n Matemdtica Contemporanea, Vol. 29, 13—40
" S B M http://doi.org/10.21711/231766362005/rmc292

K1/
(©2005, Sociedade Brasileira de Matemética

ON RIBAUCOUR TRANSFORMATIONS AND
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To the memory of José Fernando Escobar

Abstract

Obtaining minimal surfaces by a Ribaucour transformation requires
solving a system of partial differential equations, which is a Darboux
transformation. We consider the system in complex variables for minimal
surfaces parametrized by isothermal coordinates and lines of curvature.
We relate the data of the Enneper-Weierstrass representation of mini-
mal surfaces associated by Ribaucour transformations. The system of
equations is solved explicitly for a special class of surfaces, which include
important minimal surfaces. The class is characterized in terms of the
Weierstrass data. The application of these results to the helicoid provides
a new family of complete, minimal surfaces, of genus zero, immersed in
R3, with an infinite number of embedded planar ends.

Introduction

In the last two decades, the construction of new complete minimal surfaces
in R? has been a very active topic of research (see for instance [CHM], [Col,
[HM] and [JM]). The main tool in such constructions has been the Enneper-
Weierstrass representation. Recently, the Ribaucour transformation was shown
to be useful to provide new complete minimal surfaces (see [CFT2]).

Ribaucour transformations for hypersurfaces, parametrized by lines of cur-

vature, were studied by Bianchi [Bi]. He showed that these transformations can
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be used to obtain surfaces of constant Gaussian curvature or minimal surfaces
from a given such surface. Recently, Corro, Ferreira and Tenenblat, general-
ized the results of Bianchi to surfaces with any parametrization and they used
Ribaucour transformations to associate Dupin hypersurfaces [CFT1] and linear
Weingarten surfaces [CFT3].

Although the transformation for minimal surfaces is a classical result, it was
applied, for the first time, to Enneper’s surface and to the catenoid recently
[CFT2]. New families of complete minimal surfaces were obtained, of genus
zero, immersed in R?, with a finite or infinite number of planar ends and one or
two nonplanar ends. Other results on Ribaucour transformations can be found
in [CFT3], [CT] and [W].

Applying Ribaucour transformations to minimal surfaces corresponds to
solving a linear system of partial differential equations. Although the system is
integrable, finding its solutions may be difficult.

In this paper we consider minimal surfaces in R?, with no umbilic points,
parametrized (without loss of generality) by isothermal coordinates and lines of
curvature. For such coordinates, we rewrite the system of differential equations
in complex variables and we relate the Weierstrass data of two minimal surfaces
associated by a Ribaucour transformation. We explicitly solve the system of
differential equations for a special class of minimal surfaces. Such surfaces are
characterized in terms of the Enneper-Weierstrass representation. This class
of surfaces includes, important minimal surfaces such as the Bonnet’s minimal
surfaces, the helicoid, the catenoid and Enneper’s surface. We obtain new
families of complete minimal surfaces by applying the theory to the helicoid.

The paper is organized as follows: in section 1, we consider basic facts of
Ribaucour transformations for surfaces in R®. We recall the additional condition
for such a transformation to associate minimal surfaces to a given minimal
surface.

In section 2, we consider minimal surfaces parametrized by lines of curvature
and isothermal coordinates. We rewrite the system of differential equations in

complex variables and we relate the Enneper-Weierstrass data of the minimal
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surfaces associated by a Ribaucour transformation.

In section 3, we solve the system of differential equations for a special class
of surfaces, whose conformal factor satisfies a certain condition. This condition
is shown to be equivalent to requiring a special type of Weierstrass data (3.5).
Moreover we restrict the theory of section 2 to this class of surfaces.

In section 4, we apply these results to the helicoid and we provide a new fam-
ily of complete minimal surfaces of genus zero, immersed in R?, with infinitely
many embedded planar ends. We also obtain the Enneper-Weierstrass repre-
sentation of the minimal surfaces, associated by a Ribaucour transformations
to the catenoid and to Enneper’s surface.

Finally, we want to thank the referee, whose comments improved substan-

tially the final version of this paper.

1 Ribaucour transformations

In this section, we recall some basic facts on Ribaucour transformations. An
important result of this section, obtained by Corro-Ferreira—Tenenblat, states
that the ends generated by a Ribaucour transformation, applied to a minimal
surface, are embedded planar ends. For the proofs and more details, see [CFT1],
[CFT2] and [CT].

Let M and M be two orientable surfaces in R3, with Gauss maps N and
N respectively. Let e;, e; be orthonormal principal vector fields on M. We
say that M is associated to M by a Ribaucour transformation with respect to
ey, e if, and only if, there exist a differentiable function h : M — R and a
diffeomorphism v : M — M such that

a) p+h(p)N(p) = (p) +h(p) N (¥ (p)) for all p € M,
b) the subset p+ h(p) N (p), p € M, is a surface,
¢) di (e1) and di (e5) are orthogonal principal directions on M.

We observe that either side of the equality in a) is the center of a sphere of
radius h (p), that is tangent to M an M at p and ¥ (p) respectively. When the
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radius h tends to infinity when p — po, one may have two possibilities: either
the surface M extends nicely to the point ¥ (po) or else the new surface is not
defined at that point. This is the case of the planar ends produced on minimal
surfaces (see more comments later in this section). So one has to treat those
points separately.

