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Abstract

We discuss recent results extending the notions of hamiltonian action
and reduction in symplectic geometry to the setting of twisted Dirac ge-
ometry. We focus on the role of Lie algebroids as infinitesimal symmetries
and applications to quasi-Poisson geometry.

1 Introduction

This note discusses several aspects of the hamiltonian theory of twisted Dirac
manifolds following [9, 10]. The focus of the exposition is on the interplay
between infinitesimal symmetries of Dirac manifolds and reduction, as well as
on the close ties between Dirac geometry, quasi-Poisson geometry and the theory
of group-valued momentum maps [1, 2, 3].

The classical set-up for hamiltonian theory [22, 23] involves a Poisson man-
ifold (M, ), a Lie algebra g, and an infinitesimal action py; : g — X(M).
This action is called hamiltonian if there exists a smooth ad*-equivariant map

J: M — g* relating = and pas by
pm(v) =idgpm, Y€ g, (1.1)

where J, € C*(M) is defined by J,(z) = (J(z).v), x € M. The map J is
the momentum map of the action. Each level set J~'(y) is invariant under
g, the isotropy Lie algebra at p € g* with respect to the coadjoint action,
and the reduced space M, = J~'(u)/g, acquires a Poisson structure induced
from the one on M: when M is symplectic, cach M, is symplectic. Examples

of symplectic manifolds obtained by reduction [23] include complex projective
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spaces and coadjoint orbits; an infinite-dimensional version of this construction
produces symplectic structures on moduli spaces in gauge theory [5].

Several interesting generalized notions of hamiltonian action and momentum
map have appeared in the last years, see e.g. [28]. One body of generalizations,
studied in [24], is based on allowing the target of the momentum map to be
an arbitrary Poisson manifold rather than just the dual of a Lie algebra. This
theory includes the hamiltonian theory of Poisson-Lie group actions [20] and
naturally leads to Lie algebroids and symplectic groupoids. We recall it in
Section 3.

Another important class of generalizations arises in the context of “quasi”-
Poisson geometry [1, 21], the semiclassical limit of the theory of quasi-Hopf
algebras [17]. The study of symmetries in this setting does not fit into the usual
framework of Poisson geometry since the bivector fields and 2-forms entering
the picture are no longer Poisson or symplectic. This will be recalled in Section
4, with emphasis on the theory of group-valued momentum maps [3, 2].

Despite the seemingly different ingredients used in each of these two lines
of generalizations of hamiltonian theory, they have several features in common.
In particular, both produce (ordinary) symplectic/Poisson spaces via reduction.
As we will see, this fact can be explained by looking at all these examples as
particular cases of hamiltonian spaces in Dirac geometry. In Section 5. we recall
the basic notions of Dirac geometry, its connections with Lie algebroid actions,
and its hamiltonian theory with focus on reduction. In Section 6, we revisit
various examples of generalized symimetries and explain how they fit into the

Dirac-geometric framework.

2 Poisson geometry and hamiltonian spaces

We recall some basics facts about Poisson geometry to fix our notation. We
refer the reader to [13] for details and references.
A Poisson manifold is a manifold M equipped with a bivector field = €

['(A*TM) satisfying the integrability condition [r,7] = 0, where [,] is the
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Schouten bracket on multivector fields; this condition is equivalent to the re-

quirement that the bracket

{f, g} = n(df.dg), f.g€ C=(M) (2.1)

satisfies the Jacobi identity.
Given a function f € C*(M), its hamiltonian vector field is defined by
Xy = (df) € X' (M), where 7* is the bundle map

at i "M — TM, B(n*(a)) =n(a,B), fora,feT*M. (2.2)

