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EXAMPLES OF BIMINIMAL SURFACES OF
THURSTON’S THREE-DIMENSIONAL
GEOMETRIES *

Eric Loubeau® Stefano Montaldo ®

1 Introduction

Since their first work on harmonic maps [5], J. Eells and J.H. Sampson sug-
gested the idea of studying k-harmonic maps. For k£ = 2, the idea is the fol-
lowing. First define harmonic maps ¢ : (M, g) — (N, h) between Riemannian
manifolds as critical points of the energy E(¢) = 3 [, |[d¢|*v,. The corre-
sponding Euler-Lagrange equation for the energy is given by the vanishing of
the tension field T(¢) = trace Vd¢. Then define the bienergy of a map ¢ by
Es(¢) = 5 [u; |1T(9)[> vy, and say that ¢ is biharmonic if it is a critical point of
the bienergy.

In [6] G.Y. Jiang derived the first variation formula of the bienergy showing

that the Euler-Lagrange equation for F, is

72(¢) = — (A?7(¢) — trace R (d¢, 7(¢))d¢) = 0. (1)

The equation 73(¢) = 0 is now called the biharmonic equation.

In [4] B.Y.Chen and S. Ishikawa defined biharmonic submanifolds of the
Euclidean space as those with harmonic mean curvature vector, and proved
that any biharmonic surface of the Euclidean 3-space is harmonic, i.e. minimal.

The latter result has suggested the following
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Conjecture: Any biharmonic submanifold of the Euclidean space is harmonic,
1.e. minimal.

If we consider the biharmonic equation 7 (¢) = 0 for isometric immersions into
the Euclidean space we recover Chen’s notion of biharmonic submanifolds, so
the two definitions agree.

The result of Chen-Ishikawa was generalised in [3], by R. Caddeo, S. Mon-
taldo and C. Oniciuc, to prove the non-existence of (non-minimal) biharmonic
immersed surfaces in H®, whether compact or not. The situation is hardly richer
in §*, where §*(%) is the sole possibility [2].

To have a larger and more interesting class of surfaces the authors proposed
in [7] to study isometric immersions which are critical points of the bienergy for

normal variations giving the following

Definition 1.1. An immersion ¢ : (M™,g) — (N™,h) (m < n) between Rie-
mannian manifolds, or its image, is called biminimal if it is a critical point of
the bienergy functional F» for variations normal to the image ¢(M) C N, that

is:
dBsy(¢)|
dt  l=0

for any smooth variation of the map ¢, :] — ¢, +e[x M — N, ¢ = ¢, such that
V = 2|, is normal to ¢(M).

Note that this variational principle is close to the Willmore problem, the
disparity being that we do not vary through isometric immersions.

In the instance of an isometric immersion ¢ : M — N, requiring that the
normal part of 75(¢) is zero characterises biminimal isometric immersions, that

is the mean curvature vector field H of ¢ satisfies:
[A’H — trace RN (dp, H)d¢]* = 0, (2)

where [.]* denotes the normal component of [.].
A generalisation of biminimal immersions are A-biminimal immersions, they are

defined as critical points, with respect to normal variations of fixed energy, of
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the constrained bienergy functional

1
Eirld) =3 [ 1r@)Pv,+) [ ldoP,
M M
The Euler-Lagrange equation for A-biminimal immersions is
[real* = [r] =27~ =0,

In this paper we construct some new examples of biminimal surfaces of
the Thurston’s three-dimensional geometries following some basic constructions

introduced, by the authors, in [7].

Notation. We shall place ourselves in the C'*° category, i.e. manifolds, met-
rics, connections, maps will be assumed to be smooth. By (M™, g) we shall
mean a connected manifold, of dimension m, without boundary, endowed with
a Riemannian metric g. We shall denote by V the Levi-Civita connection on
(M, g). For vector fields X,Y,Z on M we define the Riemann curvature op-
erator by R(X,Y)Z = Vixy|Z — [Vx, Vy]Z. For the Laplacian we shall use
A(f) = divgrad f for functions f € C*(M) and A*W = — trace VV*W for

sections along a map ¢ : M — N.

