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Abstract

Let (M, d) be a metric space. We prove that when the group of homo-
theties H(M,d) is a locally compact group, with respect to the compact-
open topology, it is a Lie group if, and only if, the group of isometries
I(M,d) is a Lie group. Then we prove that when (M, d) is a Heine-Borel
metric space, its group of homotheties H (M, d) is also a Heine-Borel met-
ric space and, if (M,d) is a Heine-Borel ultrametric space, its group of
isometries is an increasing union of compact subgroups. We also prove
that when (M, d) is locally compact and the space X (M) of the connected
components of M is quasi-compact, its group of homotheties H (M, d) is
locally compact. As applications we give some generalizations of classical
results in Riemannian geometry. Namely, if (M, d) is a Finsler manifold
or an Alexandroff space, then its group of homotheties is a Lie group.
With some additional hypothesis, this is also true for a Hadamard space.

1 Introduction
Let (M, d) be a metric space. The group of homotheties H (M, d) is defined by
H(M,d) ={f € C(M): f is onto and d(f(z), f(y)) = A(f)d(z,y), Vz,y € M},

where C'(M) is the set of all continuous mappings of M into itself and A(f) > 0
is a constant. The group of isometries I(M,d) = {f € H(M,d) : \(f) = 1}

is a closed normal subgroup of H(M,d). It is a classical result of the theory
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of topological groups due to Gleason and Yamabe (cf. [10]) that a topological
group G is a Lie group if, and only if, it is locally compact and has no small
subgroups. Using this deep result, we prove that when the group of homotheties
H(M,d) is a locally compact group, it is a Lie group if, and only if, the group
of isometries I(M,d) is a Lie group.

Then we prove that, under some reasonable conditions over (M, d), the group
of homotheties H(M,d) is locally compact. Since the work of van Dantzig
and van der Waerden [4], it is well known that if M is connected and locally
compact then its group of isometries I(M,d) is locally compact with respect
to the compact-open topology. Recently, Manoussos-Strantzalos [9] replaced
the connectivity of M by the weaker hypothesis that the space (M) of the
connected components of M is quasi-compact (compact but not necessarily
Hausdorff) with respect to quotient topology. Also, Gao-Kechris [13] proved a
stronger result about the group of isometries I(M, d) encompassing the above
ones.

We prove some extensions and variations of these results for the group of
homotheties H(M,d). First we consider Heine-Borel metric spaces, i.e., metric
spaces whose the compact subsets are the bounded and closed ones. We prove
that for a Heine-Borel metric space (M, d) its group of homotheties H (M, d) is
also a Heine-Borel metric space. In particular, it follows that 7(A, d) is a Heine-
Borel metric space. For this result we do not require any further assumption, like
e.g. the quasi-compactness of [9]. The set M = Z of integers with the standard
distance d (z,y) = |z — y|, is a simple example of a metric space where 3(M) is
not quasi-compact but M is a Heine-Borel space, so our results apply to it. As
a consequence of our methods we give a new proof of the fact [13] that action
of I(M,d) on M is proper if (M,d) is Heine-Borel.

The class of Heine-Borel metric spaces is interesting for two facts. First,
because there is a consequence of the Hopf-Rinow theorem for length spaces,
(cf. [2]), which claims that (M, d) is Heine-Borel if and only if it is complete and
locally compact. Second, because of the following fact: if (M, d) is a separable

and locally compact metric space then there is a metric d’ equivalent to d such
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that (M, d') is Heine-Borel [8].
We also consider the group of isometries I(M, d) of Heine-Borel ultrametric

spaces (M, d), i.e., metric spaces where
d(w, z) < max{d(z,y),d(y, 2)},

for all z,y,z € M. It is proved that if (M, d) is a Heine-Borel ultrametric space
then its group of isometries is an increasing union of compact subgroups. This
result is an improvement of a theorem due to Gao-Kechris [13], which states
that the group of isometries is the closure of an increasing union of compact
subgroups. Also, we prove that if (M, d) is a Heine-Borel ultrametric space and
G is a finitely generated subgroup of I(M,d) then cl(G) is compact . Heine-
Borel ultrametric spaces are extensively used in Number Theory because of
the Ostrowski theorem [3], [12] which states that every nontrivial norm on Q
is equivalent to the standard absolute value or to the Heine-Borel ultrametric
p-adic norm for some prime p.