It follows from the integrability of 7 that Lx,m = 0 for all f € C*(M).
A Poisson structure 7 for which 7 is invertible is equivalent to a symplectic
structure w by
(a1 =, (2.3)

where w? : TM — T*M is the bundle map defined by w?(X) := ixw. The
condition dw = 0 is equivalent to [m, 7] = 0. More generally, if (M, 7) is any
Poisson manifold, the image of the bundle map «% : T*M — TM defines an
integrable generalized distribution on M whose leaves are locally swept out by
flows of hamiltonian vector fields. The restriction of 7 to each leaf is nonde-
generate, so each leaf carries a symplectic structure. Conversely, this singular

svmplectic foliation completely determines 7.
yip. I 3

Example 2.1 Let g be a (real, finite-dimensional) Lie algebra, and let g* be

its dual. The Lie-Poisson structure 7y on g* is defined by the bracket

{fi9} (1) == (. [df (), dg(p)]), f.geC¥(g"), neg (2.4)

where we used the identification 7;g* = g. The leaves in this example are the
coadjoint orbits, and the leafwise symplectic form is given by
w(pg: (1), pge (V) (1) = —{p, [u,v]), w,v €9, p€g’, (2.5)

where pg-(u)(p) = adj(p) = m.(u)(p) is the infinitesimal generator of the

coadjoint action.
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If (My,m) and (Ms, ) are Poisson manifolds, then a smooth map o :
(My,m) — (My,m) is a Poisson map if the bivector fields m and m, are

i-related:
(¥ (@), ¥*(8)) = m(a, B) oy, for a, € Q'(Ms). (2.6)

This is equivalent to requiring that ¥* : C*(My) — C™(M,) preserves the
brackets (2.1). If m; is symplectic, then a Poisson map ¢ : My, — M, is called
a symplectic realization of M;. For example, the inclusion of a symplectic
leaf into a Poisson manifold is a symplectic realization.

The next result reveals the close relationship between hamiltonian actions

and Poisson maps.

Proposition 2.2 Let (M, ) be a Poisson manifold, and let J: M — g* be a

smooth map. Then the following are equivalent:
1. J is a Poisson map;

2. The “momentum-map condition” (1.1) defines a g-action on M for which
J is equivariant (i.e., J is a momentum map for a hamiltonian g-action
on M ).

Example 2.3 The identity map g* — g7 is the momentum map for the coad-
joint action, and each coadjoint orbit is a hamiltonian space with respect to the

restricted action and momentum map given by the inclusion map.

3 Generalized symmetries in Poisson geometry

Interesting extensions of the notion of hamiltonian action arise when one allows
the momentum map to take values on a general Poisson manifold [24] (see
also [16]). Unraveling the infinitesimal symmetries associated with arbitrary
Poisson maps .J : M — P naturally leads to Lie algebroids, so we recall the

basic definitions, see e.g. [13].
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3.1 Infinitesimal actions of Lie algebroids

A Lie algebroid over a manifold P is a vector bundle A — P together with a
map p: A — TP, called the anchor, and a Lie bracket [-,-]4 on I'(A) satisfying

the Leibniz rule
[a. fbla = fla.bla+ Lyuy(f)b, fora,be(A), and f € C™(M).

We often denote a Lie algebroid by the triple (A, p, [-,:]4). Two central features
of Lie algebroids are that p(A) C TP defines a generalized integrable distribu-
tion (whose leaves are called “orbits” of A) and, at each y € P, the restriction
of [-,-]a to ker(p), is a Lie bracket (defining the “isotropy” Lie algebra at y),
see e.g. [13].

An action of a Lie algebroid A — P on a manifold M along a map J :

M — P is a Lie algebra homomorphism py : I'(A) — X(M) satisfving
TJ(pula)) = pla) and py(fa)=J"fpula), YVacl(A4), feC*(P),

see e.g. [18, 23], One recovers the usual notion of action for Lie algebras when
P is a point.

Hamiltonian g-actions with momentum maps J : M — g* can be expressed
in terms of Lie algebroids as follows. Instead of thinking of g as dual to g*, we
now regard its elements as constant sections of the bundle T%g* = g* x g. The
space Q'(g*) = C*°(g*, g) admits the following Lie bracket extending the one

on g:
[u, v](x) = [uz), v(2)] + Lo (wi@) V(@) = Lo wanr(x), u,v € C(g".g), (3.1)

with pg defined as in Example 2.1. The action pyy : g — X(M) defined by (1.1)

induces a map
Par : C(g",9) — (M), Pu(w)(z) = pu(u(T(@)(@)  (32)

which is a Lie algebra homomorphism and satisfies the “momentum-map con-
dition”
par(w) = (J*u), ue Q' (g"). (3.3)



116 H. BURSZTYN

The cotangent bundle 7%g* = g* x g together with the bracket (3.1) and map
pg + Tg — Tg* is a Lie algebroid (in fact, it is a transformation Lie algebroid
[13])., and the map (3.2) defines an action of 7*g* on M along the momentum
map J. The conclusion is that the infinitesimal symmetries encoded in a Poisson
map J : M — g* can be expressed in two alternative ways: either as a g-action
on M defined by (1.1) or as a Lie algebroid action of T*g* along .J defined by

(3.3); each action completely determines the other by (3.2).