2 Codimension-one biminimal submanifolds

Let ¢ : M™ — N™*! be an isometric immersion of codimension-one. We denote
by B the second fundamental form of ¢, by N a unit normal vector field to
¢(M) C N and by H= HN the mean curvature vector field of ¢ (H the mean

curvature function). Then we have

Proposition 2.1. [7] Let ¢ : M™ — N"*' be an isometric immersion of
codimension-one and H = HN its mean curvature vector. Then ¢ is biminimal
if and only if:

AMH = (|| B||* — Ricci(N))H. (3)

If the ambient space has constant sectional curvature, Condition (3) takes

a simpler form as shown in the following



4 E. LOUBEAU S. MONTALDO

Corollary 2.2. [7] An isometric immersion ¢ : M™ — N™"(c) into a space

form of constant curvature c is biminimal if and only if:
AMH — H(n*H? — s +n(n—2)c) =0,

where s s the scalar curvature of M™. Moreover, an isometric immersion ¢ :
M? — N3(¢) from a surface of Gaussian curvature G to a three dimensional

space form is A-biminimal if and only if:
AMH —2H(2H? -G+ )) =0, (4)

Remark 2.3. Condition (4), for A = 0, is very similar to the equation of the
Willmore problem (AH +2H(H?— G) = 0) but the minus sign in (4) rules out

the existence of compact solutions when ¢ < 0.

In [7] the authors, using Corollary 2.2, have described some constructions
to produce examples of biminimal immersions in a space form. To explain the
constructions, let’s first recall that a submersion ¢ : (M, g) — (N, h) between
Riemannian manifolds is a horizontally homothetic submersion if there exists a

function A : M — R, called the dilation function, such that:

e at each point p € M the differential d¢, : H, — T4V is a conformal
map with factor A(p), i.e.

N (p)g(X,Y)(p) = h(de,(X), db,(Y))(¢(p))
for all X,Y € H, = Ker,(dp)*;

e X (\?) =0 for all horizontal vector fields, X being horizontal if X, € H,
for all p e M.

The idea is then to start with a horizontally homothetic submersion ¢ :
(M, g) — (N?% h) to a surface, consider on N a differentiable curve v : I C R —
N and take the inverse image S = ¢~!(y(I)) C M of v in M via the map ¢.
The set S is a hypersurface of M and its mean curvature can be related to the

signed curvature of v as shown in the following
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Lemma 2.4. [7] Let ¢ : (M™,g) — (N? h) be a horizontally homothetic sub-
mersion with dilation X and minimal fibres and let v : I C R — N2 be a curve
parametrised by arc-length of signed curvature k.. Then the codimension-one
submanifold S = ¢~ (y(I)) C M has mean curvature Hg = Mk, /(n — 1).

Combining (4) and Lemma 2.4 the main theorems in [7] can be stated as

follows.

Theorem 2.5. [7] Let ¢ : M3*(c) — (N%h) be a horizontally homothetic
submersion with dilation X, minimal fibres and integrable horizontal distribu-
tion from a space form of constant sectional curvature ¢ to a surface. Let
v : I C R — N?% be curve parametrised by arc-length such that the surface
S = ¢7(y) € M® has constant Gaussian curvature c. Then S = ¢~*(y) C M3

is a c-biminimal surface if and only if v is a biminimal curve.

If the horizontal space is not integrable, Theorem 2.5 can be reformulated

for Riemannian submersions.

Theorem 2.6. [7] Let ¢ : M3(c) — N?(¢) be a Riemannian submersion with
minimal fibres from a space form of constant sectional curvature c to a surface
of constant Gaussian curvature €. Let v : I C R — N2 be a curve parametrised
by arc-length. Then S = ¢~(y) C M3 is a biminimal surface if and only if v

is a ¢/2-biminimal curve.

Theorem 2.5 and Theorem 2.6 have been used in [7] to produce examples of

biminimal surfaces in a 3-dimensional space form. For instance we have:

e a vertical cylinder in R® with generatrix a biminimal curve of R? is a

biminimal surface in R*;
e the cone in R? on a biminimal curve on S? is a biminimal surface of R?;

e a Hopf cylinder of S? is a biminimal surface if and only if the base curve
v on S*(1/2) is a 2-biminimal curve of S?(1/2);
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e a vertical cylinder in the hyperbolic 3-space (half space model) with gen-
eratrix a biminimal curve of R? (plane to infinity) is a (—1)-biminimal

surface in the hyperbolic space;

3 Examples of biminimal surfaces of Thurston’s
eight geometries

Of Thurston’s eight geometries (cf. [1]), three have constant sectional curvature,
R?, S* and H®, and contain biminimal surfaces as described in the previous

section, two are Riemannian products, S? x R and H? x R, and will be our first

class of examples, two are line bundles, over R? for Hs and over Ri for SLy(R),
and one, Sol, does not allow Riemannian submersion or horizontally homothetic
maps with minimal fibres to a surface, even locally, and therefore does not fit
our framework.