Next we consider metric spaces (M,d) such that the space 3(M) of the
connected components of M is quasi-compact with respect to quotient topology.
First we generalize the result of [9] for the group of homotheties: if M is a locally
compact metric space and X (M) is quasi-compact then its group of homotheties
H(M,d) is locally compact with respect to the compact-open topology.

In this setting we also look at the quasi-metric spaces, i.e., a space (M, d)
where d satisfies all the distance axioms, except perhaps that d(z,y) is not nec-
essarily equal to d(y, ) for all z,y € M, and such that the topology generated
by forwards metric balls is equal to the topology generated by backwards metric
balls. We prove that if M is a locally compact quasi-metric space and X (M) is
quasi-compact then its group of homotheties H(M,d) is locally compact with
respect to the compact-open topology. An interesting example of quasi-metric
spaces are the Finsler manifolds, where its Finsler function F is positively ho-
mogeneous but not necessary absolutely homogeneous and, for all z,y € M,
we define d(x,y) as the greatest lower bound of the length of all smooth curves

joining x to v.
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As applications we give some generalizations of classical results in Rieman-
nian geometry. If (M, d) is a Finsler manifold or an Alexandroff space, then its
group of homotheties is a Lie group. With some additional hypothesis, this is

also true for a Hadamard space.

2 Homotheties and isometries

Let (M,d) be a metric space. We denote the closed and open metric balls of
(M,d) centered in x € M with radius r > 0, respectively, by Blz,r] = {y €
M :d(z,y) <t} and by B(z,r) ={y € M : d(z,y) < r}. We also denote the
closure of N C M by cl(N). The group of homotheties of M is defined by

H(M,d)={feC(M): f isonto and d(f(z), f(y)) = A(f)d(z,y), Yz,y € M},

where C(M) is the set of all continuous mappings of M into itself and A(f) > 0
is a constant. The group of isometries of M is defined by I(M,d) = {f €
H(M) : X(f) = 1}. We show next that there is a continuous homomorphism
from H(M,d) to the multiplicative group (0, co):

Lemma 2.1. The mapping f — A(f) is a continuous homomorphism, with
respect to the compact-open topology, from H(M,d) to the multiplicative group
(0, 00).

Proof. Clearly, for all f,g € H(M,d), we have A(f o g) = A(f)\(g) and
Af™H = AMf)™'. To see that X is continuous and H(M,d) is closed, with
respect to the compact-open topology, let (f;);c; be a net in H(M, d) such that
fi — [ in the compact-open topology, which implies that f;(z) — f(z), for all
x € M. Let w,z € M be such that w # 2. Then

O
Let G be a subgroup of H(M,d) and denote [G, G| the commutator group,

that is, the smallest closed subgroup of G containing all elements of the form
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[f,g9] = fogo f~tog . From what was shown above, we obtain the following

corollary for the groups H(M,d) and I(M,d) of a metric space (M, d):

Proposition 2.1. Let (M,d) be a metric space and G a subgroup of H(M,d).
Then the following statements holds:

1. I(M,d) is a closed normal subgroup of H(M,d).
2. If G/|G,G] is compact, then G is a subgroup of I(M,d).

3. If G is compact then G is a compact subgroup of I1(M,d).

Proof.
1. Clearly I(M,d) is the kernel of the continuous homomorphism .

2. Since A is a homomorphism and (0, co) is an abelian group, it follows that
[G,G] C ker()\). Hence, since \ is a continuous homomorphism, A\(G)
is isomorphic to G/ ker(\) and therefore A\(G) is a compact subgroup of
(0,00). Hence A(G) = {1} implying that G C I(M,d).

