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NONCOMMUTATIVE GEOMETRY: A QUANTUM
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Abstract

This work is a short review on recent results about the Hopf algebraic
approach to noncommutative differential geometry for a non specialist
audience. This approach is different from the spectral triple formulation
because it does not need an extra element, such as the Dirac operator,
in order to construct a differential calculus. We show how the differ-
ential calculi on a Hopf algebra can be obtained from the structure of
ideals in the Hopf algebra itself. The language of quantum groups is
more appropriate to define noncommutative analogues of group actions,
homogeneous spaces and principal bundles. Some geometrical properties
of these noncommutative bundles are explored.

1 Introduction

Noncommutative geometry is a mathematical topic which grew very quickly in
the past two decades. Now it takes an important part in the scientific literature
both in physics and mathematics. From the physical part, noncommutative
geometry opens new possibilities for model building of elementary interactions
[1, 8, 7]. From the mathematical side, noncommutative geometrical methods are
useful to treat classical problems in geometry, topology, probability and even
number theory [6], and provides a rich source of new mathematical structures
and challenging problems [10].

The origins of noncommutative geometry can be traced back to the theo-
rem of Gelfand and Naimark, which states that every commutative C*-algebra
can be characterised as an algebra of functions on a locally compact Hauss-
dorff space. Relaxing the condition of commutativity, we can think a noncom-

mutative C*-algebra as a “noncommutative space” and then work out all the
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geometric properties in a purely algebraic way. The second step towards a non-
commutative geometry was done by the Serre-Swan theorem, which identifies
vector bundles over a compact space with finitely generated projective modules
over the algebra of functions on this space. In the 1980°s, Alain Connes estab-
lished the formulation of noncommutative geometry based on the concept of
spectral triples. A spectral triple basically consists in a C*-algebra A, a repre-
sentation of this algebra on a Hilbert space m : A — B(H), and a self adjoint
operator D acting on H such that the commutators [D, 7 (a)] are bounded op-
erators Ya € A [10]. This operator is responsible for generating the differential
calculus and is named the Dirac operator because the first example of a spectral
triple was exactly which describes the commutative geometry of a spin mani-
fold. In this case, that the algebra is the commutative algebra of functions, the
Hilbert space is given by the square integrable spinors and the D operator is
exactly the Dirac operator on that manifold. The differential caleulus generated
is the same as the De-Rham complex on the manifold.

At the same time, mainly in the context of integrable systems, there emerged
a large class of examples of noncommutative algebras with a manifest geomet-
rical content, the quantum groups. The quantum groups, whose underlying
algebraic structure is known as Hopf algebras, appeared from two different per-
spectives. The first one was the deformation of Lie bialgebras [9] and the second
as a noncommutative C*-algebra which deforms the relations of the coordinate
algebra of a group [16]. These two approaches were shown to be dual in the
sense that it is possible to identify these Hopf algebras as dual one of the other.
Just as Lie groups and homogeneous spaces form a rich class of examples of
manifolds in classical geometry, quantum groups provide key examples of non-
commutative geometry. Notions as symmetry group and group actions can be
easily translated to a noncommutative geometric context using quantim groups.
The first important notion in the quantum group approach to noncommutative
geometry is the concept of covariant calculus [17]. The idea is to define well
behaved differential forms with respect to the symmetry given by the action

of the Hopf algebra (in fact is a co-action, as we will see later). The simplest
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example is what occurs in real functions of one variable, the notion of deriva-
tive must be invariant by the action of the additive group of R by translations.
The most important fact about covariant diferential calculi on quantum groups
is that their construction depends only on the data provided by the algebra
itself [12]. While in the spectral triple approach, the differential structure is
generated by the “extra” element, the Dirac operator, in the quantum group
approach, the calculus arises from a quotient of a universal calculus by an ap-
propriated bimodule based upon an ideal of the algebra. Some attempts were
made in the last vears to make a bridge between quantum group and spectral
triple approaches [5], nevertheless, there is much more to be done in order to
converge these two perspectives and provide an ultimate theory.

Afterwards, in order to develop a consistent formulation of noncommutative
geometry of quantum groups, there is the notion of quantum principal bun-
dle [3. 11]. This notion has a more abstract origin and is related with the
generalization of galoisian extensions to the context of Hopf algebras, namely
Hopt-Galois extensions. The existence of principal bundles in the context of
quantum groups has several consequences for the study of noncommutative ge-
ometry on such spaces. The theory of connections on quantum principal bundles
has interest even for physics, in investigating deformed gauge field theories [2].
Finally, the algebraic structure allows one to define associated bundles to quan-
tum principal bundles and frames over the noncommutative manifolds leading
to the construction of a noncommutative riemannian geometry.

This work is divided as follows: In section 2. we review the basics of the
language of Hopf algebras, modules and co-modules. In section 3, we describe
the theory of covariant differential calculi over quantum groups, giving some
examples. In the last section, we develop the theory of quantum principal
bundles. As this work intends to be an introduction for nonspecialist readers,
some examples and proofs of theorems are worked out explicitly in order to give
a didatic presentation of the concepts and techniques involved in the theory.
For questions of brevity, many other interesting examples were ommited, to

them [ refer to the literature.
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2 Hopf Algebraic Preliminaries

The basic algebraic structure of quantum groups is the structure of Hopf algebra
(13, 12].