We say that M is locally associated to M by a Ribaucour transformation
with respect to ey, eq if for any p € M there exists a neighborhood V of p in
M and an open subset V' C M, such that V is associated to V', by a Ribau-
cour transformation with respect to e;, eo. When the principal curvatures have
multiplicity one, we do not need to refer to ey, e2 and we say simply that M is
(locally) associated to M by a Ribaucour transformation.

This is the revised version of the classical definition of a Ribaucour trans-
formation, introduced in [CT]. It allows to extend the transformation to the
case when there is an open set of umbilic points. Actually, one shows in [CT]
that generically any surface of R? can be locally obtained by applying a Ribau-
cour transformation to an open subset of the plane or to an open subset of the
sphere, as long as one chooses the appropriate frame ey, es.

One can also show that, when the principal directions have multiplicities
bigger than one, by choosing different vector fields ey, e, one gets different
associated surfaces by such a transformation (see Example 3.7 in [CT]). It
would be interesting to find out if Ribaucour transformations can be applied to
a neighborhood of an isolated umbilic point.

The definition of Ribaucour transformation requires a diffeomorphism .
Examples, that have been treated by such transformations, show that one may
have two complete surfaces in R, which are not homeomorphic, although locally
they are associated by Ribaucour transformations. See for example in [CFT2]
the catenoid and the minimal surfaces associated to the catenoid, which are
topologically either the sphere punctured at any finite number of points or the
sphere punctured at an infinite numbers of points.

Obtaining the Ribaucour transformation of a surface in R? corresponds to

solving a second order nonlinear partial differential equation for h, where one
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needs h not to be a radius of curvature (this is equivalent to condition (b) of
the definition, see pg.144 [CFT1]). However, this equation can be linearized by
considering h = Q/W. One can show the next result (see [CFT1]).

Proposition 1.1 Let M be an orientable surface of R®. Assume that ey, e,
are orthonormal principal vector fields on M, —\; and —\q the corresponding
principal curvatures, i.e., dN (e;) = \e;. If a surface M is locally associated
to M by a Ribaucour transformation with respect to ey, ey then on a simply

connected domain h = Q/W , where Q and W are functions which satisfy

in(ej) = ijij(ej)v fOTi?éj, (11>
2
aQ = Zini, (1.2)
i=1
2
i=1

where w; are the dual forms of e; and w;; is the connection form.

The next result describes the surfaces M. , associated to M by a Ribaucour

transformation in terms of the solutions of the system.

Theorem 1.2 Let M be an orientable surface of R® parametrized by X : U C
R2 — M. Assume that ¢;, 1 < i < 2 are orthogonal principal directions , —\;
the corresponding principal curvatures and N is the Gauss map of M. A surface
M s locally associated to M by a Ribaucour transformation with respect to e;
if, and only if, there exist differentiable functions W, Q, Qy, Qs : V C U — R,
which satisfy the system (1.1) — (1.3), with

WS(W+XQ) (S—QT) #0  i=1,2 (1.4)
where

S = 22: () + W2, (1.5)

i=1

2
T = 2[d(e) + Y Qs (&) + WA

k=1
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and X :VCU — M, 1S a parametrization ofﬁ given by

X = X—@(ZQQ WN) (1.6)

Moreover, the normal map of)? 15 gen by

N= N—l—% (ZQ g — WN) (1.7)
i=1

In principle, Ribaucour transformations are local transformations deter-
mined by the solutions of the system of equations (1.1) — (1.3) defined on a
simply connected domain. Even if the solution is globally defined on the uni-
versal covering of the surface M, a point where h = Q/W tends to infinity may
not correspond to any point on the associated surface. For example, this is how
planar ends are produced on minimal surfaces by Ribaucour transformations
(see Theorem 1.4).

A proof of Theorem 1.2 can be found in [CFT2] (see also [CT]). One can
also show that the parametrization X given by (1.6) may extend regularly to
points where W (W + A\,Q2) = 0, whenever S (S —QT") # 0. From now on,
whenever we say that a surface M is locally associated to M by a Ribaucour
transformation, we are assuming that there are differentiable functions €2;, £
and W, locally defined, satisfying the system (1.1) — (1.3) and S (S — QT") # 0,
i=1,2.

Bianchi [Bi] showed that, by requiring an additional algebraic condition
Q3 + QF + W2 = 2cQW, (1.8)

on the solution of the system (1.1) — (1.3), Ribaucour transformations can be
used as a method of constructing minimal surfaces. This is essentially the

content of the next theorem.

Theorem 1.3 Let M be an orientable minimal surface of R, with no umbilic

points, parametrized by X : V. C R? — M C R3. Let eq, ey be orthonormal
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principal vector fields and —X\i, —Xy the corresponding principal curvatures.

