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ON THE MATHEMATICAL WORK OF JOSE F.
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Abstract

In this article we provide an overview of the work of José F. Escobar,
who gave many important contributions to the fields of Differential Ge-
ometry and Partial Differential Equations throughout his mathematical
career.

1 Introduction

The mathematician José Fernando Escobar made many important contribu-
tions to the fields of Differential Geometry and Partial Differential Equations
throughout his productive life. This article intends to provide an overview of his
mathematical work. The content of the paper essentially appeared on a lecture
given by the author, in conjunction with H. Aradjo and L. Rodriguez, at the
XIII Brazilian School of Differential Geometry, held at IME-USP in 2004. Due
to the limitations of space and to the inherent subjectivity of the task, we do
not wish to describe in details the entire work of J. F. Escobar, but only a part
of it considered most relevant from the author’s personal perspective.
Escobar’s powerful technical skills and his wide range of interests were cer-
tainly influenced by his Ph. D. studies under the supervision of Richard Schoen.
During his mathematical career he touched several different and difficult prob-
lems lying in the domain of Geometric Analysis - the part of Differential Ge-
ometry concerned with the partial differential equations that naturally arise in
geometrical questions. We can safely classify his results into two broad classes

of problems.
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The first class encompasses problems of prescribing the scalar curvature and
the boundary mean curvature under conformal deformations of metrics. What is
perhaps his greatest contribution falls in this class - the solution of the Yamabe
Problem on manifolds with boundary in almost all cases. As a consequence of
that achievement he proved a generalization of the profound Riemann mapping
theorem to higher dimensions, showing that, except possibly for dimensions 4
and 5, every smooth bounded open set of a Euclidean space admits a conformal
scalar-flat metric with constant mean curvature on the boundary. Another
remarkable theorem was obtained in his Ph. D. thesis in collaboration with
R. Schoen. He completely determines the functions which can be realized as
the scalar curvature of a conformal metric on nontrivial quotients of the three-
sphere, extending the well-known Moser’s result for RP2.

In the second class we can distinguish his work concerned with the spectral
properties of the Laplacian on manifolds and isoperimetric inequalities. He
was interested in the Laplace-Beltrami operator on complete and noncompact
manifolds of nonnegative sectional curvature, together with similar questions on
the differential form spectrum of the Hodge Laplacian. Motivated by his work
on the Yamabe Problem he also became interested in the Steklov eigenvalue
problem on manifolds, which somehow had been forgotten in the literature. He
obtained various comparison results for the first nontrivial Steklov eigenvalue
and studied its relation to isoperimetric constants. Very recently he also worked
on isoperimetric inequalities in three dimensional PL-manifolds of nonpositive
curvature ([4]).

This paper is organized as follows. In Section 2 we describe his contributions
to the Yamabe Problem on manifolds with boundary. In Section 3 we discuss his
work on the problem of conformally prescribing the scalar and mean curvatures.
In Section 4 we describe some of his work on the spectrum of the Laplace-
Beltrami operator and the Hodge Laplacian on nonnegatively curved manifolds.
And in Section 5 we discuss some of his results on the first nontrivial Steklov
eigenvalue. In the last section we make some final remarks of a more personal

tone.
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2 Yamabe Problem on Manifolds with Bound-
ary

The classical Yamabe Problem consisted in showing that every Riemannian
compact manifold, without boundary, admits a conformally related metric with
constant scalar curvature. In dimension two that follows from the much cele-
brated Uniformization Theorem of Riemann surfaces. As for the higher dimen-
sional setting, Yamabe was the first one to raise that question, and although
he had claimed to have solved the problem, his paper ([34]) contained a crucial
mistake. After the subsequent efforts, throughout approximately 25 years, of
Trudinger ([33]), Aubin ([1]) and Schoen ([30]), the Yamabe problem was fi-
nally given an affirmative solution in all cases. That achievement was of special
importance because it required the complete solution, for the first time, of a
nonlinear elliptic equation of critical exponent.

