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SOME GEOMETRIC FORMULAS AND CANCELLATIONS
IN ALGEBRAIC AND DIFFERENTIAL TOPOLOGY

Carlos Duran Thomas Piittmann Alcibiades Rigas

Abstract

We survey several phenomena in algebraic and differential topology by explicit
formulas and cancellations that are of geometrie origin, This covers some homotopy
groups of the classical groups and some exotic diffeomorphisms and exotic involutions
of spheres.

1 Introduction

Iu the XIII Escola de Geometria in Sao Paulo, the authors gave talks about the beautiful
interaction between geometry and topology that is obtained when one gets explicit formulas
in topology via geometric constructions.

In this article we will give an overview of the recent papers [Du, PR, DMR, Pii, ADPR1].
Rather than presenting the results of these papers in detail we will focus on their viewpoint

here.

2 A geometric view on some homotopy groups
2.1 Introduction

The homotopy groups of the classical groups have been of continuous interest to topolo-
gists, geometers, and mathematical physicists since the discovery/invention of the notion
of homotopy groups by Hurewicz in the 1930th. At the beginning, the approach towards

these homotopy groups was rather explicit (see [St]), L.e., one wrote down explicit maps
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and explicit homotopies and determined the group structure with their help. The main
theoretical tools at that point of time were the exact homotopy sequence for fiber bundles
and the Hopf degree theorem. Of course, the explicit approach was limited and a sophisti-
cated machinery was developed rather quickly to compute the isomorphism classes of many

homotopy groups. We refer to the book [Di] for a detailed history of algebraic topology.

We would briefly (and very roughly) like to compare this development to the devel-
opment of another mathematical field, namely ditferential equations. At the beginning
of this field, people were mainly interested in explicit solutions. Qualitative statements
were based on comparison with such solutions, In modern analysis the emphasis shifted to
more abstract questions like existence, uniqueness, dependence on initial conditions, and

regularity.

In both fields (homotopy theory, differential equations), however, some of the results
that the modern machinery provides can be considered to be a challenge instead of the final
solution of the problem. For some differential equations an existence result for solutions
still leaves the problem to actnally find the solutions explicitly, and for a homotopy group
which is, for example, isomorphic to Z;, the next goal would be to actually see the geometry

behind a nullhomotopy of the k-th power of a map that generates the homotopy group.

Of course, it does not make any sense to try to find such nullhomotopies for all or
even a large class of known homotopy groups, just like it does not make sense to ask for
an explicit solution of a generic differential equation. There are, however, still some basic
homotopy groups (in which the machinery is anchored) for which a geometric understanding

is desirable but has not been found in the early era of homotopy theory and ever since.

The perhaps most important problem of this kind in homotopy theory (in a weakened
form this problem traces back to Eilenberg — see the comment in [Sal) is the question of
how the commutator of unit gquaternions becomes nullhomotopic in the 12th power. We
will now explain this exemplary problem and an approach towards a solution. Finally, we
will give a brief overview of analogous results for other homotopy groups of the classical

Zrolps.
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2.2 The commutator of quaternions

The it quaternions S* C H form a non-commutative group under quaternionic multipli-

cation. The amount of non-commutafivity is measured by the commutator
8P x 8= 8 (@) = G e

It was shown by successive efforts of many of the leading figures of homotopy theory around
1950 that this map generates m4(S”) and that m3(S") is isomorphic to Z;s. Since for a Lie
group the product of two homotopy classes is represented by the value-by-value product of
two representing maps, this amounts to say that the 12th power ¢ of the commutator is
nullhomotopic. The obvious problem is now to find such a mullhomotopy. A particularly
nice nullhomotopy should considerably deepen our understanding of how non-commutative
the quaternions actually are.

The reader might wonder how the map e (beeing defined on S* x §%) can be considered
to be an element of m5(S?). This is based on the property that ¢ is constant to 1 if one
of its arguments is equal to &1, so that ¢ factorizes over the smash product §% A §% = §°
(the commutator ¢ is the prototyp of what became known as Samelson product, see e.g.