Then, for any real constant ¢ # 0, the system of equations

2
aQ = > Quw, (1.9)
i=1
2
=1

is integrable. Moreover, any solution of this system satisfies (1.8), on a simply
connected domain, if the given initial conditions satisfy (1.8). In this case, the
surface X , associated to X by a Ribaucour transformation, is a minimal surface,
defined wherever S (S — QT") # 0 and it is given by

> 1
X :X—W(9181+QQ€Q—WN) (110)

and its normal map N by
~ 1
N:N+C_Q(9161+QZEZ_WN)' (111)

We observe that (1.8), with the condition that Q; # 0, defines d; (¢;) as
in (1.9) (see the proof of Theorem 1.7 in [CFT2]), while (1.9) implies (1.8), as
long as the initial conditions for €21, Q,, 2 and W satisfy (1.8).

In section 4, we will need the following result on the points that annihilate
S, where S is given by (1.5). Such a point po, generically, produces a planar
embedded end on the surface X. Moreover, the behavior of X in a neighborhood

of po is also described.

Theorem 1.4 (Corro - Ferreira - Tenenblat) Let X : D\ {po} — R? be a
minimal surface, locally associated by a Ribaucour transformation to a minimal
surface X : D — R3 such that, the functions Q;, Q and W are defined on D.
Let N and N be the normal maps of X and X, respectively. If S (py) = 0,
Q(po) #0 and S (p) # 0 for all p € D\ {po}, then

(a) for any divergent curve 7y : [0,1) — D\ {po} such that liH}fy (t) = po the
length of X () is infinite.
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(b) The minimal surface X has an embedded planar end at po, and lim N (p) =
p—po
N (po) .-

The proof of this theorem can be found in [CFT2], Proposition 1.8.

We conclude this section by observing that the Ribaucour transformation of
a minimal surface, given in Theorem 1.3, is in fact a Darboux transformation
(i.e. it transforms an isothermic minimal surface into such a surface). This

property was proved, although not stated as a theorem, in [CFT2].

Theorem 1.5 (Corro - Ferreira - Tenenblat) The Ribaucour transforma-
tion of a minimal surface given in Theorem 1.3 is a Darboux transformation.
Let X (z,y) be a local parametrization of a minimal surface such that the fun-
damental forms are I = ¢* (dx? +dy?) and II = ¢(dz®> —dy?), £ # 0, { € R.
If x (x,y) is a minimal surface associated to X by a Ribaucour transforma-
tion, then the fundamental forms of X are given by I= % (dx? + dy?) and

I = ¢ (dz® — dy?) where

9
oW
and Q, W is a solution of (1.9), with a given initial condition satisfying (1.8).

G= (1.12)

This result was obtained in the proof of Proposition 1.8 of [CFT2]. The
expression (1.12) also follows immediately by considering the formula (39) of
[CFT3], with H = 0.

It would be interesting to relate the Ribaucour transformation of Theorem
1.3 with the minimal Darboux transformation. In general, starting with a mini-
mal surface one gets a 4-real parameter (4 initial conditions for (1.9) and ¢ # 0,
related by the condition (1.8)) family of minimal surfaces associated by Ribau-
cour transformations. This fact suggests that this transformation may provide

a larger family of minimal surfaces than the minimal Darboux transformations.

2 A different approach

As we have seen in the previous section, applying Ribaucour transformations

to minimal surfaces corresponds to solving the system of equations (1.1) —
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(1.3). Although this is an integrable system of differential equations, finding its
solutions may be difficult.

In this section, we consider minimal surfaces in R®, parametrized by isother-
mal coordinates and lines of curvature. For such coordinates, we rewrite the
system of differential equations in complex variables. Moreover, we relate the
Enneper-Weierstrass data of two minimal surfaces associated by a Ribaucour
transformation.

Let M be a minimal surface with no umbilic points. Without loss of gen-
erality, we may assume that M has an isothermal parametrization X (z, Z), by

lines of curvature, whose quadratic forms are given by
1
I=¢p*dzdz  and I = 5 (d2* + dz?) (2.1)

where z =z +1iy e U C C.
The data in the Enneper-Weierstrass representation of a minimal surface in
such coordinates is a meromorphic function ¢ (z) and f = 1/g’. The conformal
factor ¢ and the function g are related on a simply connected domain by
o= Lol
21g’|

(2.2)

-b
Observe that g and its transformations %lg—i__’ la)* + |b?| > 0, provide all
g+ T
possibilities for (2.2) to hold.
A straightforward computation provides a system of differential equations

equivalent to (1.1) — (1.3), given by the following result.

Proposition 2.1 Let M be an orientable minimal surface of R?, without um-
bilic points, parametrized by X (z, Z) such that its quadralic forms are given by

(2.1). Then the system of equations (1.1) — (1.3) is equivalent to the integrable

system

1 ©-

Q. = =(W—-cQ)+20,— 2.

e o= g ran, (23)
2

Q. = & Wa (2'4)
2

W, = 2 (2.5)
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with 0 # ¢ € R and the initial conditions satisfying
(AW W; + W? = 2cQW) (20) = 0, Jor some % € U. (2.6)

Any solution of (2.3) — (2.5) with (2.6), defined on a simply connected domain,
satisfies (2.6) for all z € U. Moreover the surface )N(, associated to X 1S a

minimal surface parametrized by

=~ 2 1
X=X+—W,X,+W;X:)+-N 2.7
o (WX WX o+ 2 (2.7
and its normal map is given by
~ w 2
N={(1-—|N—-—(W. X, +W:;X;). 2.8
(1- ) ¥ - Z WX+ W) (29)