If the compact manifold being considered has a nonempty boundary one can
think of several possible boundary conditions to ask for. Escobar figured out
that, from the point of view of conformal geometry, a natural geometrical con-
dition would have to involve the mean curvature. That important observation
naturally led Escobar ([12]) to study the problem of finding smooth metrics with
constant scalar curvature and minimal boundary inside a given conformal class.
Throughout this paper R, will denote the scalar curvature with respect to the
Riemannian metric g, while h, will be the mean curvature on the boundary.

We can precisely formulate the problem as follows:

Yamabe Problem I (on manifolds with boundary)
Let (M™, g) be a compact Riemannian manifold with boundary OM, and assume
n > 3. Find a metric §, conformally related to g, such that for a certain constant

¢ € R one has
R; = cin M,
h; = 0ondM.
If we write the conformal change as § = = g, where u is a smooth positive

function defined on the manifold, we will find that the transformation laws for
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the scalar and mean curvatures are given by:

4(n—1) _nt2

Rg = *ﬁu "’ngu, (21)
2 n

h; = p—_ "2 Byu,

where L, = A, — ﬁRQ is the so-called conformal Laplacian and B, =
a% + 221, is an associated boundary operator. Here A, stands for the Laplace-
Beltrami operator and 7 is the outward unit normal to the boundary.

The Yamabe Problem I is therefore equivalent, in the language of partial
differential equations, to find a smooth solution u € C*°(M) to the nonlinear

boundary-value problem

W
)
<
Il
o

(2.2)

where A is an arbitrary constant.

The difficulty in solving problem (2.2) comes almost entirely from the fact
that % is a critical exponent for the so-called Sobolev embeddings. This means
that a direct variational approach will necessarily fail due to the noncompactness
of the inclusion H*(M) C Lt (M). That drawback was already present in the
classical Yamabe Problem, and the basic technique to overcome it consists in
first lowering the exponent of the equation. One then finds a family of subcritical
solutions (u,), p < Z—fg, and investigates its behavior as p — Z—fZ The hope is
that this family will stay uniformly bounded, in which case standard machinery
from the theory of elliptic partial differential equations implies the existence of
a convergent subsequence.

The main theorem in [12] succesfully covers almost all manifolds, its precise

statement being:

Theorem 1 (Escobar). Let (M™, g) be a compact Riemannian manifold with

boundary OM, n > 3. Assume that one of the following conditions is satisfied:

1. n=3,4orb;



ON THE WORK OF JOSE F. ESCOBAR 45

2. M has a nonumbilic point on OM;
3. M is locally conformally flat;

4. n>6,0M is umbilic and there exists a point P € OM such that the Weyl

tensor W,(P) is not zero.

Then there exists a smooth metric § = uﬁg with constant scalar curvature

m M and zero mean curvature on the boundary OM .

Let us now briefly discuss the main ideas behind the proof of Theorem 1.
First one can check that solutions to the Yamabe Problem I are critical

points of the functional

n—2 / n—2
= — Rsdp; + —— h;do;
4(” - 1) M o 2 oM e

restricted to the constraint set

F(g)

Cl = {j=ur7g: Vol (M",§) =1},

where dpi, denotes the Riemannian volume form on M with respect to the metric
g, and do, is the induced volume form on the boundary 9M.
The functional F' is bounded from below on Cgl , and in the paper Escobar
introduces the Sobolev quotient
QM™) = inf F(g),
gect
which clearly is a conformal invariant of the manifold (M™, g). By applying the
transformation laws (2.1) one can also compute that number through the use
of an appropriate energy over a space of functions, as indicated by
n . Ey(p
QI = inf Q) = o)

pec=) T ol
g

where

n—2
Eg(@):/]w(\v<ﬁ|§+m 00 )ditg + / hyp*day,
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n—2

on 2n

w%—(/ Isal_“dug> .
M

A general local construction proves that Q(M™) < Q(S?) for any manifold

and

M, where S7 denotes a hemisphere with a metric of constant sectional curva-
ture one. An argument similar to the one given by Aubin in [1] shows that if
Q(M™) < Q(S?t), the Palais-Smale condition holds and then there exists a min-
imizer in H'(M). That minimizing function is obtained as a limit of a sequence
of subcritical solutions, and it will be a positive solution to the Problem (2.2).
Its smoothness follows from the work of Cherrier ([6]).