[Sa, Bt, Wh]).

2.3 Enlarged target spaces

Instead of considering the original problem we first enlarge the target space of ¢ from §*
to the larger groups SU(3) and G,. Since there is more space in these groups than in
the original target space 52, smaller powers of the commutator ¢ become nullhomotopic.
Indeed, it is easy to see from the relevant exact homotopy sequences that ¢ generates
ma(SU(3)) = Zg and m4(Gy) = Zq. In other words, the sixth power of ¢ is nullhomotopic
in SU(3) and the third power of ¢ is nullhomotopic in Ga.

One of the main results of our recent work [PR, Pii, DMR] is now the following,.
Result. We provide explicit nullhomotopies of ¢ in SU(3) and of ¢* in Go.

The first step for obtaining these nullhomotopies is to pass from the commutator ¢ to a

homotopic generator b: S° — 8% of 76(5?). (Actually, we do not really deform maps here
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but consider a suitable homotopy equivalence between the smash product §* A S§” and the
standard 5%.)

In the second step we “unfold” b in the larger target spaces, i.e., we deform b to maps
@1 S% — SU(3) and y : 8° — Go that are less collapsed and that are more natural for the
enlarged target spaces.

The third step is to arrange copies of the generators ¢ of ma(SU(3)) and yx of m4(Ga)
by symmetries in such a way that the value-by-value product of the arranged maps is the
constant map to the identity matrix.

We will skip the first step here. It is not difficult but a bit technical and when we later

see the formula for & it will be evident that b is related to the commutor of unit quaternions.

2.4 Unfolding via lifting geodesics

For the second step and the construction of the map b the following inclusion of principal

bundles is essential:
Sp(l) —— SU@3) —— G»

l | I

Sp(2) —— SU(4) —— Spin(7)
| | |
8 — 8§ — 5
Note that Sp(1) is just the group §* of unit quaternions. From the exact homotopy
sequences of the bundles above it follows that the characteristic maps of the bundles gen-
erate ms(S7), m(SU(3)), and mg(Gy). In [St] an explicit construction of these characteristic
maps is described using two local trivializations of each bundle. The characteristic maps
obtained this way, however, do not suggest how to arrange multiple copies of them in order
to see algebraic cancellations. Such arrangements and also natural homotopies between
each two characteristic maps in the bigger fiber can be seen much better with the follow-
ing lifting construction that uses only one local trivialisation. This construction was not
available at Steenrod’s time since there was no precise notion of a Riemannian submersion
and one was not used to think of non-biinvariant Riemannian metrics on Lie groups.
Endow the Lie groups Sp(2), SU(4), and Spin(7) with left invariant metrics that are
right invariant under Sp(1) x Sp(1), U(3), and Gs. respectively, and induce the standard
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metric of constant curvature 1 on the sphere S7 by Riemannian submersion. Now lift unit
speed geodesics that start at the north pole of 87 to horizontal geodesics of the Lie groups
that pass through the identity elements. At time 7 these geodesics are evidently contained
in the fibers over the south pole of §7. Hence, we obtain maps from the 5% in the tangent
space of the north pole of S7 to the fibers over the south pole. (Note that these fibers
are diffeomorphic to the groups Sp(1), SU(3), and Ga, respectively, but not in an a priori
canonical way. We emphazise this by the upper index “—".) A picture of this, in the
special case of Sp(2), is given in Figure 1 of section 3. It can be seen e.g. from [Br|, page

452, that the resulting maps
b:S* —8p(l)", ¢:8"=SUB)", y:58—=0G;
represent the images of idgs under the boundary maps
77(S7) — m(Sp(1)7),  m(S7) = m(SU(3)7), m(S7) — me(G3)

in the exact homotopy sequences of the bundles. It follows immediately from Bott period-
icity and the exact homotopy sequences that the maps b, ¢, and y generate the relevant
homotopy groups.