3. If G is compact, G/[G, G] is compact.

O

Since the group of isometries I(M,d) is a closed subgroup of H (M, d) with
respect to the compact-open topology most of the results for H(M,d) apply
immediately to the group of isometries. A topological group G has no small
subgroups if there is a neighborhood V' of the identity element e € G with the
following property: if H C V is a subgroup of G, then H = {e}. The next
result is a consequence of a theorem due Gleason and Yamabe (cf. [15], [10])
which states that G is a Lie Group if, and only if, G is a locally compact group

and has no small subgroups.

Theorem 2.1. Suppose that H(M,d) is locally compact. Then I(M,d) is a Lie
group if, and only if, H(M,d) is a Lie group.
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Proof. If H(M,d) is a Lie group, then I(M,d) is a Lie group, since I(M,d)
is a closed subgroup. Assume that I(M,d) is a Lie group. Then I(M,d) has
no small subgroups, i.e., there is a neighborhood U C I(M,d) of the identity
id in I(M,d) such that if G C U is a subgroup of I(M,d), then G = {id}.
Let V. C H(M,d) be a neighborhood of the identity in H(M,d) such that
U=VNI(M,d) and W C V another neighborhood of the identity in H (M, d)
such that cl(W) is compact. Let G C W be a subgroup of H(M, d). Thus cl(G)
is compact and hence G is a subgroup of I(M,d) (cf. Proposition 2.1). Since
GcWnIM,,d) c U, G={id}. Therefore H(M,d) is locally compact and
has no small subgroups and hence is a Lie group.
O
In the sections 3 and 5, we prove that, under some reasonable conditions

over (M, d), the group of homotheties H (M, d) is locally compact.

3 Heine-Borel metric spaces

Let (M, d) be a Heine-Borel metric space, i.e., a metric space such that a subset
K is compact if and only if it is bounded and closed. If we fix a point o € M,
then M = U,enB|xo,n]. As (M,d) is a Heine-Borel metric space, all closed
metric balls are compact. Therefore M is separable and C'(M) is a metric space
with respect to the compact-open topology (cf. [8]) with the distance A defined
by

1 du(f,9)
A(f.9) =%2—nm (2)
where d,,(f, g) = SUD,¢ plzy ) A(f(2), g()). For f € C(M), we denote
_ (@), f(y)) _ o (@), F ()
alf)= = Bl P =S e (3)

When f € H(M,d) then f is onto and a(f) = S(f) = A(f) > 0. The following

lemma is essential for the results in the next section:
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Lemma 3.1. For all w,z € M and all a,b,c > 0, the set

Viw, z,a,b,c] = {f € C(M) : fis onto,a < a(f) < B(f) <b and d(f(w), z) < c}
(4)

18 compact with respect to the compact-open topology.

Proof. Forall f € V = V{w,z,a,b,¢ and all z € M, we have d(f(z),z) <
d(f(z), f(w)) +d(f(w),z) < bd(zx,w) + ¢, and, since M is Heine-Borel, V(z) =
{f(x) : f € V} is relatively compact in M. Since for all f € V, we have
d(f(z), f(y)) < bd(x,y), then V is a uniformly equicontinuous family and so,
by Arzeld-Ascoli’s theorem for spaces that are an increasing countable union of
compact subsets (cf. [8]), V is relatively compact in C'(M) with respect to the
compact-open topology. It remains to prove that V' is closed with respect to the
compact-open topology. Let f € cl(V), where cl(V') is the closure of V in C'(M),
with respect to the compact-open topology, and let (f,).en be a sequence in
V such that f, — f. By taking limits in the inequalities of (4), we have
a < a(f) < B(f) < band d(f(w),2) < c. To show that f is onto, let y € M.
Since each f, is onto, there is a sequence (2, )nen in M such that f,(x,) = y.
Hence d(z,,y) < a”'d(fu(@n), fu(y)) = a”'d(y, fuly)). Since fuly) — f(y),
we obtain that (z,).en i a bounded sequence in the Heine-Borel space M.