Hence, to solve Yamabe Problem I one has to exhibit a test function ¢ €
C*(M) satistying Qy(¢) < Q(S%). There are essentially two different ways of
doing that. One is to construct a local test function based on a rotationally
symmetric family of standard solutions to the corresponding equation in the
Euclidean case. The function vanishes outside a small neighborhood of a point
on the boundary and the idea is to exploit the local conformal geometry of the
manifold by computing an expansion for Q,(¢). When there is not enough local
information one needs a more sophisticated construction involving the Green
function of the conformal Laplacian L, with boundary condition given by the
operator B,. The inspiration originates in the work of Schoen ([30]) and the
final argument in this case requires the Positive Mass Theorem for manifolds
with boundary, to which Escobar gives a proof (in the Appendix of [12]) for the
cases he needs.

In [11], Escobar considers the - in some aspects different - problem of exis-
tence of conformal metrics which are scalar-flat with constant mean curvature

on the boundary :

Yamabe Problem II (on manifolds with boundary)

Find a metric g, conformally related to g, such that for a certain constant ¢ € R

R;
h;

one has

[

0in M,
con OM.

Il
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The solutions are again critical points of the same functional F' above de-
fined, restricted this time to a different set:
C;I ={g= u%g : Vol (OM™,g) = 1}.

The associated analytical problem is given by

Lyu = 0
Bu = My
u > 0,

the nonlinearity now being on the boundary condition. This already introduces
some new phenomena, for instance the functional F' is not necessarily bounded
from below on the constraint set Cg” , as it can be verified for some manifolds. A
direct variational approach again will not work because of the lack of compact-
ness of the Sobolev trace embedding H'(M) C L5 (OM). We remark that

Escobar ([9]) determined the best constant in a related Sobolev trace inequality

on a halfspace in R™.
Despite these differences Escobar ([11]) gives, by using similar methods,
an affirmative solution to Yamabe Problem II for almost all manifolds. As a

corollary (dimension 6 follows from Theorem 3.1 in [14]), he is able to prove:

Theorem 2 (Escobar). Let Q C R" be a bounded domain with smooth bound-
ary, and suppose n # 4,5. Then there exists a conformal metric g = wTT S with
zero scalar curvature Ry = 0 in M and constant mean curvature h, = c on the
boundary OM.

The above result can be thought of as a generalization of the famous Rie-
mann mapping theorem, which says that every simply connected, proper domain
in the plane is conformally equivalent to the unit disk. One certainly cannot
expect such a statement to hold in higher dimensions because there are very
few conformal diffeomorphisms between Euclidean open sets when n > 3. The
Theorem 2 asserts that at least one can achieve, by a conformal deformation,
zero scalar curvature and constant mean curvature on the boundary. Those are
geometric properties of a Euclidean ball. The result is still open in dimensions

4 and 5, to the author’s knowledge.
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Escobar also obtained similar results for the Yamabe problem ([13]) under

mixed constraints:
a Vol (M",g) +b Vol (OM",g) =1,

where a,b > 0.

The solution (in almost all cases) of the correct versions of the Yamabe
Problem for manifolds with boundary is perhaps the greatest contribution of J.
F. Escobar, helping to understand the general geometrical question of what is

the nicest metric on a given manifold.

3 Prescribed Scalar and Mean Curvatures

In this section we shall describe some of the contributions made by Escobar to
the problem of prescribing scalar and mean curvatures under conformal defor-
mations.