Before we actually write down formulas for b, ¢, and y we would like to show how b is
“unfolded” to @ and y, i.e., how each two of these maps are homotopic to each other in
the bigger fiber. Let 7, be a geodesic of ST starting at the north pole with initial tangent
vector v and let 45 and 45V denote the unique horizontal lifts of v to Sp(2) and SU(4),

respectively. Since both lifts project to the same curve the bundle inclusion above implies
() € ”??U(f) : ([lasdis,\)
for all € R. Therefore, the homotopy
H(t,v) =30(m) - 370" - 700 (2)
attains values in SU(3)~. We clearly have

H(0,v) = 35V(r) = 6(v),
H(m,v) = %P (x) = blv).
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Hence, A is a homotopy between b and ¢ with values in SU(3)". In a completely analogous
way we obtain homotopies between b, ¢, and y with values in G5 . Thus we have completely

described the “unfolding” of the map b in larger target spaces.

2.5 Geometric/algebraic cancellations

We will now discuss the structure of the maps b, ¢, and y and the related explicit cancel-
lations in my(SU(3)) = By and my(Gy) = Z;.

The easiest to understand is the generator y : 8% — G, of 7¢(Gy) = Zy (see [CR2, Pii]).
This map parametrizes an isolated orbit of the adjoint action of Gs on itself, namely, an

orbit that passes through one of the two nontrivial elements in the center
{1,613 =2 /31 identity matrix

of the subgroup SU(3) C Gg. Let us denote this element by . Since the third power of
ACA~! is constant to the identity element of Gy for any matrix A € Gs, the value-by-value
third power of y is the constant map to the identity element. This shows the cancellation
in 76(Gy) in the clearest and easiest way possible.

Combining this cancellation with the homotopy between b (i.e. the commutator, essen-
tially} and x we obtain the desired nullhomotopy of the third power of the commmutator ¢
in Go.

The next map to discuss is the generator ¢ : 8% — SU(3) of m3(SU(3)) = Z;. Here
we will encounter a much subtler cancellation. The map ¢ can be described as follows:
Consider the shortest path ¢ from the identity matrix in SU(3) to a nontrivial element in
the center, Coneretely, let ¢t) be the diagonal matrix with entries e~ ¢, and ¢ where

t € [0, 2], Regard the sphere % as the unit sphere in C? and consider the map
[0,2] x §° = SU(3), (t2) — Ac(t)A™"

where A € SU(3) is any matrix whose first column is z. For{ =0ort = %’i the values of
the map are constant to the identity matrix. Hence, this map induces a map 5% — SU(3),
which is precisely the generator ¢ of wg(SU(3)) obtained from the lifting construction

explained above.
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The question is now how the order 6 of 75(SU(3)) ean be recognized from this generator.
It is obvious that the sixth pewer ¢° does not differ in its structural appearance from ¢ itself,
since the sixth power goes straight down to the diagonal entries of the path ¢. Nevertheless,
& is nullhomotopic while ¢ is not. The trick that uncovers the essential cancellation is the

following: Instead of ¢ consider the map ¢ : 8% — SU(3) that is induced by
[0,%] x 8% = 8U(3), (t,2)— nlz)elt)n(z)!

where  : §* — SU(3) denotes any map that generates the stable homotopy group
75(SU(3)) = Z (particularly nice examples of such maps have been given and investi-
gated in [CR1, PR, Pii]). The important property of such maps S* — SU(3) is that the
composition with the projection SU(3) — S° leads to a map §° — 5% of degree 2. Irom
this it is easily seen that the homotopy class of ¢y is twice the class of ¢ in m(SU(3)). But
now there are two homotopic copies ¢, and @3 of ¢, obtained by permuting the diagonal
entries of the path ¢, and the value-by-value product of ¢y, @y, and ¢4 is the constant map
to the identity matrix in SU(3). Thus we clearly see how ¢} is nullhomotopic.