Hence there are © € M and a subsequence (x,, )ren such that z,, — x. Thus

d(f(2),y) < d(f(2), fu () +d(fu (@), frr (@) < A(F (@), frre (@) + (2, Tn, ),
and, since f,,, (¢) — f(z) and z,,, — =, it follows that d(f(x),y) = 0. Therefore
f is onto showing that V' is compact with respect to the compact-open topology.
O

We have that log : (0,00) — R is a continuous homomorphism from the
multiplicative group (0,00) to the additive group R. Thus the mapping f —
log(A(f)) is a continuous homomorphism from H(M,d) to the additive group

R and we can define a distance é equivalent to A (cf. [8]) by

6(f,9) = A(f,9) + d(f(x0), 9(x0)) + [log(A(f)) —log(A(g))]- (5)
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We denote the closed metric ball of (H (M, d),d) centered in f € H(M,d) with
radius 7 > 0 by B[f,r] = {g € H(M,d) : 6(f,g) <r}.
The next result is an extension of the van Dantzig and van der Waerden’s

result for the group of homotheties H (M, d) when (M, d) is Heine-Borel:

Theorem 3.1. If (M,d) is a Heine-Borel melric space, then H(M,d) is a

Heine-Borel metric space.

Proof. We have to show that B[id,r] is compact for all > 0, where id is the
identity mapping. This is done by showing that Blid,r] C V{w,2,a,b, ], for
some V[w, 2, a, b, ¢] like in Lemma 3.1. For all f € BJid, r], we have d(f(zo), o) <
r and
[Tog(A(f))| = [log(A(f)) — log(A(id))| < 7. (6)

Thus exp(—r) < A(f) < exp(r) and B[id,r] C V = V[zo, xo, exp(—r), exp(r), r].
It remains to prove that B[id, r] is closed in C'(M), with respect to the compact-
open topology, and hence compact. Let (f,).en C B[id, 7] be a sequence such
that f, — f. The compactness of V' implies that f is onto. By taking limits,
4(id, f) <r and, for all z,y € M, with x # y we have

@), G) _ o da). 1)

d(z,y) d(z,y)

and therefore f € B[id, r].

=lim A(f,) = A(f) (7)

O
The following corollary is a immediately consequence of Proposition 2.1 and
Theorem 2.1.

Corollary 3.1. Let (M,d) be a Heine-Borel space. Then we have:
1. I(M,d) is a Heine-Borel metric space.
2. I(M,d) is a Lie group if, and only if, H(M,d) is a Lie group.

The action of a group of transformations G on a metric space M is proper

if, and only if, for all w, 2z € M there are neighborhoods U,, and U, of w and z,
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respectively, such that the subset {g € G : gU,, NU. # (0} is relatively compact
with respect to the compact-open topology. The theorem below is a special case
(for Heine-Borel spaces (M, d)) of a result on the action of I(M,d) on M that

can be found in [13]:

Theorem 3.2. If (M,d) is a Heine-Borel metric space, then the action of
I(M,d) on M is proper.

Proof. Let w,z € M, U, = Blw,1], U, = Bz,1]. Take f € {g € I(M,d) :
gU, NU, # 0}. Then there is y € U, such that f(y) € U,. Therefore
d(f(w),z) < d(f(w), f(y)) + d(f(y),2) < d(w,y) + d(f(y),z) < 2. Hence
{g € I(M,d) : gU,NU, # 0} C V]w, z1,1,2] and, by Lemma 3.1, is rela-
tively compact with respect to the compact-open topology.

O

Remark 3.1. It is well known that Theorem 3.2 is not true if the group of
isometries is replaced by the group of homotheties H(M,d). For instance, let
the space of real numbers R be endowed with the usual distance and take the
sequence (gn)n>k With g, (x) = nx. We see that it does not have any convergent
subsequence in the compact-open topology. On the other hand, since 0 is a fized

point for all g, there is k € N such that
(9n)nzk C{g € H(M,d) : gUo N Uy # 0},

where Uy and Uy are arbitrary neighborhoods, respectively, of 0 and 1.