Let (M™, g) be a compact Riemannian manifold, n > 3, and suppose a
smooth function K : M — R is given. The so-called Prescribed Scalar

Curvature Problem consists in finding a metric g, conformal to g, such that
Rg =K in M.

This problem has been extensively studied when the underlying manifold is the
sphere S™ with a metric gy of constant sectional curvature one. In this case it
becomes especially interesting due to the presence of a noncompact group of
conformal diffeomorphisms, and surprisingly there are nontrivial obstructions
first discovered by Kazdan and Warner ([25]).

When there is no boundary the Sobolev quotient, also called Yamabe invari-

ant, takes the form Q(M", g) = infzec, Y (), where

n—2
Y(§) = ——" | Ry,
(g) 4(”*1) /1\/[ 9 Iug
and
C,={j=uw7g: Vol (M",§) = 1}.
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The conformal invariant Q(M™, g) plays a prominent role in the classical
Yamabe Problem, where the manifolds fall into three different categories accord-
ing to the sign of it. The most difficult case to settle being when Q(M™, g) > 0
or, equivalently, when the first eigenvalue of the conformal Laplacian (L) is
positive. The Yamabe invariant of an Einstein manifold was studied by Escobar

in [2], with P. Aviles as a collaborator.

The Sobolev quotient is also important when dealing with the Prescribed
Scalar Curvature Problem. For example one cannot prescribe a nonpositive

function as the scalar curvature of a conformal metric on M when Q(M™, g) > 0.

In a joint paper with his scientific advisor R. Schoen, Escobar ([23]) showed
that on a three dimensional compact Riemannian manifold of positive Yamabe
invariant, not conformally equivalent to the standard sphere, being positive
somewhere is a necessary and sufficient condition for a function to be the scalar
curvature of a conformally related metric. That result, which also appeared in
his Ph. D. thesis, completely solves the Prescribed Scalar Curvature Problem
when M?® = S3/T', where T is a nontrivial finite group of isometries acting
without fixed points. It should be noted that this extends a well-known result
for RP? due to Moser (see [26]).

When the dimension is greater than three, Escobar and Schoen were able
to show in [23] that the result is still true if the manifold is locally conformally
flat and the derivatives of order less than or equal to n — 2 of the prescribed
function vanish at a maximum point. Notice that those functions constitute
a dense subset, in the C! topology, of the set of functions which are positive
somewhere. At present it is not known whether the general result holds without

those additional assumptions.

In that same paper, Escobar and Schoen also consider manifolds with Sobolev
quotient equal to zero. Given the solution to the Yamabe Problem those are
the manifolds which admit conformal metrics that are scalar flat. They provide
a complete answer to the problem in dimensions 3 and 4, by showing that the

only obstructions are:
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1. K changes sign and

2. [, Kdv, <0.

That theorem is a full extension, to those dimensions, of the results obtained
by Kazdan and Warner ([24]) on the two dimensional torus.

Another related problem that attracted Escobar’s attention is the Pre-
scribed Mean Curvature Problem on the unit ball B™ C R" - the mean
curvature version of the Prescribed Scalar Curvature Problem on the standard
sphere. Given a smooth function h on the boundary 0 B™ of the ball, the problem

consists in finding a metric g conformal to the Euclidean metric ¢ and satisfying

(3.1)

R, = 0 inB",
hgy = h ondB"

If one writes g = unz 0, the transformation laws in section 2 yield the equiv-

alent analytical problem:

Au = 0 in Bn.,
du —n_
8_77 + "T’Qu = "T*Qhun—2 on 0B", (3.2)
u > 0.

A first obstruction to the solution of problem (3.2) comes from integration

by parts. Given a solution u, one readily obtains

9 - —9
L hu*nt do = = / udo +/ |Vu|?dz,

R

which shows that h has to be positive somewhere.
This is not the only known necessary condition. In [14] Escobar found a

nontrivial Kazdan-Warner type obstruction given by:

/ (X, Vhg)do, =0,
JARM™
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where X is a conformal Killing vector field on 9B™. For instance this condition
can be used to show that the problem (3.2) has no solutions if A = az; + b,
where a #0 andi=1,...,n.