It remains to provide an explicit homotopy between ¢, and ¢*. This homotopy can be
obtained by the standard techniques that are used to prove the Hopf degree theorem (see
[Pii] for details).

Analogous to the case of m4(G,) the cancellation revealed here gives in combination with
the homotopy between the commutator of quaternions and ¢ the desired nullhomotopy of
the sixth power of the commutator in SU(3).

Finally, we come to the most important map b: S% — 5% This map was constructed
by the lifting construction mentioned above in [Du]. In order to give its explicit formula,
|‘2

let, p be an imaginary quaternion and w be a quaternion such that [p|* + |w|? = 1, i.e., the

vector (p,w) is contained in the Buclidean sphere S® Moreover, let ef = cos ?ripi+|-ﬁ—| sin 7 |p|
denote the exponential map of the unit sphere S? in the quaternions from 1. Then

) If_“I_-ﬂ"P_"L‘_ w0
b5, (p.w}H{:qu milieEs
-1, w=10.

The obvious problem is now to find a cancellation analogous to the ones described above.
To uncover this cancellation is much harder than to incover the previous cancellations and

we do not have a complete solution so far. The central problem is to come from b to some
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abelian structure. In SU(3) above the path ¢ was contained in just one maximal torus,
which made the three homotopic maps ¢y, ¢2. and ¢5 commute. For 74(S*) one might only
speculate that one of the finite subgroups of SO(3) or S* gives an arrangement of several
“copies” of b or maps derived from b such that the product of all these maps turns out to

be constant to 1. We summarize this in the following problem:
Problem. Explain the order 12 of 75(S%) in a geometric way similar to what we have done
for m(SU(3)) and me(Ga).

We view the fact that there exist many different proofs for the fact that mg(S?*) is

isomorphic to Z; as a strong indication that such a geometric explanation exists.

2.6 Presentations of other homotopy groups

The cancellations in 74(SU(3)) and m¢(G2) above are prototypes of what can be found for
some other homotopy groups: In [PR, Pii] we describe similar cancellations for the entire
series o, (SU(n)) = Z, (which was essential in the first. proofs of the fact that S*, §%, and
ST are the only parallelizable spheres, see [BMi, Ke|), for the series ms,(SU(n — 1)) with
even n, for my(Sp(2)) and for 7 (Sp(2)). Moreover, we obtain structurally nice generators of
all homotopy groups 74, —»(Sp(n—1)). Also, the last stable homotopy groups m,—1(SU(n))
and my,_1(Sp(n)) are represented in several ways and the representing maps are used to
determine some previously unknown nonstable homotopy groups of the symmetric space
SU(n)/SO(n). A particular important case is the stable homotopy group 7 (Sp(2)) = Z.
We provide the first explicit formula for a generator of this group. With this structurally
nice map we come closer to a nullhomotopy of the twelfth power of the commutator of
unit quaternions. In fact, our formula contains a nullhomotopy of a map §% — 5% that
represents the 12-th element of m5(S*). However, the relation between this map and ¢!
still has to be given in a way such that the algebraic cancellations turn out as clearly and

comprehensibly as possible.

3 Exotic diffeomorphisms and involutions of spheres

In 1956, J. Milnor made the surprising discovery of differentiable manifolds ] that are

homeomorphic but not diffeomorphic to the sphere. From our point of view, we want to
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remark that his discovery came through the analysis of explicit presentation of S%bundles
over S* with SO(4)-structure group; this allowed him to 1) Construct a Morse function
with just two critical points (therefore these are topological spheres) and 2) Compute the
intersection form and Pontryagin classes of a bounding manifold A®, thus proving that
they are not diffeomorphic to spheres.