3.2 Generalizing the target of momentum maps

Let (P, mp) be a Poisson manifold. To regard it as the receptacle of a “momen-
tum map”, a central fact is that p := (T*P, 7}, [-,-]) is a Lie algebroid, with

bracket on Q(P) given by

[O:_..a"ﬂ =L 3 — f’rr?;[ﬁ}a — dmp(a, 3).

Wf-(ﬂ)'

The orbits of this Lie algebroid are the symplectic leaves of P.
If (M,7) is a Poisson manifold and J : M — P is a smooth map, let us

consider, analogously to (3.3), the map
Par 2 QUP) — X(M), a— 7i(J'a). (3.4)
We have the following generalization of Proposition 2.2:

Proposition 3.1 The map pyy defines a Lie algebroid p-action on M along J

if and only if J s a Poisson map.

Soif J: M — P is a Poisson map, it can be seen as a “momentum map” for
the “hamiltonian” p-action defined by the “momenfum-map condition” (3.4).

To carry out reduction starting with a Poisson map J : M — P, one notices
that the Lie algebroid action of p on M defined by (3.4) induces, for each y € P

regular value of .J, a Lie algebra action of the isotropy Lie algebra

py = ker,(z}) C T, P (3.5)
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on the level set J~'(y). Assuming that this action is regular (in the sense that
its orbits form a simple foliation), then the orbit space J *(y)/p, acquires a
Poisson structure uniquely determined by the fact that the projection J~'(y) —
JYy)/p, is a Poisson map. If M is symplectic, then the reduced spaces are
also symplectic. This is the infinitesimal version of Mikami-Weinstein reduction
[24] for Poisson manifolds, see also [16].

When P = g*, the Lie algebras (3.5) are the isotropy Lie algebras for the
coadjoint action, and we recover the usual rednction procedure for hamiltonian
actions [22, 23]. Another important class of examples is given when P is the
a dual Poisson-Lie group G*; in this case one recovers Lu’s hamiltonian theory

for Poisson-Lie group actions [20].

Remark 3.2 The description of the global symmetries of M associated with a
Poisson map J : M — P involves the theory of symplectic groupoids [27]. If P
is an integrable Poisson manifold, and if .J : M — P is a complete Poisson map
[13], then the corresponding p-action on M can be integrated to a symplectic
groupoid action of G on M, where G is the (source-simply-connected) symplectic

groupoid integrating the Lie algebroid p = T* P, see e.g. [16, 24].

4 Symmetries beyond Poisson geometry

Let G be a Lie group with Lie algebra g, and suppose that g is equipped with a
non-degenerate, invariant, quadratic form (-,-) . Let ¢ € 2*(G) be the Cartan
3-form on G,

a 1 4 g =
o = 5(0,0,0), = 5 (B.7,0),,

a

where 6,8 € Q'(G, g) are the left and right Maurer-Cartan 1-forms, respectively.

A quasi-hamiltonian g-space [3] is a g-manifold M equipped with an
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invariant 2-form w € Q*(M), and an Ad-equivariant map .J : M — G such that

do = J* 6. (4.1)
ker(w), = {pp(v)e |v € g, (Ady) + 1)v =0}, Vo e M, (4.2)
. 1 -

B it = 7).]‘ (0 + £, ':.')B = Jo(v), veg, (4.3)

where pyr : g — TM is the infinitesimal action and
1
g:g—T"'G, alv)= E(-L-', + 045 7) g (4.4)

where v,.. v; are the right and left translations of v € g. If M is a G-manifold, w
is G-invariant and .J is G-equivariant, then it is a quasi-hamiltonian G-space.
The map J is a G-valued momentum map.