We will now show the relation between the meromorphic functions g (z) and

7 (2) of minimal surfaces associated by a Ribaucour transformation

Proposition 2.2 Let g(z) and f = 1/¢’, be the data of a minimal surface M
in R®, in the Enneper- Weierstrass representation. Then the system of equations
(2.3) = (2.5), where ¢ # 0 and @ is given by (2.2), is integrable. Any solution €,
W of this system defined on a simply connected domain, with initial condition
satisfying (2.6), determines a minimal surface M , locally associated to M by a
Ribaucour transformation, whose Weierstrass data is given by
7o) = 2= W)+ (g +1) (W g* ~ W)
20+ W (lgI” = 1) + (lgI° + 1) (W.fg + W:fg)

(2.9)

and f =1/ ".

Proof. Let X (2,Z) be a local parametrization of the minimal surface M,
whose quadratic forms are given by (2.1). Then, in terms of the functions g and
f, the normal map of M is

2Reg 2Img |g° —1
N = 2 » 12 112
lgI" +1" [g]"+1 |g|" +1

and

_ 7l 1 fg
x.= (=) 3 (v ).
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Therefore, it follows from Proposition 2.1 and Theorem 1.5, that the expres-
sion X (z, Z), given by (2.7) parametrizes a minimal surface, whose fundamental

forms satisfy (2.1). From (2.8), we have

gI° -1 ( W) g —1 2

= (1-— — —Re (W.fg),
2Reg W1\ 2Reg 1 o

= (1-— — —Re (W.f (1 — y
s = (%) o e e - o)
2Img WY\ 2Img 1 . 2

= (1—— ) ——>=——Re (iW.f (1 ;
mren ~ (i) g e (s (+4)

From the first equation we get
22 (JgI* +1)

g1 +1= _
260+ W (lgP — 1) + (lg* +1) (W.fg+ Wzfg)

and from the other two equations we have

~  1~2 w 29 1 —
29 = (|g] +1){<1CQ) |g|2+1+CQ(Wng2W5f)}.

The last two equations prove (2.9).

3 A special class of surfaces

In this section, we will consider a special class of surfaces in R®, parametrized

by isothermal coordinates, whose conformal factor ¢ satisfies the condition
0, = Ao, AeC. (3.1)

We will show that this condition implies that K¢? is a real constant, where K
is the Gaussian curvature. By considering the minimal surfaces which belong to
this special class of surfaces, we will characterize such surfaces in terms of the
meromorphic function g (2) of the Enneper-Weierstrass representation. One can

see that Enneper’s surface, the catenoid, the helicoid and the Bonnet’s minimal
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surfaces (all lines of curvatures are planar) belong to this class of surfaces.
Moreover, we will provide explicitly all solutions of (2.3) — (2.6) and we will
restrict the theory of the previous section to this class of surfaces.

We start observing that ¢ satisfies (3.1) if, and only if,

aleQRe Az + a2672Re Az I a3627§1m Az L d3€72ilm Az’ if A ?é O7

p= (3.2)
a1 |2)? + asz + @sZ + ay, if A=0,

where a1,a2 € R, a3 € C.

Proposition 3.1 Let X (z,Z) be a surface parametrized by isothermal coordi-
nates, i.e., I = p*dzdz. Assume ¢ satisfies (3.1). Then K¢* is a real constant.
If X is a minimal surface whose fundamental forms are given by (2.1), then ¢

is given by (3.2), where

1
— if A#0,
, 16 |A] jA#
a1ao — \a3\ = (33)
T if A =0,

and, without loss of generality, we may assume that a; > 0. Moreover, ¢
satisfies

4(ppzz — patpz) = 1. (3-4)

In that case, the Weierstrass data of the minimal surface is globally given

by
4|A] (a2 +a5), if A#£0,

9(2) = (3.5)
2 (a2 + as) , ifA=0, zeC.
Proof. Since X is parametrized by isothermal coordinates, the Gaussian cur-
vature is given by
4

K = =25 (99— 9s002). (3.6)
Equation (3.1), implies that ¢ is given by (3.2) and hence

—16 A" (a1as — |as*) ,  if A#0,

Koo' =
—4 (alag = |a3|2) s if A=0.
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For the minimal surface X, the principal curvatures are 4-1/p2, which implies
that (3.3) and (3.4) hold. A straightforward computation shows that g (z),
given by (3.5), satisfies (2.2). This concludes the proof.

g

Proposition 3.2 Let ¢ (2) be a differential function that satisfies (3.2), (3.3)
and (3.4). Then Q, W is a solution of (2.3) — (2.6) if, and only if,

1 F F
o = _22(—) +—], 3.7
C |: ('D QO ZZ (}9 ( )
F
W= =, (3.8)
¥
where
bieRePz 4 bye~Rebz 4 paelmBz 4 pe—ilm Bz, if B#0,
P (3.9)

b12Z + bsz + bsZ + by, if 3=0,

B=2p\f2 -2, p=%l, (3.10)

b17b2 S R, b3 € C and b1b2 — |b3|2 == ().

