My oo with ¢ gives the Gauss map g of the potential example Mp . 3, and its
ends are {A, A", A", A"} = g7'({0,00}). As the height differential dh of My, s is a
holomorphic 1-form on Xy, we have dh = % for certain p = pu(6) € C*. We choose
ue R*.

3y can be represented as a quotient of the £-plane C by two orthogonal transla-
tions. In this &-plane model of ¥y we may see the ends A, A', A” ) A" as functions of
(o, 3) € [0,5]*—{(0,6)}. A(ex, 3) moves on the dark shaded rectangle R in Figure 1
right. The behavior of the remaining three ends of My, g on the &-plane model can
be deduced from A(a, ﬁ)Z by using the isometry group Iso(f, a, ) of the induced

metric ds® = 1 (|g| + I?l\) |dh|?, which we now investigate.

First note that the identity in S? lifts via g to two different isometries of ds?

namely the identity in Xy and the deck transformation D(z,w) = (z,—w), both
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restricted to ¥y — g71({0,00}). D corresponds in the &-plane to the 180°-rotation
about any of the branch points of the z-projection. The antipodal map X on S? also
leaves invariant both the spherical configuration of M, s and the set {(0,0,=£1)},
and the equality [w (2)]* = 2EL for any (2,w) € % implies that R lifts through
g to two isometries of ds?, which we call £ and F = Do £. Both £, F are anti-
holomorphic involutions of ¥y without fixed points. The remaining ends of My s,

in terms of A = A(a, ) are (up to relabeling)
A" =D(A), A" =E(A), A =D(A"). (3)
The period P4 and flux Fy of My, 5 at the end A with g(A) = co are given by
Py =mu(i E(9,q,8),0), Fa=mu(E(6, o, B),0), (4)

where we have used the identification R* = C x R by (a,b,¢) = (a + ib, ¢), and
E(0,a, 8) = [cos? a+ csc? §(sin acos 3 — i sin 3)2] 72 (we have chosen a branch of w
for computing (4), which only affects the result up to sign). The periods and fluxes
at A’; A”, A" can be easily obtained using (3) and (4).

Concerning the period problem in homology, let 71, v be the simple closed curves
in X4 obtained respectively as quotients of the horizontal and vertical lines in the &-
plane passing through D, D" and through the right vertical edge of OR (see Figure 1
right). Clearly {[n], [2]} is a basis of H(3Zp,Z). Straightforward computations give
us

F,=-Fy and P,=0.
Since P,, = 6, we can take v2 as the embedded closed curve appearing in item 6
of Proposition 1. As dh is holomorphic and nontrivial on ¥y, P,, = 0 also implies
that fw dh € iR*, from where P,, has nonvanishing third component. In particular,
Py and P, are linearly independent. Therefore, My, s is a complete immersed
doubly periodic minimal torus with four horizontal embedded Scherk-type ends and

period lattice generated by P4, P,,. Moreover, the maximum principle allows us

o
to prove that My is in fact embedded, since for fixed ¢ the heights of the ends
of My depend continuously on («,3) in the connected set [0, 3]*> — {(0,6)} and

My, is embedded (it is the toroidal halfplane layer defined by Karcher in [5], that
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decomposes in 16 congruent disjoint pieces, each one being the conjugate surface of

certain Jenkins-Serrin graph).

Remark 1 In order to see My p in S, we must possibly rotate it by a suitable angle
around the xs-axis, sincePs does not necessarily point to the x2-axis, and rescale to

have fw dh = 2mi (this last equation allows us to obtain the precise value of ).

We have defined the 3-parametric family of examples K = {M,,5} C S, with
(0,a,3) varying in T = {(0,a,0) € (0,3) % [0,5]* | (o, B) # (0,0)}. Clearly this
definition can be extended to larger ranges in (6, @, 3), but such an extension only
produces symmetric images of these surfaces with respect to certain planes orthog-
onal to the x1, 25 or x3-axes. Nevertheless, some of these geometrically equivalent
surfaces are considered as distinct points in the space S defined in Section 2.

The next Lemma states that C is self-conjugate, in the sense that the conjugate

surface of a KMR example is another KMR, example.

Lemma 1 Given (0, «, 3) € Z, the conjugate surface My, 5 of My p coincides with
Mz _g0,z—p up to a symmetry in a plane orthogonal to the xo-axis (after normaliza-

tions).

