n Matemdtica Contemporanea, Vol. 29, 171-180
" S B M http://doi.org/10.21711/231766362005/rmc2910

K1/
(©2005, Sociedade Brasileira de Matemética

ON A CONSTRUCTION OF PARAMETRIZED
MINIMAL NETWORK

Sumio Yamada ®

Abstract

We survey a new method first introduced in [MY], which can be used
to construct a minimal network in R™ which spans a finite set of points
by minimizing a form of energy functional. The new construction is very
much relevant to the much studied Steiner minimal network problem.

1 Introduction

We start with the following classical problem;

Generalized Fermat Problem Find a point in the plane, the sum of whose

distances from given n points is minimal.

When n = 2, the solution is clearly any point lying on the line segment
connecting the two given points. When n = 3, it is called the Fermat Prob-
lem [IT], whose solution attributed to Torricelli is given by using classical plane
geometry.

We now formulate this problem using calculus of variations. Recall in min-
imizing length of paths connecting two given points, there is no sequential
compactness for a minimizing sequence of maps (paths) since one can always
repararametrize the curves without changing the length, and the space of such
reparameterizations is not compact. For the case of n = 2, this problem can be
skirted around by minimizing the energy functional instead. The energy min-

imizing sequence of maps (paths) are automatically length minimizing, and a
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convergent subsequence exists. An energy/length minimizer thus obtained pro-
duces a constant speed parameterization of the path connecting the two given
points.

One can try to follow the same argument for n = 3, by minimizing the sum of
the energy for three segments connecting the interior vertex and the given three
boundary points. It turns out that the juncture point which minimizes this
functional is the center of mass of the triangle formed by the three points. This
solution clearly does not minimize the length, as one can see by observing that
for a triangle with a vertex whose interior angles is larger than 120 degree, the
juncture point which minimizes the length is the vertex itself, while it cannot
possibly be the center of mass of the triangle.

In a collaboration of the arthor with C. Mese [MY], we introduced a weighted
energy functional. Simply put, it is the sum of the energy from the three
segments, weighted by reciprocals of weights ¢; > 0, (i = 1,2,3) with > ¢, =
1. As the space of such weights are compact, a minimizing sequence in the
product space of the space of maps and the space of weights has a convergent
subsequence, which then produces a point which minimizes the distances from
the three given points.

To be more precise, we start with definitions, which allow us to deal with
much more general settings. Let G be a connected finite graph. Denote by G
the set of vertices of G incident with only one edge. The vertices not in 0G are
called interior vertices. In this paper we assume that the interior vertices of the
graphs are of valence greater than two. Suppose there are m edges in G and n
vertices in OG. Label the edges of G by ey, ..., e, so that ey, ..., e, corresponds
to the n edges incident to a vertex in 0G. Now let the vertices incident to the
edge e; be labeled e; o and e; ;. Here, the labeling for an edge e; with ¢ =1,...,n
is chosen so that e;o € 9G. Let €;; ~ ey (4,4 =1,...,m, 4,7/ =0,1) if e;;
and ey j represent the same vertex in G.

Let C be defined by

C={c=(c1,sm): 14+ ..tCmn=1 ¢>0@G=1,..,m)}
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Fix p1,...,p, € R™ and define
Ac = {a=(ay,....an)a;: I = R" € C* so that a;(0) =p; (i=1,...,n)
and O[l(]> = Oéi/(j/> (Z = 1, ...,m,j = 0, 1) if €ij ~ el-/_’j/}.

Note that a € Ag can be seen as a map from G to R™ satisfying a(0G) =

{pl’ sy pn}
The length L(«) of the network «[G] is given by the sum of the lengths of

the curves defined by oy, ..., Qu;

L(c«):Z/O1

Let ¢ = (c1,...,cm) € C. We say that o = (o, ..., a4,) € Ag is compatible

ok

7 dt.

with ¢ if o;(t) is a constant map whenever ¢; = 0. Otherwise, we say « is

incompatible with ¢. Furthermore, we define the c-energy of o € Ag as

c 1 1 ;
E.() = Z a/o |d$ ‘th if a is compatible with ¢
00 if a is incompatible with ¢

Here, Zc: denotes the sum over ¢ with ¢; # 0.

We consider the variational problem of achieving

g o, B 0

and show that its minimizing element is a length minimizer in an appropriate
sense.

Note here that the Fermat Problem corresponds in the setting where m =
n = 3 and the graph G is the standard tripod, whose boundary 9G is prescribed
to be sent to a set of given three points {p;, ps, ps} in R2.