After a lot of topological work in the classification of differentiable structures on spheres
(see [KM, Ko, Mi2, Le]), the next big step, for geometers, was the construction of a metric
of non-negative curvature by Gromoll and Meyer ([GM]), via the beantiful geometric model
of the Milnor exotic sphere EEE_, as a quotient of an isometric action of S$* on Sp(2) with
the biinvariant metric.

The set of differentiable structures on the topological sphere of dimension n 4 1 is the
same as the number of path-connected components of the group Diff*($™) of orientation-
preserving diffeomorphisms of the sphere in one dimension less, the identification being
given by . if o € Diff*(S"),

g—R"U; R",

the union of two disks by the map  : R* — {0} — B" — {0} defined by &(x) = ﬁcr(m [z
thus o provides charts in S that define a differentible structure. It is then easy to prove
that the spheres corresponding to different diffeomorphisms o, 7 are diffeomorphic if and
only if the o and 7 are isotopic, i.e., they belong to the same connected component of the
group Diff " (S™). This has been known since Milnor's discovery in 1956; however, there was
no explicit example at all of an exotic diffeomorphism, that is, an orientation-preserving
diffeomorphism of a sphere that is not isotopic to the identity.

This embarrasing situation was solved in 2001 in [Du], where such an example is given.
Part of the beauty of this example is that it was constructed using geometry: to be precise,
the geometry of geodesics of the Gromoll-Meyer fibration S*---Sp(2) — %] _| in relation
to the canonical fibration S*..-Sp(2) — S7. Let us describe this construction briefly:

Let Sp(2) be the group of 2 x 2 matrices with quaternionic entries satisfving

CaG GGy

The Gromoll-Mever fibration is given as follows: the group Sp(1) = 8% acts freely on
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Sp(2) as follows: if ¢ € Sp(1) and A € Sp(2),

BRI

therefore producing a principal fibration 5% — Sp(2) — 7.

The group S also acts freely in Sp(2) as follows:

(3= D65

producing a principal fibration §% — Sp(2) — S7, where S7 is the standard 7-sphere. In
fact, the projection of Sp(2) onto 57 is just A — 1*! column of A.

Note that the action of Sp(2) on itsell by left translation commutes with the s-action.
Therefore, the Sp(2) acts by bundle maps of $* — Sp(2) — S7; the induced action on S7

is given by matrix multiplication: if 4 € Sp(2),

(5 9)46)

Therefore, we have two different fibrations with Sp(2) as total space:

53
*

8% . 8p(2) —— §7

|
7

In general, the e-fibers and the d-fibers have no relation, but the fibers through any
point in O(2) < Sp(2) of the % and e-actions coincide (in particular, the fibers through
+7d = Sp(2)). This observation is crucial in the construction: We lift the round metric of
the sphere to a left-invariant metric on Sp(2) (let us remind the reader that this is not the
bi-invariant metric; the quotient of §%.-.8p(2) — ST under the bi-invariant metric on the
sphere is not the round sphere).

Since the metric of the standard sphere is wiedersehen, i.e. every geodesic from a point
meets after length 7 at the antipodal point (in particular the geodesics emanating from
(1,0) € §7 € H x H meet again after length = at (—1,0)), the horizontal lifts from the
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tangent spiw al the noeth pole | expaneniisl map of the sphere Barizantal spesce
at the noeth pose at the identity matris
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Figure 1:

identity of Sp(2) of these geodesics, which can be computed, lie after length 7 on the fiber
over (—1,0), that is, we have the following picture:

However, since the fibers through —Id € Sp(2) of the % and e-actions coincide, it
follows that, in the subduced metric from Sp(2), every geodesic in the exotic sphere £ _,
emanating from N = [[d], meets again, at length =, at the point S = [~[d],. Thus
this metric in £, has the wiedersehen property at the points N and S. In particu-
lar, this implies (see Theorem T of [Dul) that the exponential map is a diffeomorphism
from the open ball of radius = on each tangent space Ty¥] | and Ts¥5_ onto its im-
age, which just misses the opposite wiedersehen point. In particular, the diffeomorphism
7 1= expy ©exPg |go.q2, composed with adequate identifications of the respective tan-
gent spaces with R7, provides a diffeomorphism o of S% that by reason of £} | being
exotic, is not isotopic to the identity. See the picture:

All this would be idle talk if the geodesics could not be computed. However, they can
be computed, and this produces a formula for the diffeomorphism o:

Consider the Blakers-Massey map b : §° — S* given at the end of section 2.4. The
map b is a real analvtic map whose homotopy class generates m3(S%); note that Figure 1
express exactly what was done in section 2 with respect to finding homotopy groups by

lifting geodesics. Then let

a(p,w) = (b{p, w)pb(p, w), b(p, w)w b(p, w)).

Then ¢ is a diffeomorphism, X7 = D7, D7, and ¢ is not isotopic to the identity. In
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Z?

alv)

Figure 2: This figure illustrates the construction of the exotic diffeomorphism o of S°.
Regard an arbitrary v € 5% as the initial velocity vector of a geodesic in &7 starting at
the north pole. Assign to v the nnique initial velocity vector o(v) of a geodesic in X7
that starts at the sonth pole and yields at time 7 the same point of the equator than the
geodesic from the north pole.

fact, o is a generator of the group m, DI (S%) since it is known thai £ | is a generator
of the group of differentiable structures on the spheres ([EK, KM]).

There are deep algebraic relationships between the Blakers-Massey map b and o, note
that

0" (p.w) = (0" (p. w)p B w), 0 (. ) 7, )

(this is not immediate since b is not constant, but is nontheless true). These kind of rela-
tionships were essential in [DMR] where this results were extended to the Cayley munbers
and exotic diffeomorphisms of S'. Topologically, the relation is more complicated: since
76(S%) = Zyq, b'? is homotopic to a a constant, but ¢'? is not isotopic to the identity. From
the other side, 02 is isotopic to the identity, but 6% is not homotopic to the identity. This

is a good place to state the following:
Problem. Find an explicit isotopy between o and the identity of S°.

Having an explicit generator o of m, Diff 7(S") is just the beginning, now we can play
with it and study in depth the structure of diffeomorphism groups explicitly. In [DMR],
it was shown the following: substitute quaternions by Cayley numbers in the definitions

of b and o, we get that b: S™ — S7 generates m4(S7), and o is an exotic diffeomorphism
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of S which generates bP'™ C 7y Diff 7(S™). This last inclusion has index two, which

prompts the following:

Problem. Find an explicit diffeomorphism 7 : §™ — S§™ such that 7 and o generate
o D1H+(SH)

The study of exotic spheres as disks glued by ¢ led us to the following surprise: Let
p = aa, where o is the antipodal map of the sphere, and we can think of the variables

being quaternions or Cayley numbers. Then we have the following result ([ADPR1]):

Theorem. The map p is a free involution of 5° (resp. S™) that is not differentiably

congugate to the antipodal map.

These formulas are the first formulas for exotic involutions on Euclidean spheres; of
course exotic involutions on Brieskorn spheres and invariant spheres inside of exotic spheres
had been defined since the sixties; see [AB, HM, LdM]. In fact these two concepts —
Brieskorn and invariant subspheres of exotic spheres — can be explicitly identified in at
least one case in dimension 5; see [DP].

The method of proof of the previous theorem analyzes how conjugation by the antipodal
map acts on the different connected components of the group of diffeomorphism of the

sphere in the relevant dimension. In particular, this leads us to
Theorem. Every orientation-reversing map of S* is isotopic to a free involution.

These exotic involutions of % and S™ restrict to the equators given by Rew = 0;
the restrictions are also exotic (i.e. not differentiably conjugate to the antipodal map). In
dimension 5, these formulas provide a satisfyingly simple pictorial description; see [ADPR1]

for the pictures or watch the movie [ADPR2].