Looking at its spherical configuration, we realize that My z 5 does not depend on
B € [0,5]. Thus My, is self-conjugate when (6,c,8) € ({3} x (0,3] x {5}) U
({23 x {5} x [0, 5)).

As the branch values of the Gauss map of any My, g lie on a spherical equator,
a result by Montiel and Ros [12] insures that the space of bounded Jacobi functions
on My, g is 3-dimensional (they reduce to the linear functions of the Gauss map),
a condition usually referred in literature as the nondegeneracy of My, 3. This non-
degeneracy can be interpreted by means of an Implicit Function Theorem argument
to obtain that around Mp, g, the space S is a 3-dimensional real analytic manifold
(Hauswirth and Traizet [2]); in particular, the only elements in S around a KMR
example are themselves KMR. This local uniqueness result will be extended in the

large by Theorem 1 in this paper.
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Figure 2: Left: The toroidal halfplane layer Mz o0. Right: The surface Mz o z.

We finish this section by summarizing some additional properties of the KMR
examples, that can be checked using their Weierstrass representation. For details,
see [14].

Proposition 3

1. For any 6 € (0, g), My oo admits 3 reflection symmetries S1,S2, Ss in orthog-
onal planes and contains a straight line parallel to the xi-azis, that induces a
180°-rotation symmetry Rp. The isometry group Iso(6,0,0) of My is iso-
morphic to (Z/2Z)*, with generators S, S, Ss, Rp (see Figure 2 left).

2. For any (0,«) € (O,g)2, Mp oo is invariant by a reflection S, in a plane
orthogonal to the xs-axis and by a 180°-rotation Re around a line parallel to
the xa-azis that cuts the surface orthogonally (Figure 3 left). Iso(f,a,0) =
Span{Sy, Ry, D} = (Z/27)%. Furthermore, Iso(0, Z,0) = Iso(0,0,0) (Figure 3

R
right).

8. For any (0,53) € (0,%)> — {(6,6)}, Moop is invariant by a reflection Sy in
a plane orthogonal to the x1-axis, by a 180°-rotation symmetry Rp around a
straight line parallel to the xq-axis contained in the surface, and by a 180°-
rotation Ry around another line parallel to the xi-axis that cuts the surface
orthogonally. Tso(0,0,3) = Span{Si, Rp, R1} = (Z/2Z) (Figure 2 right).

Furthermore, Iso(6,0, 5) =Iso(6,0,0).

4. For any (0,0) € (0,%)?, Moo,z is invariant by a 180°-rotation Ss around a
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Figure 3: Left: The surface Mz z 9. Right: The surface Mz z 0.

straight line parallel to the xq-axis contained in the surface, and by the com-
position Rs of a reflexion symmetry across a plane orthogonal to the x2-axis
with a translation by half a horizontal period. In this case, Iso(f, o, §) =
Span{Ss, R3,D} = (Z/2Z)3.

For any (6,a, 8) € (0,%)?, Iso(0, o, §)) = Span{D,E} = (Z/2Z)>.

When (0, o, B) — (0,0,0), My 5 converges smoothly to two vertical catenoids,
both with fluz (0,0,2m).

Let 0y € (0,%). When (0,a, ) — (60,0,60), Mgqp converges to a Riemann
minimal example with two horizontal ends, vertical part of its flux 2w and

branch values of its Gauss map at 0, 00,7 tan gy, —icot fy € C.

When (0, a, ) — (5,0,%), Mp,ap converges (after blowing up) to two vertical

helicoids.

Let (ao, fo) € [6,5)* — {(0,0)}. When (0,0, 3) — (0, a0, Bo), Mp,a0 converges
to two singly periodic Scherk minimal surfaces, each one with two horizontal

ends and two ends forming angle arccos(cos ag cos By) with the horizontal.

Let (Oéoﬁo) € [Ga %]2 - {(07 %)} When (9a Ot,ﬁ) - (%7 aO,ﬁO); MG,Q,O converges
(after blowing up) to two doubly periodic Scherk minimal surfaces, each one
with two horizontal ends and two ends forming angle arccos(cos ag sin Go) with

the horizontal.
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4 The moduli space VW of Weierstrass representa-

tions.