2 Minimizing Length and Energy Functionals

Lemma 1 For every ¢ € C and o € Ag, L(e) < (Eo(a))"?.

L(e) = (E.(a))? is achieved if and only if %

ot
1,....m).

The equality

=L and ¢ = <5— (i =
& ¢ Yk (
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Proof. By the Cauchy-Schwartz inequality, as well as the fact the energy of a

parameterized curve bounds from above the square of the length, gives

c e N2 /o g\ 12
ke[

<1 (Z - / ) = (Bo())V?.

We have equality in the first inequality above if and only if ¢; = Zl"ﬁ and in
8@
| =1

oo

the second inequality if and only if

O
We next show that the minimizing element of our inf inf variational problem

in fact minimizes the total length L.

Theorem 2 If
Ee.(a) =inf inf E.(a)

ceC acAg

for ¢t € C and o* € Ag, then L(a*) < L(a) for all o € Ag.

Proof. First, note that if ¢ € C and a® € A¢ satisfies E.(a) = inf,ec 4. Eo(a),

then af : I — R™ (: = 1,...,m) must be energy minimizing; i.e.
dy |

18 2 1
Ll =]
0 0 dt

for all v : I — R" € C* with v(0) = a¢(0) and (1) = af(1). (Otherwise, we

can replace af by 7 to lower the c-weighted energy.)

dog
dt

dt

In particular, this implies that o is a one-dimensional harmonic map, which
in turn implies it is linear and thus ‘%

ifA=3" A, then A = (&,...,2=) € C and

Eo(a") < Ex(a) =) (ij) =A <Z >\i> = L(a*)? (2)

by the minimality of ¢*. Furthermore, L(a*)? < E.-(a*) by Lemma 1 and this
shows L(a*)? = E(a*).

is a constant, say A;. Now note that
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For an arbitrary choice of a = (a1, ..., i) € Ag, we wish to show L(a*) <
L(«a). Since reparameterizing a curve does not change the length of the image,
without the loss generality, we may assume that a; (i = 1,...,m) is parameter-
ized proportional to arclength and let I; equals the length of the image of ;.
By the minimizing property of ¢* and o, E.«(a*) < E.(«) for every ¢ € C and

every a € Ag. Thus, if we set ¢ = (¢, ..., ¢,,) € C where ¢; = ﬁ7 we obtain

c c

Ea) =) élf = Zﬁlf = (i lj) (i li) = L(a)?,

Yl

and this implies

Therefore, L(a*) < L(a).

O

Lemma 3 If

E.(a*) =inf inf F,
~(0) = It I El)
@ % * Ai doj |y

for ¢t € C and o* € Ag, we have ¢; = ST where || = ;.

Proof. Immediate from (2) and Lemma 1.
O

3 Existence of the Minimizers

Proposition 4 For each c € C, there exists a c-energy minimizer a° € Ag. In

other words, there exists a° € Ag so that

E.(a) = inf E.(a).

acAg
Proof. Fix ¢ = (c1,...,¢m) € Cq and let {o&f = (ad,...,ad)} C Ag be a
minimizing sequence, i.e.

lim E.(o’) = inf E,(a).

j—00 acAg
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If we reparameterize of with respect to arclength and call it &7, then
E. (&) = L(a?)? = L(a?)? < E,(of).

Therefore, we may assume that o/ is arclength parameterized with speed 1.
Assume E,(a?) < M. Thus, (I/)? < ¢;E, (o)) < ¢;M < M. This in turn
implies that o’ is an equicontinuous family of maps. By the Arzela-Ascoli
Theorem, there exists a subsequence of a/ (which we still denote by o’ by abuse
of notation) which converges uniformly to a® € A¢. In particular, lim;_, Pl

where [; is the arclength of a¢([0,1]). It then follows that

IN

inf E.(«a)

acAg

E.(a)
- Z %lf

- Zl lim (I7)?