Note that M is not symplectic in general, but conditions (4.1) and (4.2)
describe the precise way in which w fails to be closed and nondegenerate ac-
cording to the geometry of the Lie group . Condition (4.3) is the analog of
the momentum map condition (1.1) (but, unlike (1.1), this condition alone is

not enough to determine the infinitesimal action py).

Example 4.1 Analogously to Example 2.3, each conjugacy class C in G is
a quasi-hamiltonian G-space with respect to the action by conjugation. The

momentum map is the inclusion ¢ : € — G and the 2-form is

wlpa(w). p6(v)) = 3 ((Ady — Ady-1)(w), v),, (45)

where pe (1) = u, —w is the infinitesimal generator of the action of & on itself
by conjugation. This 2-form is analogous to (2.5), though it may be neither

nondegenerate nor closed.

In spite of M not being symplectic and J not being a Poisson map, “quasi-
hamiltonian” reduction produces honest symplectic spaces (generally singular)
[3]: the level set J'(e) — M is invariant under the g-action, and the pull-back
of w to J71(e) is basic and descends to a symplectic form on J~1(e)/g. Here ¢
is the identity in G, but one can also reduce at different momentum levels.

The main application of quasi-hamiltonian reduction is to give a finite-

dimensional construction of the symplectic structure of certain moduli spaces:
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Example 4.2 Let G act on G** by conjugation on each factor, and consider
the equivariant map
h
J:G™ = G, J(a, by, anby) = []la b)) (4.6)
i=1
In [3] the authors define a 2-form w € Q?(G*") making G*" into a quasi-
hamiltonian space with group-valued momentum map (4.6). The reduced space

h
M =J"e)/G ={(ar,by,...,an by) € G*, []la:b] =e}/G
i=]1
coincides with the representation space Hom(rm (X), ()/G, where ¥ is a com-
pact, connected, oriented, 2-manifold of genus i (without boundary), and 7, (%)
is its fundamental group. If G is simply connected, the holonomy map identifies
M with the moduli space of gauge equivalence classes of flat connections on
¥ x G, and the symplectic structure on M is obtained via quasi-hamiltonian
reduction coincides with the one constructed by Atiyah and Bott [5] via infinite-

dimensional Marsden-Weinstein reduction.

Remark 4.3 (Hamiltonian quasi-Poisson actions)

There is a version of the theory of group-valued momentum maps J : M — G
in which M carries an invariant bivector field rather than a 2-form; these spaces
are called hamiltonian quasi-Poisson manifolds [2]. Some of their features are
analogous to Poisson manifolds: for example, they are associated with Lie alge-
broids [9, 10] whose orbits define a singular foliation, but unlike Poisson man-
ifolds the bivector field may be degenerate along the leaves. However, one can
still find leafwise 2-forms making the leaves into quasi-hamiltonian spaces [2, 9],
though the relationship between the bivector field and 2-forms is much more
intricate than (2.3). Reduction in this context produces Poisson spaces; an in-
teresting example is the construction of Poisson structures on moduli space of
flat connections on surfaces with boundary [2, Sec. 6].

Quasi-Poisson manifolds with group-valued momentum maps fit into the

yet more general hamiltonian theory of quasi-Poisson actions developed in [1].
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In this setting, momentum maps take values in certain homogeneous spaces

associated with Lie quasi-bialgebras [17, 21].

5 Dirac geometry and symmetries

Dirac structures [14, 15] provide a common ground for the study of various
“integrable” geometrical structures. We refer the reader to [12] for details,
more examples and further references.

5.1 Dirac manifolds and closed 3-forms

Let ¢ € Q3(M) be a fixed closed 3-form on a manifold M. A ¢-twisted Dirac
structure on M is a subbundle L € E :=TM & T*M such that

1. L is maximal isotropic with respect to the symmetric pairing
() ExXE—=R, ((X,a),(Y,0)=alY)+5(X).

(This means that rank(L) = dim(M) and (-, -}

L =0);
2. I'(L) is closed under the bracket [-,-]. : I'(E) x ['(E) — T'(E),

[(X,q), (Y, B)]s = ([X, Y], LxB — iyda + ixayd). (5.1)

We denote ¢-twisted Dirac manifolds by the triple (M, L, ¢). The bracket in
(5.1) is the ¢-twisted Courant bracket [26], and condition 2. is referred to

as the integrability condition.