We will call W to the space of lists (M, g,p1, ..., Dok, q1, - - -, Gor, [7]), where g : M —
C is a meromorphic degree 2k function defined on a torus M, which is unbranched at
its zeros {pi, ..., pax} and poles {qi, ..., o}, and [y] is a homology class in g=1(C*)
with [7] # 0 in H;(M, Z). Note that there is an infinite subset of W associated to
the same map g, which is discrete with the topology defined in [13]. We will simply
denote by g the elements of W, which will be referred to as marked meromorphic
maps.

A local chart for W around any g € W can be obtained by the list (01(g),.. .,
o4(g)), where o;(g) is the value of the symmetric elementary polynomial of degree
i on the unordered list of 4k (not necessarily distinct) branch values of g, 1 < i <
4k. These symmetric elementary polynomials can be considered as globally defined
holomorphic functions ¢; : W — C, 1 < ¢ < 4k. Also, the map (o4,...,04) : W —
C* is a local diffeomorphism, hence W can be seen as an open submanifold of C**.

Given a marked meromorphic map g = (M, g,p1, ..., Pk, G1s - - -5 Qoxs [Y]) € W,
there exists a unique holomorphic 1-form ¢ = ¢(g) on M such that fw ¢ = 2mi. The
pair (g, ¢) must be seen as the Weierstrass data of a potential surface in the setting
of Theorem 1. We will say that g € W closes periods when there exists a € R* such
that (1) and the first equation in (2) hold with dh = ¢ and v, = 7.

Lemma 2 If g € W closes periods, then (g, ) is the Weierstrass data of a prop-
erly immersed minimal surface M C T x R for a certain flat torus T, with to-
tal curvature 8km and 4k horizontal Scherk-type ends. Furthermore, the flures
at the ends pi,qi, ..., P, Qe are equal to (ma,0,0) and opposite to the fluzes at

Dhi1s ety - - - » P2k, Qor (here a € R* comes from equation (1)).

As the sum of the residues of a meromorphic differential on a compact Riemann
surface equals zero, then it suffices to impose (1) for 1 < j < 2k — 1. Provided that
the first equation in (2) also holds for g with 72 = =, the horizontal component of

the flux of the corresponding immersed minimal surface M in Lemma 2 along v is
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given by
F(ﬂy):i/quE(CE]R?
%+

Definition 1 We define the ligature map L : W — C* as the holomorphic map

that associates to each marked meromorphic map g € W the 4k-tuple

_ g ? s ¢
L(g) - (R’esplg7" = 7Resp2k—lg7Resql(g¢)7" '7Resq2k'l(g¢)7\//g7/yg¢> .

We consider the subset of marked meromorphic maps that close periods M =
Uqez- M(a, b), where for any @ € R* and b € C, M(a,b) ={g € W | L(9) = L)}

beC
and

7 k
L(a’b):(0@...,a7—a7...,—0L7—a,...,—a7 a,...7a,b,b) € C*.

1<j<k  k+1<j<2k—1  2k<j<3k—1 3k<j<4k—2

The holomorphicity of L leads easily to the following result.
Proposition 4 M(a,b) is an analytic subvariety? of W.

Moreover, if we consider M with the restricted topology from the one of W, then

the canonical injection J : S — M defined below is an embedding,

(Mvpla s D2k 41y - -5 G2k [’YZD = J(A[) — (971(@),971717' < P2y qy - -5 G2k, [72])7

with g being the Gauss map of M. Thus we can seen S as a subset of M, which can
be shown to be open and closed in M. As a simultaneously open and closed subset
of an analytic subvariety is also an analytic subvariety, we conclude that S NM(a,b)
is an analytic subvariety of W.

The following lemma exhibits a property of W inherited from C through the

symmetric polynomials o;(g) defined above.
Lemma 3 The only compact analytic subvarieties of W are finite subsets.

Definition 2 The value of the ligature map L at a marked surface M € S is
determined by two numbers a € R*,b € C so that Resm% = a and F,, = (ib,2m).
We define the classifying map C : S — R* x C by C(M) = (a,b).

2Recall that a subset V of a complex manifold N is said to be an analytic subvariety if for
any p € N there exists a neighborhood U of p in IV and a finite number of holomorphic functions

fi,-osfronUsuch that UNV ={qeU | fi(g) =0, 1 <i<r}.
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Remark 2 Let M € S be a geometric surface, seen as two marked surfaces My, My €
S with associated homology classes [y2(M,)], [y2(Ms)] € Hy (M, Z) such that [yo(M;)] =
[v2(Ms)] in H{ (M, Z) (here M is the compactification of M ). Then, ~vo( M) U~ya(Ms)
bounds an even number of ends whose periods add up to zero, and the components
of C at My, My satisfy a(M,) = ta(My) € R* and b(M;) = b(My) + twa(M;) with

t € Z even.