Proof. From (2.4) and (2.5) we have

e ©,
sp=—=W — 2W—. 11
W, 3 - 2. (3.11)
We consider F' = ¢W. Then it follows from (3.1) and (3.11) that
2
F. = %F, (3.12)

where 3 is given by (3.10). Therefore F satisfies (3.9). Hence W = F/¢p, where
@ is given by (3.2) and (3.3). In order to conclude the proof, we observe that

from (2.5) we have

Q, =—¢? (—) , (3.13)

F F
0, =— 2(—) —2 (—) ) 3.14
o) el (3.14)

Hence
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Since  has to satisty (2.3), using (3.4), (3.13) and (3.14) we conclude that Q
is given by (3.7). Moreover, it follows from Proposition 2.1 that the identity

40.Q; + F? = 2cpQF
holds. From this equation, we conclude that
¢ (FFuz — F.Fz) = F? (0 — 020z — 1/4).
Since ¢ satisfies (3.4) , we have
FF,;— F,F. =0, (3.15)

which is equivalent to saying that bybs — |bs]* = 0.

Conversely, it is a straightforward computation to verify that 2 and W, that
are given respectively by (3.7) and (3.8), satisfy equations (2.3) —(2.5) and (2.6)
for all z € C.

O

Remark 3.3 The function F given by (3.9), when § # 0, can be rewritten as

2 |bs| (0 cosh (Re Bz + p) +sin (Im Bz +v))  if |bs] >0, o = +1,

F(Z,?) = b1€Reﬂz if |b3| = b2 = 0,
bQG—RQﬂZ if |b3| =b =0.
(3.16)

Theorem 3.4 Let M be an orientable minimal surface of R®, with no umbilic
points, parametrized by X (z,Z) such that (2.1) holds. If the conformal factor
satisfies (3.1), then

= 4 F 1
X=X+ -Re Kln —> Xz] et (3.17)
c 0/, c

is a three-parameter family of minimal surfaces defined on {z € C; F (z) # 0},
locally associated to X by a Ribaucour transformation, where ¢ # 0 and o, F

are given respectively by (3.2), (3.3) and (3.9).
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If g (2) and f = 1/g" are the data in the Enneper- Weierstrass representation

of M, then g, given by

@), (G (5)7
% (). o (5).90 ()7

and fz 1/g ' provide a representation for x.

Proof. The parametrization (3.17) follows from Propositions 2.1, 3.1 and 3.2.
We observe that, due to equations (3.7), (3.13) and (3.15) the initial condi-
tions Q(20), Q.(20), Q:(20) and W (zo) of (2.3)—(2.5) are determined by choosing
F(z9), F.(20) and Fs(2,). This gives three real parameters which together with
parameter ¢ must satisfy (2.6). Therefore, X is a three-parameter family.
The expression of § given by (3.18) follows from Propositions 2.2 and 3.2.
(]

Remark 3.5 It follows from equations (1.12), (3.4), (3.15) and from Propo-
sition 3.2 that the fundamental forms of X, given by (3.17), are of the form
I = 3dzdz and IT = —1 (d2* + dz2) where

5o ¥ (42&

B |

+ —) . (3.19)

T2\ |F el TP

4 Applications

In the previous section, we solved the system of differential equations which
provides minimal surfaces locally associated by Ribaucour transformation to
any surface of a special class of minimal surfaces. One can see that Enneper’s
surface, the catenoid and the helicoid are surfaces which belong to this class of

surfaces.
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In [CFT2], one can find the properties (number of ends, completeness, total
curvature, symmetries) of the minimal surfaces associated to Enneper’s surface
and to the catenoid, according to the value of ¢, the constant of the algebraic
condition (1.8).

In this section, we provide similar results for the helicoid, we obtain a new
family of minimal surfaces of genus zero, immersed in R®. Moreover, we show
that such surfaces are complete, have an infinite number of planar ends and
have infinite total curvature. We conclude this section providing a Weierstrass
representation for the minimal surfaces locally associated by Ribaucour trans-
formations to Enneper’s surface, to the catenoid and to the helicoid.

We observe that the usual Weierstrass representation of the helicoid, given
by f(z2) = e7* and g(z) = —ie*, does not determine a parametrization by
lines of curvature. In order to apply the theory of section 3 in the following

proposition we will consider another Weierstrass representation for the helicoid.

Proposition 4.1 Let X (z,Z) be a parametrization of the helicoid given by the
Weierstrass data g (z) = —ieV® and f = 1/¢g', where Vi = e™/4. Excluding the
helicoid, a minimal surface is X by a Ribaucour transformation as in Theorem
1.3 if, and only if, it belongs to a three-parameter family of minimal surfaces

given by (3.17), where ¢ # 0 is a real constant, ¢ = cosh (Re v/iz) and
F(z,Z) = ocosh (Re fz + p) +sin (Im 5z + v) (4.1)
for u,v € R, 0 = =£1 and
B = pVi—2c, p=+l1. (4.2)

Any surface of the family X (z,2) is defined for z € C\ {z}, where
_opvemt il i 1. m_
L= 1 i Km m)u+ (m+zm> (u+02 2k7r)} (4.3)

fork e Z, and
m=1\/—2c+ V4ct + 1. (4.4)
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Proof. The first and second fundamental forms of X are given by (2.1), where
¢ = cosh (Re ﬂz) Moreover, it is easy to see that, ¢ satisfies (3.1), for A =
V/i/2. Hence, the helicoid satisfies the hypothesis of Theorem 3.4. Thus, X is
given by (3.17). Therefore, it follows from § # 0 and Theorem 3.4, that F' is
given by (3.16), where b0y — |I)3|2 = 0.