Example 5.1 Bivector fields # € I'(A2T'M) (resp. 2-forms w) can be seen as
examples of Dirac structures by means of the graphs of the associated bundle
maps 7% (resp. w*) in TM @ T*M. The integrahility condition 2. amounts to
[, 7] = 27%(¢) (vesp. dw + ¢ = 0). Hence, for ¢ = 0, Dirac structures include

Poisson structures and closed 2-forms as particular examples.

Just as Poisson structures, twisted Dirac structures are always associated

with Lie algebroids and singular foliations. Let L © T'M & T*M be a ¢-twisted
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Dirac structure, and let pr: TM & T°M — TM be the natural projection.
Then:

e The triple (L, pr|.. [, -Jolr)) is a Lie algebroid over M. In particular, the

generalized distribution pr(L) € T'M is integrable, and, at each x € M,
L, NT;M =ker,(pr|;) (5.2)
has a Lie algebra structure induced from [-,-],.

e Fach leaf 1 : @ — M of this singular foliation carries a 2-form w, defined
at © € O hy

wi(X,Y) = a(Y), (5.3)

where X.Y € pr(L), and o € T*M is any covector satisfying (X, a) € L,

(the value of (5.3) turns out to be independent of a), and
dwy + "¢ = 0. (5.4)
e The singular foliation and the leafwise 2-forms completely determine L:
at each point, we can obtain L from w; by
L={(X a)| X epr(Ll), t|pr) = ixwr}. (5.5)
All these notions reduce to the ones of Section 3.2 when L is the graph of a

Poisson structure.

It follows from (5.3) that, at each @ € M,
ker(L), i= T,M N L, (5.6)

is the kernel of the leafwise 2-form w; at that point.
We define the opposite of L by T = {(X,—a) | (X,«a) € L}.

Remark 5.2 Functions whose differentials are annihilated by ker(L) are called
admissible: when ¢ = 0, they form a Poisson algebra with respect to the
bracket

{f.9} =dg(Xy).
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where X is any (local) vector field satisfying (X, df) € L. It follows that
whenever ker(L) is the tangent distribution of a simple foliation, the quotient
M/ ker(L) has a Poisson structure defined via the identification of its functions

with admissible functions on M.

Example 5.3 Let G be a Lie group with Lie algebra g equipped with a non-
degenerate, invariant, quadratic form (-, -) o~ We saw in Example 4.1 that the
singular foliation of G by conjugacy classes ¢ : C — G admits a leafwise 2-form w
satisfying dw = 1*¢“. This suggests the existence of an underlying —¢%-twisted
Dirac structure Lg on (.

By (5.5) Lg must be given at each point of & by

L={(X,a)| X =pelv), veg, and «

pate) = e @}-
By (4.5), if X = pa(v) = v, — vy, then
1
Woate) = 5Wn +11,-)g = 0(v),
where o is defined in (4.4). Tt follows that
a—o(v) € ps(g)”=LNT"M.

One can check that o maps ker(pe) isomorphically onto LN T*M, so o — a(v)
is in the image of 7. So there exists u € g satisfving X = pg(u) = pe(v) and

a = o(u). It follows that
Le = {(pa(u). o(u)), u € g} = {(u, — u:,%(u, tw)g), uegh,  (57)
which is indeed a smooth Dirac structure. Note that
ker(La), = {pa(v)y | (1+ Ad,)v =0}. (5.8)
We call L the Cartan-Dirac structure on G with respect to (-, ) "

Remark 5.4 Cartan-Dirac structures fit into a more general class of examples:
Let g be a Lie quasi-bialgebra [17, 21]. Let d be its Drinfeld double, (G, D)

the associated group pair [1], and consider the homogeneous space S = D/G.
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The trivial bundle 9 x S — S has the structure of an exact Courant algebroid [4],
and g C 0 defines a Dirac structure. Hence a choice of splitting 0x.S = T'S@T*S
determines a twisted Dirac structure Lg on S. For a suitable choice of quasi-
bialgebra, S = G, and Lg = L (5.7).

5.2 Dirac maps and infinitesimal symmetries

We now discuss the relationship between Dirac maps and infinitesimal Lie al-
gebroid actions, analogous to Prop. 3.1. Details on Dirac maps can be found
e.g. in [12].