5 Properness.

The following result is a crucial curvature estimate in terms of the classifying map
C.

Proposition 5 Let {M,}, C S be a sequence of marked surfaces. Suppose that
C(M,) = (an,b,) € R* x C satisfies

(1) {an}n is bounded away from zero.
(11) {|bnl}n is bounded by above.

Then, the sequence of Gaussian curvatures {Kyy, }, is uniformly bounded.

Sketch of the proof. By contradiction, assume that A, := maxy, \/|Ky,| — oo
as n — oo. Let ¥, = \,M, C R3*/\,P,, where P, = Span{H,,T,,} is the rank
2 lattice associated to M, and H, is the period vector at the ends of M, (up to
sign). Let us also call in to the lifting of ¥, to R3. After translation of f)n to
have maximum absolute Gauss curvature one at the origin, a subsequence of {in}n
converges smoothly to a properly embedded minimal surface H; C R*, which must
lie in one of the six possibilities in Proposition 2. Since a,, is bounded away from
zero and )\, — oo, then both the period vector A\, H, at the ends of ¥, and the
vertical part of the flux of 3, along a compact horizontal section, which is 27\,
diverge. Then H; must be a vertical helicoid with period vector T' = lim A, T, =
(0,0, 27m) for certain m € N. We can also produce a second helicoid H» as a limit
of suitable translations of the EN),L, and we additionally prove that outside these two

partial limits, no other interesting geometry can appear as limits of the ¥,,. Since
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both Hi,H, are limits of translations of the in, the period vector of H, is again
T =1lim A\, T,.

Next we construct an embedded closed curve I', C M, joining the two form-
ing helicoids. Let m, : R¥*/\,P, — {x3 = 0}/\,P, be the linear projection in
the direction of T,, and consider two disjoint round disks Dy (n), Da(n) C {z3 =
0}/ AP, C R3/\,P,, with common radius 7, such that the annular component
Hi(n) = T, N7, (Di(n)) is arbitrarily close to a translated copy of the forming heli-
coid H;/T minus neighborhoods of its ends, i = 1,2. After passing to a subsequence,

we can also choose r,, so that
1. r, —ooand = — 0 asn — oo.
n

2. The normal direction to ¥, along the helix-type curves in the boundary of

H;(n) makes an angle less than % with the vertical, ¢+ = 1, 2.

With these choices the extended Gauss map applies ¥, — (H;(n) U Ha(n)) in the
spherical disks centered at the North and South Poles of S? with radius % Let
Fi(n), Fo(n) be the two components of ¥, — (Hi(n) U Ha(n)). Each Fi(n) is
a closed annuli with & left and & right ends of ¥,. Coming back to the origi-
nal scale, we consider a embedded closed curve I', C M, formed by four con-
secutive arcs Li(n)~! % Bi(n) x Ly(n) x Bo(n) as follows: Ly(n), Ly(n) are liftings
of the distance minimizing horizontal segment L(n) from 5-0D;(n) to 3-9Ds(n),
lying in consecutive sheets by the covering f, obtained by projecting in the di-
rection of T,,, fn : 3=[F1(n) U Fa(n)] — W — 5=[D1(n) UDy(n)]; and each
Bi(n) C 3="Hi(n) joins Ly (n) with Ly(n), see Figure 4.

Let g, be the complex Gauss map of M,. Since I', is embedded, not triv-
ial in H,(g;%(C),Z) and has period zero, Proposition 1 implies that T, can be
oriented so that [[',] = [y2(n)] in Hy(g;*(C),Z), where [y2(n)] is the last compo-
nent of the marked surface M, € S (recall that C(M,) = (an, b,), where Foomy =
(F(y2(n)), 2m) = (ib,, 27)). By Remark 2, there exits an even t(n) € Z so that

F(T,) = b, + t(n)may,. (5)
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Figure 4: Front and top views of two helicoids forming with the direction of L(n)
tending to the direction of the zy-axis.