4 Heine-Borel ultrametric spaces

In this section, we consider (M, d) be a Heine-Borel ultrametric metric space,

i.e., a metric space where
d(z, z) < max{d(z,y), d(y, 2)},
for all x,y,2 € M. Given a subset F' C I(M,d) of isometries and = € M, we let

(F) be the subgroup of isometries generated by F and F(z) = {f(z) : f € F},
the orbit of z by F'.
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Lemma 4.1. Take x € M and let G = (F), where F C I(M,d). If F(z) C
Blz,r], wherer > 0, then G(x) C Bz, r] and hence cl(G) is a compact subgroup.

Proof. If f € F then d(f~(2),z) = d(f~(z), f~(f(x))) = d(z, f(z)) < r.
Let g € G be such that g = f,--- f, with f, € For f;' € F, i€ {1,---,n}.
We proceed by induction on n to show that g(x) € Blz,r]. If n = 1, by the
previous inequality, g(x) € B[z, r]. Assume that the result is true for n. Let
g=f1-- fufnr1 and define h = f; --- f,,. Hence

d(g(x), x) = d(h(foir(2)), 7)

IN

max{d(h(fur1(z)), h(x)), d(h(z), z)} = (8)
de{d(fn+1(x),$),d(h(.flf),$)} < T, (9)

by the induction hypothesis, and for all g € G = (F), g(x) € B[z, r]. Therefore

G(z) C Blz,c] and cl(G)(zx) is compact. The properness of the action implies
that cl(G) is a compact subgroup (see [14] and also [13]).

(|

The next corollary states that if G C I(M, d) has the algebraic property to

be finitely generated then the closure of G' has the topological property to be

compact:

Corollary 4.1. Let (M,d) a Heine-Borel ultrametric space. If G C I(M,d) is
finitely generated then cl(G) is a compact subgroup.

Proof. We have G = (F), where F = {fy, -, f,}. Hence foralli € {1,--- ,n}
we have d(f;(x), z) < max{d(f1(z),x), - ,d(f.(x),z)} = r. By the Lemma 4.1,
cl(G) is a compact subgroup.

|

Finally we have the following improvement of a theorem due to Gao and
Kechris [13]:

Theorem 4.1. Let (M,d) a Heine-Borel ultrametric space. I(M,d) = |JG.,

where G,, are compact subgroups such that G,, C G41.
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Proof. Let x € M and, for each n € N, we define
Go = {f € I(M,d) : d(f(x),) < n}. (10)

By Lemma 4.1 we have that (G,) = G, and cl(G,,) is compact. But it is easy to
verify that G, is closed in I(M, d) with respect to the compact-open topology,
showing that G,, is a compact subgroup. Clearly, we also have G,, C G,,; and
I(M,d) = Ghn.
O
Theorem 4.1 also shows that, when (M, d) is Heine-Borel ultrametric space,
I(M,d) is an amenable group (cf. [17]).

5 Y(M) quasi-compact

Let (M, d) be a locally compact metric space and C (M) the set of all continuous
maps of M into itself. The following four lemmas are generalizations of some

results of Manoussos-Strantzalos [9]. First we define
Via,b) = {f € C(M) : f isonto,a < a(f) <A(f) <b}. (11

where a,b > 0 and a(f), 8(f) are as in Equation (3). Va,b] is clearly an

uniformly equicontinuous family of C'(M).

Lemma 5.1. For all a,b > 0 and for all V C V]a,b], let V(z) = {f(z) : f €
V'}. Then the set

K(V)={x e M:V(zx) is relatively compact}, (12)
s an open and closed subset of M.
Proof. The fact that K (V) is open, is a consequence of the uniform equicon-
tinuity of V- C C(M). In fact, take x € K (V) and for y € cl(V(z)) let e, > 0

be such that B(y,e,) is relatively compact. We see that {B(y,ey)}yeav (@)
is a covering of the compact set cl(V(x)). Hence there are y; € cl(V(x)),
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i €{1,---,m}, such that {B(yi, &,) }ie(1,-- m} 1 a finite subcovering. If we take
0 < b~'infd(u,v), where u € cl(V(z)) and v € M\ Uy ...,
V(2) € Uieqs,... my Byss €y,), for all 2 € B(z,0) and therefore B(z,d) C K(V).
We prove now that K (V) is closed. For all N C M, we define B(N,¢) =
Uyen B(z,€). Take z € cl(K(V)) and let € > 0 be such that B(z, 2¢) is rela-
tively compact, and y € K(V)NB(x,¢). Hence cl(V(y)) C B(V(B(x,¢€)),ae) C