If biby = |bs| = 0, then F = e*R¢82  In this case, one can show that there
exists a real constant a # 0, such that @ (z) = ¢ (z + \/—_ia). Moreover, due to
(1.12) the function h = % = @ # 0. It follows that X is the helicoid.

If biby = |bs| # 0, without loss of generality (see (3.17)), we can choose
biby = |b3| = 1/2 and we obtain (4.1).

Since X (z,z) is defined for all z € C, it follows from (3.17) that X (2, z) is
defined for all z € C\ {z|F (z, ) = 0}, which implies that X is defined on C
punctured at the points z; satisfying (4.3).

O

In the following result we describe the ends of the minimal surfaces locally

associated to the helicoid by a Ribaucour transformation.

Proposition 4.2 Any minimal surface X (z, Z), defined by (3.17) forz € C\ {z:},
has an infinite number of planar embedded ends zy, given by (4.3). The Gauss
map N of)N( satisfies,

lim N (z) = N (2, %) ,

z2—2zp

where N is the Gauss map of X .

Proof. The result is a consequence of Theorem 1.4.
O

Remark 4.3 Considering the ends z, of any surface of the family X as points
of R?, we conclude that all points 2, = (21, yx), given by (4.3), are on the

intersection of the straight line

y =m2z + opV2mp, (4.5)
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with the straight lines
ke Z.

Corollary 4.4 Any surface locally associated by a Ribaucour transformation to

the helicoid has infinite total curvature.

Proof. In Proposition 4.1 we saw that, excluding the helicoid, the minimal
surfaces associated to the helicoid by a Ribaucour transformation are defined
on C\{z}, where the points z, are given by (4.3). Each minimal surface
corresponds to an immersion of the sphere punctured at a pole and at the
points corresponding to the points z,. Since the points z; are on a line of R,
then the corresponding points are on a circle on the sphere and accumulate at
the pole. Therefore, any surface of the family X corresponds to an immersion of
the unit sphere punctured at an infinite number of points. Therefore, it follows

from Huber’s Theorem (see [HU]) that the surfaces have infinite total curvature.

O

Figure 1: Minimal surface associated to helicoid in a neighborhood of the end
20, withc=p=0c=1and p=v=0.
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Figure 2: Minimal surface associated to helicoid in a neighborhood of the ends
zoand 2y withe=p=oc=1land u=v=0.

Figure 3: Minimal surface associated to helicoid in a neighborhood of the ends
zoand 2y withec=p=0=1, u=0and v =7/2.

The illustrations above show examples of the minimal surfaces associated
to the helicoid by a Ribaucour transformation. In Figures 1 and 2 we chose
c=p=oc=1and y = v = 0 and in Figure 3 we chose ¢ = p = 0 = 1,
u = 0 and v = 7/2. Moreover, we observe that the figures were obtained by
considering polar coordinates on neighborhoods of the points zy and z;, which
generate two planar ends.

The surfaces locally associated to the catenoid and to Enneper’s surface
by a Ribaucour transformation are complete, as it was proved in [CFT2]. We
will now show that the surfaces, associated to the helicoid by a Ribaucour
transformation, are also complete.

In order to do so, we need to show that any divergent curve on the surface
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X has infinite length. Considering that X is defined on C\ {2k} peg, it follows
from Remark 4.3 that any divergent curve a (t) = (z (¢),y (t)) satisfies one of
the following conditions when ¢t — oo : a) (z(t),y (t)) — 2z, for some k; b)
22 +y* — oo and for ¢ sufficiently large (z (¢),y (t)) € C\T, where T is an open
strip that contains the straight line (4.5); ¢) 22 +y* — oo and Vt, 3t > ¢, such
that o (t) € T. We will show that a divergent curve satisfying any of the above
conditions has infinite length, by adapting to our case the arguments used in
[CFT2).

Lemma 4.5 Let U be a subset of R? endowed with a conformal metric
ds® = % (z,y) (dz® + dy?) .
Assume that there are a,b,r,d € R, with § > 0, such that the strip
D= {(Ly) ER2|—§§y—aI—b§6}

is contained in U and @ (x,y) > r > 0, for all (x,y) € D. Then the length of

any reqular curve o joining two points in distinct components of R2\D satisfies

2ro
(o) > :
) = V1+a?
Proof. The line R, : ay + x = 0 is orthogonal to D and R, N 9D = { Py, P»}
hence
2
P — P = .
= d 1+ a?