Since both T, 72(n) can be chosen in the same fundamental domain of the doubly
periodic lifting M, of M, lying between two horizontal planes II, [I+7,,, the embed-
dedness of both curves insures that {t(n)}, is bounded. Passing to a subsequence,
we can suppose that ¢ = t(n) does not depend on n. By item 7 of Proposition 1,
(Fr,)s = (Fym))s = 2m. This property implies that the lengths of Li(n), La(n)
diverge to oo as n — oo, so F(I',) — oo. As b, is bounded, then equation (5) says
that both %, ﬂT‘lZ” converge to the same limit €?, § € [0, 27), from where ¢ # 0
and a,, — oco. Since a, € R*, we also have § = 0 or 7. In particular, the direction
of the segment L(n) tends to the direction of the z,-axis.

Now consider another embedded closed curve I'' C M, constructed similarly
as [, ie. T7 = Li(n)™t * Bf(n) * Li(n) * B;(n) where Li(n), L3(n) are liftings in
consecutive sheets of the length minimizing horizontal segment L*(n) from 5-0D5(n)
to +-0D1(n) + H,, and each 3} (n) C {=H(n) joins Lj(n) with L3(n), i = 1,2. We
orient T} in such a way that T',, T} share their orientations along (;(n) N 57 (n).
Thus [I,] = —[T¥] in H,(g;'(C),Z). As above, we have that after passing to a

subsequence, F(I'}) = —ib,, + t*7a, for certain nonzero even integer t*.

Reasoning geometrically with fluxes, it is not difficult to check that lim E{Cn)+F(Ls)

= £2 and that ¢,t* have the same sign. But then

Tan

FT,)+ F(T) _ —2ib,, + (t + t*)may,
TAp Tan

+2 = lim =t

which contradicts that both ¢,¢* are nonzero even integers with the same sign.
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Remark 3 The KMR examples Mooz with 6 /5 contain two helicoids forming
with axes joined horizontally by a line parallel to the period vector at the ends, so
their curvatures to blow-up. This says us that we cannot remove the hypothesis (it)

m Proposition 5.

6 Uniqueness around the singly periodic Scherk

surfaces.

In this Section we will prove that if {M,}, C S degenerates in a singly periodic
Scherk minimal surface (case (iv) of Proposition 2), then L(M,) tends to a tuple
in C*. In particular, the classifying map C : S — R* x C cannot be proper. In
order to overcome this lack of properness, we will prove that only KMR examples
can occur in & nearby the singly periodic Scherk limit. This will be essential when
proving that the restriction of C' to S — K is proper (Theorem 5).

A deep analysis of the possible limits given by Proposition 2 for a sequence
{M,}, C S with certain constraints of the values of C(M,) gives the following

result.

Proposition 6 Let {M,}, C S be a sequence with {C(M,)}» — (a,b) € R* x C,
{H,}» — Hyx = (0,7a,0) and {T,,}, — oo (for any choice of T, as in Propo-
sition 2). Then, for n large, the geometric surface M, is close to 2k translated
images of arbitrarily large compact regions of a singly periodic Scherk minimal
surface of genus zero with two horizontal ends, together with 2k annular regions
C,(1),...,C,(2k) each one containing two distinct simple branch points of the Gauss
map of M,. Moreover, there exists a nonhorizontal plane II C R® such that any an-
nulus Cn(7) is a graph over the intersection of 11/ H,, with a certain horizontal slab,
T =1 2k

Let S, be the singly periodic Scherk minimal surface that appears as a limit in
Proposition 6, p € (0,1]. Since the period vector Hy of S, points to the zo-axis,

the values of its Gauss map at the ends are 0, 0o, p, —%, so we can parametrize S,
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by the Weierstrass data
dz — 1
g9(z) =z, dh:cm, zG(Cf{O,oo,p,f;}, (6)
where ¢ € R* is determined by the equation 27i = [. ¢, I being the horizontal level
section of S, at large positive height.