V(B(z,2¢)), because for each y, z such that d(y,x) < € and d(z, f(y)) < ae,
for some f € V, then d(f71(2),z) < d(f~1(2),y) + d(y,z) < a7 d(z, f(y)) +
d(y,x) < 2¢ and therefore f~'(z) € B(x,2¢), so z € V(B(z,2¢)). By the com-
pactness of cl(V(y)) we can get a finite subset F C V such that cl(V(y)) C
F(B(z,2¢)). We show that V(z) is contained in the relatively compact set
F(B(z,%e¢)). Let f € V and g € F such that f(y) € g(B(x,2¢)) C B(g(), 2be).

Hence

sl B(y;,€,,), then

d(f(x),9(v))

IN

d(f(x), f(y)) +d(f(y), g(x)) + d(g(2),9(y))  (13)
< bd(z,y) +d(f(y), 9(x)) + bd(z, y) < 4be (14)

A

and therefore f(z) € B(g(y), 4be) C g(B(y, 2¢)) C g(B(x, 2e)) C F(B(z, 2¢)).
Thus z € K(V) and the proof is concluded.

O

For the next lemmas, we assume that the space (M) of the connected

components of M is quasi-compact (compact but not necessarily Hausdorff)

with respect to quotient topology. Under this assumption M is separable and

therefore is an increasing countable union of compact subsets, so that we can

apply the Arzeld-Ascoli theorem (cf. [8]).

Lemma 5.2. There is a neighborhood V of the identity in H(M,d) that is
relatively compact in C(M) with respect to the compact-open topology.

Proof. For all z € M, let r, > 0 be such that B(z,2r,) is relatively compact
and take y, € M with z # y,, and r, < 1d(z,y,). Define

Vo={f € H(M,d) : d(f(x),2) <7, and d(f(4a),y.) <72} (15)
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Then V, is a neighborhood of the identity in H(M,d) with respect to the
compact-open topology. By the triangular inequality, for all f € V,, we have
A(f(2), F5)) < 2o + d(z,y,) < 3d(e,y,) and d(z,y,) < 2r, +d(f(2), [ (5.),
which implies that id(z,y.) < d(z,y.) — 2r. < d(f(z), f(y.)). Hence 3 <
A(f) < 2. Therefore V, C V[1,2] and « € K(V,). By Lemma 5.1, K(V,) is an
open and closed subset of M and therefore it is the union of connected compo-
nents of M. Hence ¢(K(V,)) is an open subset of X(M), where ¢ : M — X(M)
is the canonical projection, and {q(K(V,))}zerm is an open covering of %(M).
Since X(M) is quasi-compact, there are x; € M, i € {1,--- ,m} such that
{¢(K (Va,)) Yieqa,.,m} is a finite open subcovering. We define V' = ﬂie{L-»»,m} Va,
so that V is also a neighborhood of the identity in H(M,d) with respect to the
compact-open topology. Therefore, V(x) C V,,(x) is relatively compact for all
x € M. Since V is clearly an equicontinuous family, by Arzeld-Ascoli theorem,
V is relatively compact in C(M).
O
The preceding lemma shows that there is a neighborhood of the identity in
H (M, d) which is relatively compact in C'(M) with respect to the compact-open
topology. For our purpose, namely to prove that H (M, d) is locally compact, it
sufficient to show that this neighborhood is also closed and therefore its closure
is contained in H (M, d). The following two lemmas are used to prove what is
the most delicate part of the proof: the limit of a sequence in this neighborhood

is onto:

Lemma 5.3. Let V' be the neighborhood of the identity as in Lemma 5.2. If
a sequence (fn)nen C V is such that f, — f with respect to the compact-open

topology, then its image f(M) is an open and closed subset of M.