Ci =0

= lim E,(af)
J— 0
= inf E.(a)

acAg

and this shows the existence of a c-energy minimizer o
O

Theorem 5 There exists an absolute minimizer for the inf inf variational prob-
lem. In other words, there exists ¢* € C and o € Ag so that

E.(a*) =inf inf E.(«a).

ceC acAg
Proof. Let ¢/ = (c],...,¢},) € C be a minimizing sequence. In other words,
if we let o/ € Ag be a ¢?-energy minimizer whose existence is guaranteed by
Proposition 4, then
lim E,;(¢’) = inf inf E.(a).

j—o00 ceC acAg
Since «! is energy minimizing (see proof of Theorem 2), it is parameterized by

arclength.
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Since ¢ C R™ is compact, there exists a subsequence of ¢/ (still denoted
by ¢/) which converges to ¢* € C. Without the loss of generality, we may
assume Ei(a/) < M and ¢/ # 0 forall j = 1,2,...and i = 1,2,...,m. If I/
is the arclength of o([0,1]), then (I/)? < ¢/E4(ad) < ¢/M < M. Thus, o)
( =1,2,...) is an equicontinuous family of map and there exists a subsequence
of o/ (still denoted by o) which converges uniformly to af. Let I is the
arclength of a*(]0, 1]).

If ¢f # 0, then

1 .
—(I? = lim —(¥)?
(&) Jim (@)
1. 1 1 :
].ggcg(z) +].ggo(c: CZ)(Z)

Since (I7)? < M, the last term on the right hand side equals 0. Therefore,

inf inf F, < Ex(a*
‘I:TEIC QIEI}‘lG C(a) - c (a )

I
[
Q*l,_.
-
o %
£
no

ct 1 .
= 1l —(I)?
i D gl
< _lim Ecj(Oéj)
j—00

= inf inf E.(a)
ceC acAg

and thus E.(a*) = infec infaca, Eeo(a).

O
Remark. The absolute minimizer as above can have various degenerations of
edges. In particular, when the domain graph G has a nontrivial topology, there
are various ways the topology of the image network «(G) result from degen-
erations of edges. Consequently we do not expect uniqueness in this length
minimizing solution. For some examples where the uniqueness fails, see, for

example [IT].
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4 Geometry of the Minimizers

For the energy minimizers thus obtained, we demonstrate a particular balancing
phenomena, due to the stationarity of the energy functional. Note that the

stationarity condition is used here as a local property.

Theorem 6 Choose an interior vertex p in G, and let ey, ...,e;, be the edges
incident to p. For ¢® € C denote the weights assigned to the edges {e;} by
{2}, Provided that each ¢ is strictly positive, a -energy minimizing map o°

satisfies

kvO

k1 da
Lo

Proof. Let V be an arbitrary vector field on U*_,af(I), vanishing at all the

vertices but «(p). In this sense, V defines a local interior deformation of the

image graph a°[G] around a(p). Let a® € Ag be defined by setting af(t) =

o + sV (a?(t)) (i = 1,...,k). Without loss of generality, we may assume that

each o : I — R" is oriented so that a2(1) = af(p) By the minimizing property

of a°, we have

d
0 = EECO(CYS”S:O
d L /das Oaf
- %(ZJ: /0 8t’8t>dt ls=0
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o

where aa—to( ) is defined by continuity. Since V(a?(p)) is arbitrary, we have
shown Y. 55+ 8oy (p) = 0.
g

minimizers, this balancing around an interior vertex with nondegenerate

edges has a more direct geometric meaning.

Corollary 7 Let o* and c* be as in Theorem 2. For an interior vertex p in G
with all the edges (e, ..., ex) incident to p nondegenerate with respect to a*, the
k unit vectors outward and tangent to the edges sums up to a zero vector. In

particular for k = 3, the three edges meet at 120 degree angle.

*
da}

Proof. Let \; = |5£

thus Theorem 6 implies

and A = }" ), From Lemma 3, we obtain ¢; = 3 and

hO
kv*

k 1 k
Zra— =

Jj=1

u*l’i

Since %%(1) is a unit vector which indicates the outward direction of the

image of o, the statement follows.
O

Recall the well-known fact [IT] that the solution to the Steiner minimal
network problem has vertices at which three edges meet at 120 degree angles;
a special case of the general phenomena for c-energy minimizer described in
Theorem 6 above. It should be noted here that the so-called Steiner problem is
about finding a network of the least length among all possible graphs. As it has
been known that only graphs with vertices of valence three appear as solutions
to the Steiner problem, the infinf approach introduced in this article would
produce the Steiner network only when we start with an appropriate graph G.
On the hand the generalized Fermat problem (n > 3) can be solved using our
method, while the it has little to do with the Steiner problem, for the same

reason that a vertex of valence greater than three is inefficient in minimizing
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length. Hence our method is potentially useful in situations where introducing
a juncture is costly compared to the lines, so that it only make sense to have

junctures with the number of valence much higher than three.
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