Next we give a local chart for W around S,. Let D(*,&) C C be a small
disk of radius € > 0 centered at x = p, —%. Given k unordered couples of points
a9i_1,b9i_1 € D(p,e) with ag;_1 # by;_1 and another k couples ag;, by; € D(—%,s)
with ag; # by;, 1 <1 < k, the usual cut-and-paste process gives us a torus M obtained
by gluing 2k copies Cy,C, . .., Cyy of C. Let g be the 2k-degree meromorphic map
defined on M which corresponds to the natural z-map on each copy of C. Note
that the brach values of such a g are the a;,b;. We denote by 0; and oo; the
zero and pole of g in the copy C; of C and by [y] the nontrivial homology class in
H; (M —{0;, 00,};,Z) associated to the circle {|z| = 1} in C, with the anticlockwise

orientation. Thus we can define a map
(al, bl, v s ay Qaky bgk) =g = (M,g, 017 ey 0%, O 5 4 5w 5 ODQBRy [’)/D cew (7)

which is not injective (one can exchange a; by b; obtaining the same ¢). Therefore
we consider the arithmetic and geometric means of the couples a;, b;
1
X; = 5(@2 + bz), U=y albl

Note that (z;,y;) lies in a neighborhood of (p, p) or (—%, %), and that a; # b, if and
)

only if 22 # y2. Given ¢ > 0, we label U(e) = [D(p7 e) x D(p,e) x D(=},€) x D(5,¢)

and A = {(x1, 91, -, Tok, Yor) | 22 = y? for some ¢ = 1...,2k}. Clearly A is an

analytic subvariety of C*. It can be shown that for € > 0 small, the correspondence

z= (xlayla' "7m2k7y2k) Gu(€>*./4 }& 9= (M’g7017" 'a02k70017~ ey OO2p, h/D ew

defines a local chart for W.

Remark 4

(i) If a marked meromorphic map g = N(z) produces a marked surface M, then

the ordered list (01,...,0g,001,...,000) does not necessarily coincide with



120 M. RODRIGUEZ

the ordering on the ends of M € g, but this different notation will not affect

to the arguments that follow.

(ii) Let {M,}, C S be a sequence in the hypothesis of Proposition 6. Then
{M,}, converges uniformly to a singly periodic Scherk minimal surface S,
parametrized as in (6) for certain p € (0,1]. After exchanging the homol-
ogy class of the marked surface M, by [[',] € H\(M,,Z), we can see the
same geometric surface M, as a new marked surface M, inside the domain
of the chart R for n large enough. Also note that if C(M,) = (an,bn), then

C(M)) = (an, b, +t,ma,) for some even integer t,.

When z € A, the continuous extension of the above cut-and-paste process gives
a Riemann surface with nodes, each node occurring between copies C;_1, C; where
a; = b;, consisting of [ spheres S; joined by node points P;,Q; € S; (here Q; =
P, and the subindexes are cyclic). Moreover, g degenerates in ! nonconstant
meromorphic maps g(i) : S; — C such that >, deg(g(i)) = 2k and g(i)({P;, Q;}) C
{p, —%}, and ¢ degenerates in the ! unique meromorphic differentials ¢(i) on S;,
such that ¢(i) has exactly two simple poles at P;, Q; with residues 1 at P; and —1
at Q; (these residues are determined by the equation f\z|:1¢ = 2mi). Both g and
¢ depend holomorphically on all parameters (including at points of .4). Using this
fact and that U () NA is an analytic subvariety of U(e), we can prove that L extends
holomorphically to U(e). Finally, after direct computations, the Inverse Function

Theorem insures that L is a biholomorphism in a neighborhood of (p, p, ’71, %)k €
G-,

Theorem 2 There exists € > 0 small such that the ligature map L extends holo-
morphically to U(e), and L :U(e) — L(U(e)) is a biholomorphism.
7 Uniqueness around the catenoid.

When a sequence {M,}, € S degenerates in a vertical catenoid (case (i) of Propo-

sition 2), the residues in the ligature map L diverge to co. In this Section we will
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modify L to have a well defined locally invertible extension through this boundary
point of W.
Similar arguments as the ones before Proposition 6 lead us to the following

statement.

Proposition 7 Let {M,}, C S be a sequence with {C(M,) = (ay,b,)}n — (00,0).
Then for n large, the geometric surface M, is close to 2k translated images of ar-
bitrarily large compact regions of a catenoid with flur (0,0,2x), together with 2k
regions C,(1),...,C,(2k). Each C,(j) is a twice punctured annulus with one left
end, one right end of M,, and two distinct simple branch points of its Gauss map.

Furthermore, C,,(j) s a graph over its horizontal projection on {xs = 0}/H,,.