Let (M, L,¢) and (P, Lp, ¢"") be twisted Dirac manifolds. A smooth map
1 : M — P is a forward Dirac map (or simply an f-Dirac map) if, for each

T e A’l{.l

(Lp)pw = {(T(X),8) | X € T,M, B € T}, P, (X,T¢"(8)) € (Lu)-}-
(5.9)
A direct computation shows that if L and Lp are defined by Poisson structures,
then (5.9) is equivalent to (2.6). An immediate property of an f-Dirac map is
that
ker(Lp) ) = Tutb(ker(L),). (5.10)

Let p be the Lie algebroid associated with Lp, and let J : M — P be
a smooth map. Following Section 3, it is natural o call a p-action on M,
par i D(Lp) — X(M), “hamiltonian” with “momentum map” .J if the following
extension of the “momentum-map condition” (3.4) holds: if X = py(Y,3),

then, at each point of M, X satisfies
TJHX)=Y, and (X,(T.J)'(3)) € L. (5.11)

If ppy is “hamiltonian™ in this sense, then .J is an f-Dirac map. However, unlike
Prop. 3.1, an {-Dirac map may not completely specify an infinitesial action via
(5.11); this is the reason for the quotes in “hamiltonian”. If J : M — P is an
t-Dirac map, and given (Y, 3) € I'(Lp), one can always find X satistying (5.11)

at each point. We have the following equivalent conditions:
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1. Foreach (Y. 3) € I'(Lp), condition (5.11) defines a unique X at each point
of M.
2. The map J : M — P satisfies

ker(T.J) Nker(L) = {0}. (5.12)

3. The restriction of T'J to ker(L) induces an isomorphism

TJ : ker(L) = ker(Lp). (5.13)

We have the following generalization of Prop. 3.1 to Dirac geometry:

Proposition 5.5 Let (M, L,¢) and (P.Lp.o") be Dirac manifolds, and let
J: M — P be a smooth map. Suppose that ¢ = J*oF and that J satisfies
(5.12). Then J is an f-Dirac map if and only if (5.11) defines a p-action on M
along J.

Proposition 5.5 indicates the type of Dirac maps that will play a special role

as momentum maps: An f-Dirac map J : M — P is a Dirac realization if
b= J¢F, (5.14)

and (5.12) holds. If M is presymplectic we call .J a presymplectic realization
of P. We will further discuss the extra conditions (5.12) and (5.14) in the next
subsection. A simple example of a presymplectic realization is the inclusion of

any presymplectic leaf into a twisted Dirac manifold.

Example 5.6 We now show that quasi-hamiltonian spaces are precisely presym-
plectic realizations of Cartan-Dirac structures (Example 5.3) [11]; note the anal-
ogy with Prop. 2.2 .

Let J : (M,w) — (G, Lg) be a presymplectic realization. The associated

Lie-algebroid action of L on M (5.11), given by

Pulpe(v),o(v)) = X, where TJ(X)=pe(v), and ixw= J'o(v),
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defines a Lie-algebra action par: g — X(M) by v — pa(pe(v), a(v)). A direct
consequence of the definition of py, is that J is g-equivariant and (4.3) holds. By
(5.14), w satisfies (4.1). Using (5.13), we know that ker(w), = {X | TJ(X) €
ker(Le)} € par(g)e. It follows from (5.8) that (4.2) holds. Hence pyr is a
quasi-hamiltonian action with J as momentum map.

The g-invariance of w follows as a consequence: Using the Maurer-Cartan
equations df = (1/2)[0, 0] (resp. dd = —(1/2)[0,6]), we have

. i o Lo -
Lo = Gppuyd o“ + EJ d(()+6. ”)9

ol
. " 1 1 * n o
= iputo T 75 (6,6),0)+ 77" (16,6~ 6,8, 0),

. i'j*([g’ 4], {Adg_. = 1)-1;_)9 + L—t‘]*([e, 9] = A{ly([f}: 9]),-1.’)5 = 0.

Remark 5.7 (Global symmetries and examples)

The global objects integrating ¢-twisted Dirac structures are ¢-twisted presym-
plectic groupoids [11, 29]; this generalizes Remark 3.2. Under suitable com-
pleteness/integrability assumptions, infinitesimal “*hamiltonian” actions in the
sense of (5.11) correspond to global actions of presymplectic groupoids [9].