Setting DT = {(z,y) e R®ly —ax — b > §}and D~ = {(z,y) e R}y —ax — b <
if a:[0,1] — U C R?is a curve such that « (0) € DT and « (1) € D™, there
exists an interval [to,t1] C [0, 1], such that « (to) € DNIDY, a(t1) € DNID~
and a(t) € D, V t € [to, t1]. Therefore,

(@2 [ Fla@)la Oldz [ rlaOldezr [0 Oldz o2

_5}:
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Theorem 4.6 Any surface locally associated to the helicoid by a Ribaucour

transformation as in Proposition 4.1 is complete.

Proof. We will exclude from our proof the helicoid, which is complete. The
other surfaces locally associated to the helicoid by a Ribaucour transformation
are given by (3.17), whose first fundamental form is ds?* = @?dzdz given by
(3.19), where

@ = cosh (Re \/z_‘z) ; (4.6)

F and § are given by (4.1) and (4.2) respectively. Hence

2
P E _ +2(1+49 . 1
P = g B 4 I — tanh (Re \/Zz) + 7 (4.7)
f 2
© F, 2v2(ReF, +ImF,) .
= T |4|=| — h 1
20 4 7 7 tan (Re \/z_z) +
2
") F, 2v2(ReF, +Im F,)
> = = L 4.8
Z 31 Y7 F a )
Since [ is given by (4.2) we have that
P {
= (m+—), = +1. 4.9
h=7 ( m) p (4.9)
where m is given by (4.4). We introduce the following notation
H = cosh(Refz+ p) — osin (Im 3z + v) (4.10)
1
93: = Thd— (4.11)
m

From (4.1), (4.9) and (4.11) we have that

|(ReF, +Im F,)| = (64) sinh (Re Bz + p1) — (6-) cos (Im Bz + v)|

1
—F |0
2\/§|

2—\1/5 [(04) cosh (Re Bz + u) + |0-] |cos (Im Bz + v)|]

IN
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H oy 108 _lo-]
(63 —2) + B cosh (Re 8z + 1) = |cos (Im Bz + V)]
(4.12)

Claim 1 There are real numbers 4 > 0 and §; > 0 such that p(z) > ry,
Y z € C\T, where

T={2€C|—6 <Refz+pu<d}. (4.13)

Indeed, consider £; such that

40, —20—0-)
£1 > max {0, 67— 200, } . (4.14)

Consider also §; > 0 given by
cosh (01) =14 ¢; (4.15)

and T the region of the complex plane limited by the lines Re 5z + p = £4y,
ie. T given by (4.13). If z ¢ T we have that

cosh (Re Bz + ) > cosh (&) = 1+ ¢, (4.16)

hence, from (4.12) we get

olo_|
2F

QZ H 2 1 09+
Lo T 0 ) e -
|C‘¢_40F (67 —2) T (RefBz + p)

It follows from (4.1) that

42 > el o 2] 4 1P ]
Recall from (4.4) that m > 0 and m # 1. Moreover, the expression above is
invariant under the transformation m — _ In fact, this transformation keeps
0 invariant and it changes the sign of _. Hence, we only need to consider
0<m<1,ie,0<6;+60_ <2 Observe also that for these values of m, we

have 6, > 2 and 0_ < 0.
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From (4.10) we get

7] H 0 1 o0, o6_
LI _— — NENSPRP i b —_—
45 2 &F (6 —ob —2) 45—+ 5F
H of_ o6, —2
> A g2 _ g0_ o0y :
i (63 —2064) + S S S0 (Im Bz + v)

Thus

7 1

Since z € T, it follows from (4.16) and (4.10) that

H (0% —200) > & (07 — 200,) .

) 02 — 200 62 — 200
le| £ > L 5% U++51(+ of.)
@ — 4oF 2 2

+2(20_9++6,> "
As a consequence of (4.14), e; satisfies the relation

1 (62 — 200
%-ﬁ-?&a—&r—i—ﬁ,) > 0.
Therefore, it follows from (4.10) that

(cosh (Re Bz + p) — 1) (62 — 206.)
8 |c| F '

Z>
2
From (4.16) we have

l-— >1- = I :
cosh (Re Bz + p) 14e 14¢&

Thus,

§291—209+ L 1 2(61_200+)81:r1>0.
) 16 |¢| cosh (Re 3z + p) 16 |c| (1 4 &1)

Hence, we get @ > 1.
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Claim 2 There are real numbers ro > 0 and dy > 0 such that @ (z) > ro,
VzeTND, where D = |J D, with

keZ

Dk:{zE(C|—62<Imﬁz+u+0—;—2kﬂ<52}. (4.17)

In fact, let z; € C be a planar end of X. Then F (zr,Ze) = 0 ie,
cosh (Refz+ ) = 1 and sin(Im Bz +1v,) = —o. Then z, belongs to the
lines Re Bz +p = 0 and Im 32 +v = —0% + 2km which are orthogonal (see
Remark 4.3). Consider €, € R, such that