Following the line of arguments in Section 6, we next show a local chart for
W around the catenoid obtained as boundary point in Proposition 7. Given i =
1,...,k, choose two distinct points ag;_1,b9;_1 (resp. as;,by;) in a small punctured
neighborhood of 0 (resp. of o) in C. These unordered couples produce a marked
surface g € W as in (7), by using a cut-and-paste construction. Since the roles of a;
and b; are symmetric, their elementary symmetric functions are right parameters in

this setting. We consider for each 1 < j < 2k

L B E )
r;=5(a; +b;), y; =a;b; if jis odd;
1(1 1 — L afd
m=slate): =z if j is even.

Note that all parameters z;,y; are close to 0, and that the conditions on a;, b;

translate into y; # 27 and y; # 0. Given € > 0, we let

D(0,2)* = {(x, ) € C* | Jagl, gyl < & for all j=1..., 2k},
B ={(x,y) € D(0,e)* | 23 = y; for some j},
B ={(x,y) € D(0,€)* | y; = 0 for some j},

where x = (21,...,2%), ¥ = (Y1,---,y). BU B is an analytic subvariety of
D(0,¢)* and the map (x,y) € D(0,¢)* — (BUB) — x(x,y) = g € W is a local
chart for W.

Remark 5 Given a sequence {M,}, C S with C(M,) — (00,0), there exists an-

other sequence of marked surfaces { M}, inside the image of the chart x such that
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for each n M,,, M! only differ in the homology class in the last component of the

marked surface.

Given 1 < j < 2k, let I'; be the circle defined by |z| = 1 in the copy C; of
C oriented so that all these curves are homologous in ¢~*(C) and [I4] is the last
component of the marked meromorphic map g. Recall that 0;, 00; denote respec-
tively the 0,00 in C; and that ¢ is defined as the unique holomorphic 1-form with
fw ¢ = 2mi. Define for 1 < j < 2k

4= { k2 (]: odd) - { Reso, % - Reso, ? (;: odd)
Jo,., 99 (j even) Resoo,_, (9¢) - Reso, (9¢) (j even)
In this definition and in the sequel we will adopt a cyclic convention on the subindexes,
so when j = 1, 5 — 1 must be understood as 2k. It follows that g closes periods if
and only if there exist a € R*, b € C such that
Apiy=b, Ayy=0 foralli=1,... k; }
B, = —a? forall j =1,...,2k.

J

(®)

Each (x,y) € B gives rise to a Riemann surface with nodes which consists of
[ spheres S; joined by node points P, Q; so that P, = Q;.1, | nonconstant mero-
morphic maps g(i) : S; — C with Y, deg(g(i)) = 2k and g(i)({P;, Q;}) C {0, 00},
and [ meromorphic differentials ¢(i) on S; with just two simple poles at P;, Q; and
residues 1 at P;, —1 at @;. On the other hand, each (x,y) € B — B produces a
conformal torus M, a single meromorphic degree 2k map ¢ : M — C with at least
a double zero or pole and a holomorphic differential ¢ on M with frl ¢ = 2mi.
Both ¢ and ¢ depend holomorphically on all parameters (x,y) in a neighborhood
of (0,0) = (0,...,0) € D(0,e)* (including at points of BU B). In this setting, we
get a statement analogous to Theorem 2, but instead of the ligature map L, we now
consider the map © = (A1 s 10 B0 s BL%) : D(0,¢)* — C*, which also can
be used as a tool to distinguish when a marked meromorphic map closes periods (the
proof of the following theorem is not as straightforward as the one of Theorem 2;

we refer the reader to [13] for details).

Theorem 3 There exists € > 0 small such that © extends holomorphically to
D(0,e)*, and © : D(0,¢)* — ©(D(0,£)*) is a biholomorphism.
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8 Openness.

Recall that K C S represents the space of KMR examples with 4k ends. A direct
consequence of its construction is that I is closed in S. We also saw in Section 3
that IC is open in &, by the nondegeneracy of any KMR example. Both closeness
and openness remain valid for the space K of marked KMR examples inside S.
Theorem 1 reduces to prove that K = S. Assume S — K # @ and we will reach to

a contradiction in Section 9.

Theorem 4 The classifying map C' : S — K — R* x C is open.

Proof. Given M € § — K, it suffices to see that C is open in a neighborhood of M
in & — K. Let (a,b) = C(M) € R* x C and M(a,b) = L™ (Lap)) C M. Since K is
open and closed in S and S(a,b) = S N M(a, b) is an analytic subvariety of W, we
conclude that (S — K)(a,b) = (8§ — K) N S(a, b) is an analytic subvariety of W.