If G is a twisted presymplectic groupoid over (P, Lp) with source and target
maps s and t, then t is an f-Dirac map (though it may not satisty (5.12))
and is a “momentum map” for the “hamiltonian” action of G on itself by left
multiplication; the map (t,s) : G — P x P is a Dirac realization, corresponding

to the G x G-action on G by (g,h) - @ = gzh™".

5.3 Reduction

We now turn to reduced spaces in Dirac geometry, unifying the reduction pro-
cedure of Section 3.2 and the quasi-hamiltonian reduction of Section 4. The
key point is to understand when these more general Dirac-reduced spaces carry
ordinary Poisson structures.

Let (M, L,$) and (P, Lp, ¢*') be twisted Dirac manifolds and suppose that
par is a p-action on M along J : M — P satisfying the “momentum-map con-

dition” (5.11); in particular, J is £-Dirac but may not satisfy (5.12). Following



126 H. BURSZTYN

Section 3.2, let y € P be a regular value of .J, and consider the submanifold
J'(y) — M and the isotropy Lie algebra p, = Lp N Ty pP. 1t (0,9) € p, and
X = pu((0,8)), then (5.11) implies that TJ(X) = 0. Hence gy restricts to a
Lie-algebra action pys of p, on J~'(y), which we assume to be regular.

The level set ¢ : J~'(y) = M inherits a “pull-back” Dirac structure ¢* L
from the ambient manifold M with leaves given by O N J ' (y), where O is a

leaf of L in M, and leafwise 2-form (*w;. It is simple to check that

pi(py) C ker(e"L). (5.

o
—
o
o

If 1*¢ is basic with respect to the p,-orbits on J~'(y), then the orbit space
M,.q = J7(y)/p, inherits a Dirac structure which is generally degenerate and

twisted, and uniquely characterized by J=!(y) — M,,; being an f-Dirac map.

Example 5.8 Let G be a (source-connected) twisted presymplectic groupoid
over (P, Lp), and consider the infinitesimal p-action on G by left multiplication
(with momentum .J = t the target map, see Remark 5.7). The action of p, on
t=1(y) is regular, and the reduced space can be naturally identified with the
leaf of Lp through y. The reduced Dirac structure is the twisted presymplectic

structure on the leaf.

Let us focus on the case where M,.q = J'(y)/p, inherits an honest Poisson
structure. To avoid the 3-form twist on M., it suffices to assume that (*¢ = 0
on J(y) (or that it is zero along each leaf of 1*L). On the other hand, following
Remark 5.2, the reduced Dirac structure on M., is nondegenerate if and ounly
if (5.15) is an equality:

pu(p,) = ker(:"L), (5.16)
since in this case we can identify functions on M,., with admissible functions

on (J7Yz), ' L).

Lemma 5.9 The p,-action on J~'(y) satisfies (5.16) if and only if J satisfies
(5.12) at each x € J-Y(y).
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Proof. Note that (X,0) € ker(t*L), if and only if TJ(X) = 0 and there
is a 8 € T;P such that (X,J*(8)) € L,. Since J is an f-Dirac map, it fol-
lows that (TJ(X),3) = (0,3) € (Lp),. If (5.12) holds, then this implies that
(X, () = par(0, 3), showing that (5.16) holds.

On the other hand, let 7 € p,, and suppose that X = py(3). By (5.11),
TJ(X)=0and (X,J*(F8) € L. If X' € ker(L) Nker(7'J), then X + X’ still
satisfies these conditions and does not lie in the image of py unless X’ = 0. So
(5.16) implies that (5.12) holds.

O

As a result, we have [9, Thm. 4.11]:

Theorem 5.10 Let J : M — P be a Dirac (resp. presymplectic) realization,
and suppose that the p,-action on J '(y) is reqular. Then there is a unique
Poisson (resp. symplectic) structure on the reduced space M,.q = J~'(y)/p, for

which J=*(y) — M,eq is an f~-Dirac map.

Thm. 5.10 recovers the reduction of Section 3.2 when P is a Poisson man-
ifold, and quasi-hamiltonian reduction [3] when J is as in Example 5.3. For
presymplectic realizations, it coincides with the infinitesimal version of Xu's

reduction in [29].