In [22], in collaboration with G. Garcia, Escobar studied the Prescribed
Mean Curvature Problem when h is a Morse function, positive somewhere,
with Ah # 0 at its critical points. After a detailed blowup analysis of subcrit-
ical solutions they obtain strong results in low dimensions and prove a general
existence theorem of nonminimizers for the three dimensional ball. Namely, if
D,, denotes the number of critical points T of h such that Ah(ZT) < 0 and the
Morse index of —h at T is u, they show the existence of solutions to problem
(3.2) when Dy — Dy # 1. If Dy — D; > 1 there exists a solution of index 1. Fun-
damental to this work was the description given by Escobar ([10]) of the moduli
space of solutions when h = 1, a result in the spirit of Obata’s theorem on the
sphere ([27]). He proved that scalar flat metrics of constant mean curvature one
on the boundary, which are pointwise conformal to the Euclidean metric 6 on
the unit ball, can only occur as pull-backs of the form F*¢, where F' : B" — B"
is a conformal diffeomorphism. In [18] Escobar obtains other related results on
uniqueness and non-uniqueness of solutions.

Escobar also studied the Prescribed Mean Curvature Problem on other man-
ifolds with boundary. As a consequence he proves in ([14]) the following remark-

able theorem:

Theorem 3. Let Q C R? be a bounded smooth domain different from a ball,
and let h : 0 — R be a smooth function. There exists a scalar flat metric on
Q, conformal to the Euclidean metric, and with boundary mean curvature given

by h if and only if h is positive somewhere.

Escobar also considered a Dirichlet boundary condition in [8], where he
proves the existence of positive solutions to a perturbation of the conformal
scalar curvature equation in dimension 4, extending a result due to Brézis and
Nirenberg ([3]).
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4 Spectrum of the Laplacian on Complete Mani-
folds

In this section we will describe some of Escobar’s work on the spectral proper-
ties of both the Laplace-Beltrami and the Hodge Laplacian operators on open
manifolds of nonnegative curvature.

The Laplace-Beltrami operator is a formally self-adjoint operator A, : Cg°(M)
— (C°°(M), which has a unique unbounded self-adjoint extension acting on
L?(M). Tts spectrum Spec(A,) is an important geometric invariant and there-
fore it becomes natural to study its relation to other geometric quantities, like
the curvature of the manifold.

A particularly special manifold is the Euclidean space, where some spectral
properties of the Laplacian are very well known. For example one knows that its
spectrum is the nonnegative halfline and that there are no eigenfunctions in L.
It is generally expected that these properties should hold for a much bigger class
of manifolds, for example it has been conjectured by S. T. Yau (see Chapter
VIII in [31]) that they should be true for any complete noncompact manifold
of nonnegative sectional curvature. In his Ph. D. thesis Escobar succesfully
approached (see [7]) that problem on R™ endowed with a rotationally symmetric
metric of nonnegative sectional curvature. He proved that the spectrum of
such a metric is [0,00) and its Laplace-Beltrami operator does not have any
eigenvalues.

The idea for proving that is to use the rotational symmetry for reducing the
problem to one concerning a Schrodinger operator on the half line. The proof is
then based on an asymptotic formula developed by Escobar for non-integrable
potentials, such as the one that appears when the curvature is nonnegative.

In a subsequent paper in collaboration with A. Freire, Escobar ([19]) proved
that the Laplacian on nonnegatively curved manifolds has a pure continuous
spectrum, this time assuming the existence of a pole and some quadratic decay
condition on the curvatures when n > 3. Recall that a pole is a point p € M such

that the exponential map exp, : T,M — M is a diffeomorphism. The proof



ON THE WORK OF JOSE F. ESCOBAR 53

is based on an integral identity for eigenfunctions discovered by the authors,
very similar to formulas obtained classically by F. Rellich ([29]) and others. In
dimension 2 no decay hypothesis is needed.