Before describing the examples we recall, cf. [7], that a curve 7y on a surface
N? of Gaussian curvature G is A-biminimal if and only if its signed curvature k

satisfies the ordinary differential equation:

K — kB + kG —2Xk=0 (5)

3.1 Biminimal surfaces of S? x R and H? x R

In both cases, consider the Riemannian submersion given by the projection
onto the first factor, call it 7 : N? x R — N2, which has totally geodesic fibres.
Given a curve v : I C R — N? parametrised by arc length, take its Frenet
frame {T, N}, and consider {e;,e;} € T(N? x R) its horizontal lift. The unit
vertical vector es completes {e1, es} into an orthonormal frame of T(N? x R),
such that {ey, e3} is a basis of T'S, for S = 7! (y(I)), with ey the normal to the
surface. From Lemma 2.4 then the mean curvature of S is H = k/2, where k is
the signed curvature of 7, and, from Proposition 2.1, S is biminimal in N2 x R
if:
AH = (||B||* — Ricci(ey)) H.
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With respect to the frame {e1, e3} the second fundamental form B is
V61€1,€2 > v51€3, € >\ k 0
= V63€1,€2 o vggeg, €y > B 0 0/)°

41 if N2=§?
—1 if N2 =H>

In both cases, (using Equation (11) in [7]), AH = A(k/2) = k", so S is

biminimal in N? x R if:

Besides
Ricci™V**®(e5) = Ricci™” (e5) = {

K=k —k if N>?=§?2

and
=k +k if N>?=H

Now comparing with (5), we have the following

Proposition 3.1. The cylinder S = 7~1(v) is a biminimal surface in N? x R
if and only if v is a biminimal curve on N* (S* or H?) .

3.2 Biminimal surfaces of the Heisenberg space

The 3-dimensional Heisenberg space Hj is the two-step nilpotent Lie group

standardly represented in Gl3(R) by

1
0
0

o =8
— e W

with z,y, 2 € R. Endowed with the left-invariant metric
g = dz? + dy? + (dz — zdy)”, (6)

(Hs, g) has a rich geometric structure, reflected by the fact that its group of
isometries is of dimension 4, which is the maximal possible dimension for a non
constant curvature metric on a 3-manifold. Also, from the algebraic point of
view, it is a 2-step nilpotent Lie group, i.e. “almost Abelian”. An orthonormal
basis of left-invariant vector fields is given, with respect to the coordinates vector
fields, by
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0 0 0 0
Elf— nga—y-‘rl'&, E3—5 (7)

Let now 7 : Hy — R? be the projection (z,y,2) +— (z,y). At a point
p = (2,y,2) € Hj the vertical space of the submersion 7 is V,, = Ker(dr,) =
span(E;) and the horizontal space is H, = span(E;, E2). An easy computation
shows that 7 is a Riemannian submersion with minimal fibres. In fact we have

that the non zero covariant derivatives of the left invariant vector fields are:

Vo, B =—Vig By = %E3
Vi, By = Vi, By = —5 By ®)
Vi, By = Vi, By = 2 B
Now let v(t) = (2(t), y(t)) be a curve in R? parametrized by arc length with

signed curvature k and consider the flat cylinder S = 7=%(v) in Hj. Since the

left invariant vector fields are orthonormal the vector fields
e =12'FE+y'Ey; e;=FE;
give an orthonormal frame tangent to S and
N=—yE +7E,

is a unit normal vector field of S in Hs.
We now determine the second fundamental form B of the surface S = 7=1(7),

given by:
<Vge,N> <V,e, N>
<Vge,N> <V,e, N>/

From (8) we have
< Ve, N>=<2"E +y'Ey,—yE +2'Ey>=2"y' — 12"y =k
< Ve, N>=0

1 1
< v81€2, N >=< V8261, N >= 5 < —I,Eg + ylE117 —y/El + .Z'/EQ >= —E
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Thus the second fundamental form B is

1
5= (4 ).
From the expression of B we see that H = trace(B)/2 = k/2 and that || B||*> =
k?+1/2.
To write down the biminimality condition for .S, we need to compute Ricci(N).