Proof. By Lemma 5.1, it is sufficient to show that f(M) = K(L), where L =
{f.',n € N}, because L~' C V C V[3,3]. One one hand, since d(z, f, }(z)) <

2d(fn(x), f(x)) and fu(z) — f(z), we have f,(f(z)) — = and f(z) € K(L)
for all z € M, because M is locally compact. On the other hand, if y € K(L)



92 M. PATRAO

then F(y) is relatively compact in M, so there are x € M and a subsequence
(f'(y))ken such that f,1(y) — x. Hence we have d(f(z),y) < d(f(x), fn,(z))+
A(fu,(@),9) < A(F (@), fo () +2d(, £1(9) and, since f, (x) — f(x), we have
y=f(z).
O
If M is connected then f(M) = M and therefore f is onto. But, as the
following lemma shows, this is also true in the more general situation when

(M) is quasi-compact with respect to the quotient topology:

Lemma 5.4. Let V' be the neighborhood of the identity as in Lemma 5.2. If
a sequence (fn)nen C V is such that f, — f with respect to the compact-open

topology, then f s onto.

Proof. Let y € M. We denote by S, the connected component of y and,
for all n € N, we let S, be the component of f,(y). Since each f, is a
homeomorphism, we have f,(S,) = S, for all n € N. First we assume that
(Sy)nen has a constant subnet (S,, = So)ren, for some Sy € X(M). Hence
fui(So) = S, for all k € N. Let o € Sp. Hence f,, (z0) € S, and, since
foi(@0) = f(xo), we have f(zo) € S,. By Lemma 5.3, S, C f(M) and therefore
y € f(M). Now we suppose that (S,).en has no constant subnet. Hence,
with the above notation, we can apply the following lemma that was proved in

Manoussos-Strantzalos [9]:

Lemma 5.5. If (S,)nen has no constant subnet then there are xo € M, a

subsequence (Sy, )ren and a sequence (xy)ken Such that xy, € S, and Ty — xo.

By Lemma 5.5, there are zo € M, a subsequence (S, )ren and a subsequence
(zk)ren such that z, € S, = f,,1(Sy) and i = ;' (yx) — o, where y € S,,.

Hence

AF0) ) < AU (0), Fu0) + o ), ) (16)
A(F (o), fu(0)) + 300, i 31) (1)

IN
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and, since f,, (o) — f(xo), we have yp — f(xo) and therefore f(xo) € S,. By
Lemma 5.3, S, C f(M) and therefore f is onto.

O

The following is a generalization of a result due to Manoussos and Strantza-

los [9] for the group of homotheties:

Theorem 5.1. Let (M, d) be a locally compact metric space such that the space
of connected components X(M) is quasi-compact with respect to the quotient
topology. Then H(M,d) is locally compact with respect to the compact-open
topology.

Proof. Let V = N,c(y.. .y Veu C C(M) be the relatively compact neighbor-
hood of the identity as in Lemma 5.2. It is sufficient to show that V' is closed
with respect to the compact-open topology. Let (f.)nen € V be a sequence
such that f,, — f. By Lemma 5.4, f is onto. Arguing as in Lemma 3.1, we have
that d(f(x), f(y)) = A(f)d(z,y), where A(f) = lim \(f,,). Clearly, we also have
d(f(x:), ;i) < 1y, and d(f(Ya,)s Ya;) < Tay, for all i € {1,--- ;m} and therefore
f € V. Hence V is compact with respect to the compact-open topology.
O
As a immediately corollary, we have a generalization of the classical theorem

of van Dantzig and van der Waerden for the group of homotheties H (M, d).

Corollary 5.1. Let (M,d) be a connected and locally compact metric space.