4 Full circle: a non-trivial element of m; Diff(S%)

The first section of this paper describes geometrically generators of homotopy groups: then
we passed to the geometric description of exotic diffeomorphisms and exotic spheres. The

exoticity of these diffeomorphisms can be translated as the fact that they do not belong
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to the connected component of the identity, and, in fact, we gave an element in each
connected component of the group Diff(S%) (and half of the connected components of
Diff (§')), or, in homotopy terms, we represented the group my(Diff (5°%). Here, we come
full circle: these methods, and the special form of the maps described in the previous
section, do provide explicit non-trivial elements of = (Diff(57)), the fundamental group of
the space of orientation-preserving homeomorphisms of S,

The construction goes as follows: let us look at the structure of o

alp,w) = (b(p. w)pbp, w), blp, whwb(p,w)).

Note that, since o is given by a conjugation by b, it preserves the real part of w (recall
that p has no real part by definition). Let us separate the formula in the real and imaginary
parts of w, we write w =t +w, { = Re(w), w = Im(w). Then, also putting ¢ last, the

previous formula looks like
al(pyw, ) = (b(p.t +w)pblp, L+ w), blp,t +wlwblp.t+w), t).

which reads like a suspension of a diffeomorphism of S%; it is not since the diffeomorphisms
in (p,w) depend on t. Forgetting about this last variable, we have the one-parameter family

of diffeomorphisms of S% given by
t—=op.w) = (b(p.t +w)pb(p,t +w), bp.t+w)wb(p,t +w)).

Note that ¢(p.w) = ¢1(p.w) = (p.w). Thus the map ¢ can be considered as a loop
based at the identity of Diff 7(S®). A moments reflection will convince the reader that a
homotopy between this loop and the constant identity loop would translate to an isotopy

hetween o : S* — §% and the identity, which is of course not possible. Therefore, we have
Theorem. The loop ¢ represents a non-trivial element of m Diff (5%).

As is the case in many of these construcions, the translation to Cayley numbers works

through and the respective loop ¢ represents a non-trivial element of m Diff (S5).



GEOMETRIC FORMULAS IN ALGEBRAIC AND DIFFERENTIAL TOPOLOGY 147

References

[ADPR1]

[ADPR2]

[AB]

[BMa]

[BSe]

[BMi]

[Be]

[Br]

[CR1]

[CR2]

(D]

Abresch, U., Durdn, C., Pittmann, T., Rigas, A., Wiedersehen melrics and

exotic invelutions of Fuclidean spheres, preprint.

Abresch, U., Durdn, C., Piittmann, T., Rigas, A., An exotic involution of the
S-sphere, QuickTime movie,
http://homepage.rub.de/Thomas.Puettmann/XInvolution. html.

Ativah, M., Bott, R., A Lefschetz fived point formula for elliptic complexes 11.
Applications Ann. of Math. (2) 83 (1968), 451-491.

Blakers. A. L., Massev. W. 5., The homotopy groups of a triad, Proc. Nat. Acad.
Sci. U.S.A. 35 (1949). 322-328.

Borel, A., Serre, J.-P., Groupes de Lie el puissances reduites de Steenrod, Amer.
J. Math. 75, (1953). 409-448.

Bott.R., Milnor, J.. On the parallelizability of the spheres, Bull. Amer. Math.
Soc. 64 (1958), 87-89.

Bott.R., A note on the Samelson product in the elassical groups, Comment.
Math. Helv. 34 (1960), 249-256.
Bredon, G. E., Topology and Geometry, Graduate Texts in Mathematics 139,

Springer, New York, 1993.

Chaves, L. M., Rigas, A., Complex reflections and polynomial generators of ho-
motopy groups, J. Lie Theory 6 (1996), 19-22.

Chaves, L. M., Rigas, A., On a conjugale orbit of G4, Math. J. Okavama Univ.
33 (1991), 155-161.