For this, let first recall that the non zero components of the Riemann tensor of

Hs, with respect to the left invariant vector fields, are
Rigia = R(Ey, By, By, Ep) = —g
and
Rizi3 = R(Ey, E3, By, E3) = i = Rgsp3 = R(Es, B3, Es, E3).
Then,
Ricci(N) =R(ey, N, e1,N) + R(ea, N, ey, N)
=R(z'Ey + y Es, —y'Er + &' By, 2’ By + ' Es, —y' E1 + 2 E»)
+ R(Es,—y'Er + o' Es, E3, —y' E1 + 1" E»)
=2" Rig1z + y’4R1212 &+ 2513/23/231212 =+ y’2R3131 + 2" Raoy
=Rizz(2”? + ¢ + Raar (2 + 4°)
3 1 1

="1T1773

Thus, from (3), S is biminimal if and only if
AH = (|| B||* — Ricci(N))H
and using the computations if and only if
E'=(k*+1/2+1/2)k=k +k
Finally, taking into account (5), we have the following

Proposition 3.2. The flat cylinder S = 7=1(y) C Hy 4s a biminimal surface
of Hs if and only if vy is a 1/2-biminimal curve of R?.
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3.3 Biminimal surfaces of Sm)

Following [1, page 301] we identify ng\(ﬁ) with
R? ={(z,y,2) €R?®: 2> 0}

endowed with the metric

Wy )

Then the projection 7 : SLy(R) — R2 defined by (z,y,2) — (y,2) is a

dy? + dz?
+u.

ds® = (de + =

submersion and if we denote, as usual, by H? the space Ri with the hyperbolic

P

. 2 2 . 3 g
metric 252 the submersion 7 : SLo(R) — H? becomes a Riemannian submer-

sion with minimal fibres. The vertical space at a point p = (x,y, 2) € SLy(R) is
V, = Ker(dm,) = span(E;) and the horizontal space at p is H, = span(Es, E3),

where

0 o 0 0

give an orthonormal frame on SLy(R) with respect to the metric (9). In this

case the non zero covariant derivatives of the vector fields in (10) are:

1
Vg,Ey=FE3; Vg Ey,=VgE = EEs;
1
VEIES = VE3E1 = 7§E27 (11)

1 1
VEQES = —§E1 — Ey; VE3E2 = §E1,

Now let y(t) = (y(t), 2(t)) be a curve in H? parametrized by arc length and

—~—

consider the flat cylinder S = 7(v) in SLy(R). Since the vector fields in (10)

are orthonormal the vector fields
: ] Z’
e = y-Eg + —E‘g7 €y = E1 (12)
Z %
give an orthonormal frame tangent to S and

/ " 3
N=-2B+LE
2 Z
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is a unit normal vector field of S in SLy(R).
With calculations similar to that of the previous examples we find that the

second fundamental form B, with respect to the orthonormal frame (12), is

5=(} 1).

For Ricci(V), taking into account that

= T
Ol

7
Roso3 = R(E», B3, Fs, E3) = 1

and

1
Risi2 = R(Ey, Es, By, E,) = i Rizi3 = R(E\, Es, By, E3),

we have

Ricci(N) =R(ey, N,e1, N) + R(ea, N, ez, N)

2 2\ 2 2 12
+z +z
=Ri230 Y B + Rizo u 2
2 z

7 1 3

4 4 2

Thus we have the following

—~

Proposition 3.3. The flat cylinder S = 7~'(y) C SLa(R) is a biminimal

—~

surface of SLy(R) if and only if 7y is a 1/2-biminimal curve of H?.

Remark 3.4. These links between biminimal cylinders and biminimal curves
that we have described in the Thurston geometries are very similar to the
link between Willmore Hopf cylinders of S® and elastic curves on S? proved

by U. Pinkall in [8].
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