0<52<min{1,92+4|_72|6+}, (4.18)
Let 0, be a real number such that 0 < dy < 7/2, sinds = &5 and let Dy, be a re-
gion of the complex plane bounded by the lines Im Sz +v = — & +2km £y, i.e.,
Dy, given by (4.17). If z € Dy, then Im Sz+v € (=% + 2km — &2, — % + 2km + &2).
If 0 = =£1, we get

cos (—% + 2km F 62) < cos (ImfBz +v) < cos (—% + 2km £+ 62) ,

which implies that

—sindy < cos (Im Bz + v) < sin ds. (4.19)

Therefore, for any value of o we get |cos (Im 5z + v)| < g5 and o sin (Im 8z +v) <

0. It follows from (4.12) that

o, H » 10 16|
2 (8 )y D L , - ,
Idgo B (6% 2)+2 2UFcosh(Reﬁz+u) -— |cos (Im 3z + v)|
Using (4.10) we have
3 H 16y 16|
£ > L (02 -2)+=— 2 cosh ~ s
\c\(p > 40F(9+ )+2 5o F 8 (Re Bz + p) 2UF\cos(mﬂz—i-z/)\
1 Y ;
= 40—F(Qi—29+—2)cosh(Reﬁz+,u)—%—F(Hi—iz)sm(lmﬁz—l—y)—)—

116
3 2% F |cos (ITm Bz + V)] .
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However,
7
40 F
since 6, > 2 and osin (ImfBz+4v) <0

(4 — 63) sin (Im Bz + v) > 0,

] 1
" > LeloF (67 — 20, —216_] |cos (Im Bz + v)|] .

Since z € Dy, then |cos (Im 8z + v)| < €9, and

]
dicloF

g > [62 — 20, —2(0_|ea) . (4.20)

From (4.18), we have that
62 — 20
T T 216 |e >0
2
Since z € T we get oF < 2cosh(Refz + p) < 2cosh(4;) = 2(1 +¢;), from
(4.15). Tt follows from (4.20) that

62 — 26,

——=72>0
20c(1+e)

i
'
hence @ > ry > 0.

Claim 3 Any divergent curve on the surface X given by (3.17) has infinite
length.

Indeed, let a (t) = (z (t) ,y (t)) be a divergent curve such that tli>nc>1<: a(t) = z,
for some k € Z. Then the length of X («) is infinite, as a consequence of
Theorem 1.4.

If a(t) = (z(t),y(t)), t € [0,00) is a regular curve such that z* + y? — oo,
when ¢ — oo, then the length ¢ ()? (« (t))) = co. In fact, consider ry,rs, d1, o2
given by Claim 1 and Claim 2 and r = min {ry,ro}. If there exists ¢; > 0 such
that V ¢ > t1, a(t) ¢ T, then it follows from Claim 1 that V ¢ > ¢; we get
@ (a(t)) > r, thus

e(fg (@ (t))) > /x rdt = .

t1
On the other hand, if V ¢;, there exists ¢ > ¢; such that a(t) € T, since

22 +1y% — oo, when t — o0, the curve « crosses an infinite number of strips Dy,.
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But, by Claim 1, we get ¢ > r in Dy, for all k € Z, since the width of each strip
Dy, is 26ym?/+/1 + m?, we conclude the proof of Claim 3, by using Lemma 4.5.
This completes the proof of Theorem 4.6.

0

Proposition 4.7 Consider the helicoid with the Weierstrass data g (z) = —ieV,
f =1/¢" and the corresponding parametrization X (z,%). Excluding the heli-
coid, any surface of the family X (2,%), locally associated to X by a Ribaucour
transformation as in Proposition 4.1, has a Weierstrass data § given by (3.18)
and f =1/§ ', where ¢ = cosh (ReViz) and F (z,2) is given by (4.1).

Proof. The result is a consequence of Theorem 3.4.
O

In [CFT?2], one can find more details on the minimal surfaces associated to
the catenoid and to Enneper’s surface. As an application of section 3, we will

present a Weierstrass representation of these surfaces.

Proposition 4.8 Let X (z,Z) be a parametrization of Enneper’s surface given
by the Weierstrass data g(z) = z and f = 1/g'. Excluding Enneper’s sur-
face, any surface of the family X (2,%2), locally associated to X by a Ribaucour
transformation as in Theorem 3.4, has Weierstrass data § given by (3.18) and
f= 1/g ', where p = (1 + 2Z) /2 and

F (2,z) = o cosh (Re pv/—2¢ z + ) + sin (Im p v/—2¢ 2 + v/)
where ¢ # 0 is a real number, and p,v € R, o,p = £1.

Proof. The result is a consequence of Theorem 3.4.
O

Proposition 4.9 Let X (z, Z) be a parametrization of the catenoid given by the

Weierstrass data g (z) = —e* and f = 1/g'. Excluding the catenoid, any surface
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of the family x (z,2), locally associated to X by a Ribaucour transformation as
in Theorem 3.4, has Weierstrass data § given by (3.18) and f=1/G', where
¢ = cosh (Re z) and

F(z,z) = ocosh (Repv1—2¢ 2 + p) +sin (Impv/1 — 2¢ z + 1)
with p,v € R, o,p==+1if c#£1/2 and
F(2,2) =b12Z + b3z + b3z + by
with by # 0,b, € R, by € C and byby = |bs]? if ¢ = 1/2.

Proof. The result is a consequence of Theorem 3.4.
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