Diendonme, J., A history of algebraic and differentiol fopology. 1900-1960,

Birkhiuser, Boston, 1989,

Duran, C. E., Pointed Wiedersehen melrics on exotic spheres and diffeomor-
phisms of S% Geom. Dedicata 88 (2001), 199-210.



148

[DMR]

[DP]

[EK]

[GM]

[HM]

[Ja]

Kol

[KM]

(Kol

[Le]

(LdM]

[Mil]

C. DURAN T. PUTTMANN A. RIGAS

Duran, C. E., Mendoza, A., Rigas, A., Blakers-Massey elements and exotic dif-
feomorphisms of S® and S*, Transactions of the American Math. Soc. 356 (2004)
ne.12, 5025 - 5043.

Durdn, C. E., Piittmann, T., A minimal Brieskorn 5-sphere in the Gromoll-

Meyer sphere, prepriut, 2004,

Eells, J., Kuiper, N., An invariant for certain smooth manifolds, Annali Mat.
Pura e Appl., 60 (1962}, 93 - 110.

Gromoll, D., Mever, W., An exotic sphere with non-negative sectional curvalure,
Amn. of Math. (2)96 (1972), 413-443.

Hirsch, M., Milnor, J., Some curious involutions of spheres, Bull. Amer. Math.
Soc. T0 (1964) 372-377,

James, 1. M., On H-spaces and their homotopy groups, Quart. J. Math. Oxford
Ser. (2) 11 (1960), 161-179.

Kervaire, M., Non-parallelizability of the n-sphere for n > 7, Proc. Natl. Acad.
Sci. USA 44 (1958). 280-283.

Kervaire, M. A., Milnor, J. W., Groups of homotopy spheres I, Ann, of Math.
77 (1963). 504-537.

Kosinski, A., Differential Manifolds, Boston, MA: Academic Press, 1992.

Levine. J. P., Lectures on Groups of Homotopy Spheres, In Algebraic and Ge-
ometric Topology (New Brunswick, NJ, 1983). Berlin: Springer-Verlag, (1985),
62-95.

Lopez de Medrano, S., Involutions on Manifolds, Springer-Verlag, (1971).

Milnor, J. W., On manifolds homeomorphic to the F-sphere. Ann. of Math., 64
(1956), 399-405.



GEOMETRIC FORMULAS IN ALGEBRAIC AND DIFFERENTIAL TOPOLOGY 149

[Mi2] Milnor, J. W.. Topological Manifoids and Smooth Manifolds, In Proc. Inter-
nat. Congr. Mathematicians (Stockholm, 1962). Djursholm: Inst. Mittag-Leffler,
(1963), 132-138.

[MT] Mimura, M., Toda, H., Topology of Lie groups I, II, Translations of Mathematical
Monographs, 91. AMS, Providence 1991.

[Pii] Pitttmann, T., Some homolopy groups of the classical groups from a geomet-
ric viewpoinf, preprint based on the author's Habilitationsschrift at Ruhr-
Universitat Bochum, Germany.

[PR] Piittmann, T.. Rigas, A., Presenfations of the first homotopy groups of the uni-
tary groups, Comment. Math. Helv. 78 (2003), 648-662.

[Ri] Rigas, A.. S*-bundles and exotic actions, Bull. Soc. Math, France 112 (1984),
69-92.

[Sa] Samelson, H., Groups and spaces of loops, Comment. Math. Helv. 28 (1954),
278-287.

[St] Steenrod, N. E., The Topology of Fibre Bundles, Princeton University Press
1951.

[Wh| Whitehead, G. W., On mappings into group-like spaces, Comment. Math. Helv.
28, 320-328.

IMECC - UNICAMP Ruhr-Universitit Bochum

C.P, 6065 Fakultit fiir Mathematik

13083-970 Campinas, SP, Brazil D-44780 Bochum, Germany

E-mail: cduran@math.ime.unicamp.br  E-mail puttmann@math.ruhr-uni-bochum. de

E-mail: rigas@math.ime.unicamp.br