Then H(M,d) is locally compact with respect to the compact-open topology.
The following corollary is a immediately consequence of Theorem 2.1.
Corollary 5.2. Let (M,d) be a locally compact metric space such that the space

of connected components (M) is quasi-compact with respect to the quotient

topology. Then I(M,d) is a Lie group if, and only if, H(M,d) is a Lie group.
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6 Quasi-metric spaces

Let d : M x M — [0, 00) satisfying the distance axioms except perhaps that
d(z,y) is not necessary equal to d(y,z) for all z,y € M. If the topologies
generated by the forward metric balls B, (z,r) = {y € M : d(z,y) < r} and
generated by the backward metric balls B_(x,r) = {y € M : d(y,z) < r}
are the same, we call (M, d) a quasi-metric space and d a quasi-distance. The
group of homotheties H (M, d) and the group of isometries I(M,d) are defined
in the same way as for metric spaces. An interesting example of such spaces are
the Finsler manifolds where its Finsler function F' is positively homogeneous
but not necessary absolutely homogeneous. The notation of the forward and
backward metric balls follows the book of D. Bao, S.S. Chern and Z. Shen [1].

The following corollary is an extension of Theorem 5.1 for quasi-metric spaces:

Corollary 6.1. Let (M, d) be a locally compact quasi-metric space and suppose
that its space of connected components X(M) is quasi-compact with respect to the
quotient topology. Then H (M, d) is locally compact with respect to the compact-
open topology.

Proof. If (M, d) is a quasi-metric space then the function d : M x M — [0, c0),
defined by d(z,y) = d(z,y) + d(y, ), is a distance and it is straightforward to
verify that the topology of (M, d) is the same as the topology of (M,d). So,

(M, d) is a locally compact metric space and its space of connected components
(M) is quasi-compact with respect to the quotient topology. It also straight-
forward to verify that H (M, d) is a closed subgroup of H (M, d) with respect to
the compact-open topology and hence the proof is concluded.

O

7 Applications

The following theorems are immediately consequences of Corollary 5.2 and its

version for quasi-metric spaces.
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7.1 Finsler manifolds

Let (M, d) be a connected Finsler manifold (cf. [1]), where its Finsler function
F is positively homogeneous but not necessary absolutely homogeneous, i.e.,
F(x,av) = aF(z,v), for all v € T, (M), only if a > 0. We define, for all
x,y € M, d(x,y) as the greatest lower bound of the length of all smooth curves
joining x to y. As we noted in the previous section, (M, d) is a quasi-metric
space but d is not necessary a distance [1]. Recently, Shaogiang Deng and
Zixin Hou (cf. [5]) proved the following generalization of a classical result of
Riemannian geometry due to Myers and Steenrod [11]: if (M, d) is a connected
Finsler manifold then its group of isometries is a Lie group with respect to the

compact-open topology. Thus we have the following result:

Theorem 7.1. If (M,d) is a connected Finsler manifold, then H(M,d) is a
Lie group.

7.2 Singular spaces

Let (M, d) be a length space, that is, a metric space where the distance between
every two points in it is realized as the infimum of lengths of curves joining
them. Alexandroff generalized the concept of sectional curvature of a Rieman-
nian manifold to such spaces using the conclusion of Topogonov’s comparison
theorem as the definition (cf. [2]). A length space which is locally compact,
of finite Hausdorff dimension and whose curvature is nowhere —co is called an
Alexandroff space. It was proved by Fukaya-Yamaguchi [6] that I(M,d) is a
Lie group if (M, d) is an Alexandroff space. Thus we have the following result:

Theorem 7.2. If (M, d) is an Alexandroff space, then H(M,d) is a Lie group.

Finally, let (M,d) be a Hadamard space, that is, a complete simply con-
nected length space with nonpositive curvature. For such space (M, d) the ideal
boundary M (oo) is defined as the set of equivalence classes of rays in (M, d)
with the natural topology. The space M(oo) has a natural metric T'd called

Tits metric, which measures the deviation of (M,d) from flatness (cf. [2]).
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It was proved by Yamaguchi [16] that if (M,d) is locally compact, geodesi-
cally complete Hadamard space and (M (c0),T'd) is compact, then I(M,d) and
I(M(o0),Td) are Lie groups. Thus we have the following result:

Theorem 7.3. If (M,d) is a locally compact, geodesically complete Hadamard
space and (M(oc0),Td) is compact, then H(M,d) is a Lie group.

We remark that the compactness of (M(c0),Td) is equivalent to the hy-
pothesis that the Tits topology coincides with the natural topology.
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