Remark 5.11 There is a more general version of reduction in the spirit of the
intertwiner spaces of Xu [29]. If J; : (M;, L;) — (P, Lp) are Dirac realizations,
i = 1,2, we consider the fibred product
M= ﬂrf] xp i‘l-l’g = {(I],.’Ifg) = ﬂ-i’] X _'ml-'fg | -_)"| (3’.'[) = J-_)‘(frg)}-\

which we assume to be a submanifold ¢y, : M — M; x Ms. The Lie algebroid
p acts on M along the map J : M — P, J(z,22) = Ji(z1) = Jo(x3). Let us
assume that this action is regular. Consider M; x My with the product Dirac
stricture Ly x Ly, and let M be equipped with Ly, = Ly (L_l X Lg). Just as in

Theorem 5.10, the twisting of Ly, vanishes and

par(p) = ker(Lay),
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so the orbit space M,.; = M /p inherits a Poisson structure (which is symplectic
if My and M, are presymplectic [29]). Theorem 5.10 follows from this result if
one takes J; to be the inclusion of the presymplectic leaf O, through y in P,
Then M = .J-10O,), and J-YO,)/p = J ' (y)/p, are naturally isomorphic.

6 Revisiting symmetries and momentum maps

Let (P, Lp,¢") be a twisted Dirac manifold. Let us summarize the ingredients

of the hamiltonian theory of p-actions with P-valued momentum maps:

Hamiltonian spaces: Hamiltonian p-spaces are Dirac realizations' .J :
M — P. They form a category Mom(F), and presymplectic realizations

form a subcategory Mom,,(P).

Reduction: Reduced spaces are the Poisson/symplectic spaces J 1 (y)/p,.

y € P, of Theorem 5.10 (or, more generally, Remark 5.11)

Global symmetries: Assuming p to be integrable, global symmetries
are described by actions of ¢"-twisted presymplectic groupoids G over
(P, Lp).

This framework unifies the notions of symmetry discussed in Sections 3 and 4;

as we now see, each example is recovered by a suitable choice of target P:

o If P is a Poisson manifold and J : M — P is a Dirac realization, then
(5.13) implies that M is necessarily Poisson and .J is a Poisson map. So
Mom(P) coincides with the category of Poisson maps into P. The reduced
spaces are those of Section 3.2 [24] and global symmetries are given by

actions of symplectic groupoids. More specifically:

— It P = G7, a dual Poisson-Lie group, one recovers the hamiltonian

Poisson actions and reduction of Lu [20].

'"Hamiltonian spaces for which J does not satisfy (5.12) seem relevant in applications such
as 7, 8.
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— If G* = g*, the dual of a Lie algebra, one recovers classical hamilto-

nian theory.

e Let P = (S, Lg) be a twisted Dirac manifold associated with a Lie quasi-
bialgebra as in Remark 5.4. The main result of [10] asserts that there is
a correspondence between quasi-Poisson bivector fields and twisted Dirac
structures so that Mom(S) is isomorphic to the category of hamiltonian
quasi-Poisson g-spaces with S-valued momentum maps of [1]. Particular

cases are:

— If § = G equipped with the Cartan-Dirac structure, then Mom(G) is
isomorphic to the category of hamiltonian quasi-Poisson g-manifolds
with G-valued momentum maps [2, 9]. Reduction coincides with the

quasi-Poisson reduction of [2].

— If S = G equipped with the Cartan-Dirac structure, then Mom,,(G)
is exactly the category of quasi-hamiltonian g-spaces, as shown in
Example 5.6; reduction coincides with quasi-hamiltonian reduction

3]

The presymplectic groupoid associated with (G, L) is the AMM-groupoid
[6], see [11].

The framework of Dirac geometry sheds light on various aspects of quasi-
Poisson geometry, such as the existence of quasi-hamiltonian foliations [9, 10].
Besides reduction, this framework encompasses other key features that differ-
ent hamiltonian theories share, such as convexity [30] and prequantization [19],
and the relationship between momentum map theories corresponding to differ-
ent target Dirac manifolds can be investigated through Xu's Morita theory for

twisted presymplectic groupoids [29].
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