The topological structure of a complete, noncompact and nonnegatively
curved manifold is revealed by a classical theorem ([5]) due to Cheeger and Gro-
moll. It states that such a manifold contains an embedded compact submanifold
S, referred to as a soul, which is also totally convex (hence connected and totally
geodesic), and such that its normal bundle NS is diffeomorphic to M. When
this diffeomorphism can be given by the exponential map expg : NS — M,
which is not always the case, Escobar and Freire ([19]) were able to show that

Spec(Ay) = Specq(A,) = [0, 00) under the extra assumption when n > 3:

/100 Tlr) /r Ric(Vr)dr < oo.

Here r(z) = d(z,S), S, = {x € M : d(z,S) = r} and v(r) = vol(S,). They

also verified this result without the integrability condition assuming only the

ess (

manifold has a soul of codimension one.

Escobar was also interested in properties of the Hodge Laplacian A, =
dd + dd acting on L? differential forms on a nonnegatively curved manifold.
One of the questions he was concerned with was to determine, under curvature
assumptions, whether or not there are any nontrivial harmonic forms in L? of
certain degrees. For instance, open surfaces of nonnegative Gauss curvature do
not admit such forms. Perhaps his most important result in this subject, in a

joint work with Freire ([20]), is the following vanishing theorem:

Theorem 4 (Escobar, Freire). Let (M™, g) be a complete noncompact Rie-
mannian manifold with nonnegative sectional curvatures, n > 3. Suppose M has
a soul S of dimension s < n—2 such that expg : NS — M 1s a diffeomorphism.
(Ifdim S = 0, assume S is a pole.) Given 0 < p < 252 or B2 < p < n, assume
the radial sectional curvatures satisfy

c(l1—c¢)

0<K, <
= ST 2
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on M\ S, where :fs__ll <c¢<1andr(z) =d(z,S). Then the only harmonic

p-form in L? is the zero form.

The proof is based on Rellich-type identities for differential forms. Assuming
the existence of a pole and through the use of similar techniques he also proved
the nonexistence of eigenforms of the Hodge Laplacian in L2, much in the spirit
of what he had done for the Laplace-Beltrami operator acting on functions.
Finally in [21], a joint work with A. Freire and M. Min-Oo, he obtains L?

vanishing results for vector-valued differential forms.

5 Steklov Eigenvalue Problem

In this section we will discuss some of the contributions, given by Escobar in a

series of papers [15], [16], [17], to the Steklov eigenvalue problem:

Ap = 0 inM,
g—zj = vy on JdM, (5:)

where (M™, g) is a compact Riemannian manifold, v € R, and ¢ € C*(M).

Historically the problem was introduced by Steklov ([32]) himself in 1902
for planar domains, in which case it has physical meaning. The function ¢
can be interpreted as the steady state temperature and the boundary condition
is saying that the flux on the boundary is proportional to the temperature.
One should notice that the Steklov eigenvalues are also the eigenvalues of the
Dirichlet-to-Neumann map, which sends a given boundary data into the normal
derivative of its harmonic extension to the interior.

The motivation Escobar had for studying the Steklov eigenvalue problem
came from the Yamabe problem on manifolds with boundary, more precisely,
from what we have called Yamabe Problem IT in section 2 of this paper. The
reason is that the behavior of the nonlinear partial differential equation (2.2) is

intimately related to the sign of the first eigenvalue of the linear part
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Ly = 0 in M,
Byp = vy ondM,

which definitely resembles problem (5.1).