Assertion 1 (S — K)(a,b) is compact.

We next demonstrate Assertion 1. Given a sequence {M,}, C (S — K)(a, b), let us
prove that a subsequence of {M,}, converges in (S — K)(a,b). By Proposition 5,
{K, }n is uniformly bounded. It can be also checked that K, cannot converge
uniformly to zero so, after passing to a subsequence, suitable liftings of M,, converge
smoothly to a properly embedded nonflat minimal surface ]Tjoo C R? in one of the
six cases listed in Proposition 2.

As a, is fixed a for all n, M, cannot be in the cases (i), (ii), (i1) of Proposition 2.
If the case (iv) holds, then any choice of the nonhorizontal period vector T,, of M,
must diverge to oo. By Proposition 6 and Remark 4-(7), for n large enough we
can see the geometric surface M, as a new marked surface M/ inside U(c) C C*
appearing in Theorem 2. Note that C(M) = (a,b + tmwa) for some even fixed
integer ¢. Since Ly is a biholomorphism (Theorem 2), the space of tuples in U(e)
producing immersed minimal surfaces has three real freedom parameters. But K has
real dimension three and C|z takes values arbitrarily close to (a,b+tra), so C(M))

must coincide with the value of C' at a certain KMR example M/ € K. In particular
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L(M) = L(M!), so M!, = M, which is a contradiction since M/, € & — K. Thus,

M is not a singly periodic Scherk minimal surface.

Now assume that Mo, lies in case (v) of Proposition 2, and let T" be a component
of the intersection of MOO with a horizontal plane {3 = ¢} whose height does not
coincide with the heights of the horizontal ends of Moo. Since Mx has exactly
two nonhorizontal ends, I is an embedded U-shaped curve with two almost parallel
divergent ends, and if we denote by II C R? the plane passing through the origin
parallel to the nonhorizontal ends of Mm, then the conormal vector to ]AVfoo along
each of the divergent branch of I' becomes arbitrarily close to the upward pointing
unit vector 77 € I such that 7 is orthogonal to ITN{z3 = c}. Since translated liftings
of the M, converge smoothly to Mm, we deduce that M, contains arbitrarily large
arcs at constant height along which the conormal vector 7, is arbitrarily close to
1. In particular, the integral of the third component of 7, along such arcs becomes
arbitrarily large. As the conormal vector of M,, along any compact horizontal section
misses the horizontal values (the Gauss map of M,, is never vertical), it follows that
the vertical component of the flux of M,, along a compact horizontal section diverges

to co. This contradicts our normalization on the surfaces of S.

Thus Mm is in case (vi) of Proposition 2. As K is open in §, then the quotient
of Moo would actually be in S — K, and Assertion 1 follows.

We now finish the proof of Theorem 4. By Assertion 1 and Lemma 3, (§ — IE)(a, b)
is a finite subset, hence we can find an open set & of W containing M such that
(S — K)(a,b)nU = M(a,b)NU = {M?}. In terms of the ligature map L : W — C%,
the last equality writes as L™ (L, 4) NU = {M}. Since L is holomorphic, we can
apply the Openness Theorem for finite holomorphic maps (see [1] page 667) to con-
clude that L|, is an open map. Finally, the relationship between the ligature map
L and the map C gives the existence of a neighborhood of M in S — K where the
restriction of C' is open.

O

The same argument in the proof of Assertion 1 remains valid under the weaker

hypothesis on C(M,,) to converge to some (a,b) € R* x C instead of being constant
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on a sequence {M,}, C S — K. This proves the validity of the following statement.

Theorem 5 The classifying map C' : S—K—-R*xCis pProper.

9 The proof of Theorem 1.

Recall that we were assuming d—K # (). By Theorems 4 and 5, C : &—ic—3
R* x C is an open and proper map. Thus, C(g‘ — E) is an open and closed subset
of R* x C. Since C(§ — l%) has points in both connected components of R* x C,
we deduce that C|gz_g is surjective. In particular, we can find a sequence {M,,}, C
S — K such that {C(M,)}, tends to (c0,0) as n goes to infinity. Now the argument
is similar to the one in the proof of Assertion 1 when we discarded the singly periodic
Scherk limit, using Proposition 7, Remark 5 and Theorem 3 instead of Proposition 6,
Remark 4-(7i) and Theorem 2.
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