The set of Steklov eigenvalues consists of an increasing sequence of nonneg-
ative real numbers starting by zero and converging to infinity, as can be checked
by standard variational arguments. One of the problems addressed by Escobar
in his papers was to give good geometric estimates for the first non-zero Steklov

eigenvalue v;, which can be variationally characterized as:

2d
¥ = min 7IM Vv,

Jors £=0 faM deUg '

Many of his results focus on the two dimensional case. The first example
([15]) is a sharp two dimensional comparison result generalizing Payne’s the-
orem ([28]) for planar domains. Escobar shows that if (M?,g) is a compact
Riemannian surface with boundary such that its Gaussian curvature is nonneg-
ative and its geodesic curvature k, of the boundary curve satisfies k4 > ko > 0,
then the first nontrivial Steklov eigenvalue of M is greater than or equal to kq.
The equality holds if and only if the surface is isometric to a Euclidean disk of
radius -

The proof of this fact is based on the well-known Weitzenbock formula

SA(VFP) = [Hess fI* +(Vf, V(AF) + Rie(V £, V1),

which is used to show that the function F' = |V|? is subharmonic if ¢ is a
given Steklov eigenfunction. The result then follows from an application of the
Maximum Principle (Hopf’s Lemma) to the function F, in which calculations

are done using Fermi coordinates around a point on the boundary curve.
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He also investigated the first nonzero Steklov eigenvalue of subdomains of
a complete simply connected surface M of constant curvature. He shows ([16])
that the geodesic balls in M maximize v, among all bounded simply connected
domains of same area, proving also that this topological assumption is a nec-
essary condition. When the curvature of the ambient space is allowed to vary,
but is always nonpositive, he proves in the same article the sharp inequality
1n(Q) <

.
—\/ Area(Q)
and the right hand side coincides with the first nonzero Steklov eigenvalue of a

, where Q is again a bounded simply connected subdomain

Euclidean ball of area Area(f2).

As for higher dimensions Escobar ([15]) considered compact manifolds of
nonnegative Ricci curvature. Again in the spirit of the Payne’s theorem, he
proved that if the second fundamental form 7 of the boundary satisfies 7 > kqg,
then vy > ’“—2“ The proof involves an application of an integral identity, obtained
from the Weitzenbock formula through integration by parts, to a Steklov eigen-
function corresponding to v;. In [16] he conjectures that the stronger inequality
v1 > ko should always hold under the same hypotheses.

It is much more difficult to produce geometric estimates for ; without any
positivity assumption on the curvature. For that reason Escobar introduces

([15]) the isoperimetric constant

I= inf olx)
~ acM min{Vol(Q;), Vol ()}’

(5.2)

where 2 C M is an open set, 1 = QN IM is a nonempty subdomain of OM,
Oy = OM\ and ¥ = 9QNint(M) is a hypersurface, being int(M) the interior
of M.

He is able then to provide a Cheeger type lower bound for v; in terms of the

constant / and a more standard eigenvalue problem on M :

(IMi(k) — ak)a
=T @G

151
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where a, k > 0, and A (k) is the first eigenvalue of the problem

Au+M(k)u = 0  in M,

%—&-ku = 0 on JOM.
an

In [16] Escobar computes the constant I of n-dimensional Euclidean balls,
and shows that two dimensional balls maximize I among all planar domains.
He also gives estimates from above and below for I in terms of the geometry of

the boundary, among other results.

6 Concluding Remarks

I hope I have succeeded in giving the reader some sense of the impact the work
of J. F. Escobar, often referred to simply as Chepe, had in Mathematics. His
achievements have been recognized by the many awards he received, notably
the distinguished Presidential Faculty Fellowship in 1992.

It should also be noted that, being from Colombia, he always held strong
ties to the Latin American mathematical community. Although he worked in
the United States - he was a professor at Cornell University in recent years - he
considered this interaction of extreme relevance, as his frequent visits to IMPA
and to the Differential Geometry Schools in Brazil can attest.

I shall finish by stating that I have the honor of having been his student
and, above all, the great privilege of having had him as a friend. His succesful
career, combined with his captivating personality, should serve as an example

for this and the generations to come.
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