Definition 2.1 An algebra is a complex vector space H endowed with a linear

map (multiplication)
w: HeH — H,
a®b — a-b

which is associative, ie, po (p @ Id) = po (Id® p), or in terms of elements,
a-(b-¢)=(a-b)-c. Have a unit element 1 € H such that1-a =a-1 = a.
The unit can be thought as a map

H.

i B
A Al

11

and its property written as pro (n® Id) = po (Id@n) = Id. An algebra is said

to be commutative ifa-b=1"0-a.

Definition 2.2 A co-algebra H is a complex vector space with two linear maps.
4 ye J!

The co-multiplication,
A: H — H&AH,

a +— Ala)
which s co-associative, ie, (A @ Id)o A = (Id® A)o A, and the co-unit,
e: H — C,
a — ¢la)

which obeys (e @ Id) o A = (Id@e)o A = Id. A co-algebra is co-commutative if
oo A=A, where o denotes the flip morphism in H @ H.

There is a standard abstract notation for the co-products in terms of the
elements of the algebra, namely, the Sweedler notation, written as Afa) =
> apy @ ag. This sum is only indicative and it is well defined because the
properties of the co-product. In this notation, for example, the co-unit axiom

can be expressed as

Z (I.(-L)C({J.(g].) = Z C(U.(U)!’L[Q) =q.
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Definition 2.3 A bi-algebra, is an algebra H with co-aigebm structure where
both, A and € are algebra morphisms, that is, Ala-b) = Aa)-A(b), A(1) = 121,
e(a-b) =ela)e(b) and e(1) = 1.

Definition 2.4 A Hopf algebra is a bi-algebra H endowed with a linear map,

S: H — H,
a — Sa)

called antipode satisfying 1o (S@id)o A=po(id@ S)oA=noe.

In terms of the Sweedler notation, the antipode axiom for Hopl algebras

reads

> anSlae) =Y Slag))ae = (o).

Proposition 2.5 The antipode in a Hopf algebra H is an anti-algebra and

anti-coalgebra homomorphism, that is,
S(ab) = S(0)S(a),  A(S(a) =)_ S(aw) @ S(aw),  Va,be H.
Proof. Let a,b be two arbitrary elements of the Hopf algebra H,

S(ab)

> elbay)S(abe) =Y S(bay)be) Slab) =

> S(bay)elaq) be)S(agbes) =

Y S(b)S(a)ambe Slaebe) =

D 5(bay)S(an)(ab) @ S((ab)a) = Y S(bw)S(an e((ab)w)
> S(bwelbe))Slagelag)) = S(b)S(a).

Il

Il

In the first and third equalities, we use the axiom of co-unit, in the second and
fourth equalities, we use the axiom of antipode. The fifth equality is valid be-
cause the co-product is a homomorphism of algebra and the sixth again because
of the axiom of antipode. Finally, in the seventh equality we use the fact that
the co-unit is also an algebra homomorphism and in the last equality we use

again the axiom of the co-unit.
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Take now an arbitrary element a € H.,

A(S(@) = (1®1)A(S(a) =D (1@ Le(aw))A(S(am)) =
> (1@ S(ag))ae)A(S(ag)) =

= D (1elag) ® S(ag))a)A(S(aw)) =

> (Slag)a@ ® Slan))aw)A(S(ag)) =

> (S(a@) ® Slaq)))(ap) ® aw)A(S(ag)) =

(
( )
Z( (a@) ® Slap)))Alam)A(S(aw)) =
( )
( )

Il

Ii

> (S(a) ® Saw))Ala Slaw)) =
> (Slae) ® Saq)))(1e(as) ®1) =
Y Slagela)) ® S(aqy) =

> Slaw) ® S(aw)

The second and fourth equalities are instances of the co-unit axiom, while the
third and fifth equalities are instances of the antipode axiom. The sixth equality
is merely a factorization of the product in H @ H. The eighth equality is given
by the fact that the co-product is an algebra homomorphism. Finally, we use
again the axiom of antipode and the axiom of co-unit to obtain the result.

d

Example 2.6 The algebra of coordinate functions on the Lie group SL(n) is
isomorphic, as algebra, to C[t;;]/(det(t)—1), where the indices are taken between
1 and n and det(t) is the determinant of the matrix with entries ¢,;. The Hopf

algebra structure is given by
(t) =D ta®ty,  elty) =0  Slty)=(0")s

where the symbol (¢7!);; denotes the ij-th entry of the inverse matrix ¢~'. This

Hopft algebra is commutative, but clearly non co-commutative.

Example 2.7 The universal envelopping algebra of a Lie algebra g is the alge-
bra defined by U(g) = T(g)/Z where T'(g) is the tensor algebra over g and 7T is
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the ideal generated by elements of the form X @Y —Y @ X — [X Y], VX,Y € g.

The Hopf structure is given by
AX)=X®1+18 X, e(X) =0, S(X)=-X, ¥Xeq

It is sufficient to define the relations on the elements of g because of the universal
property of U(g). This Hopf algebra is easily verificable to be co-commutative,

but not commutative.

Example 2.8 As an important example of both noncommutative and non co-
commutative Hopf algebra we have the Hopf algebra SL,(2), generated by el-
ements a, b, ¢, d and g being a complex number, satistying the commutation

relations [12]
ab = gba, ac=qea, bd=qdb. ed=qde, be=ch,

ad —da = (g —q " )be, ad — gbe = 1.
The Hopf algebra structure is given by the following relations
Ala)=a®a+b®e, AD)=a®b+b&d,

Alc)=c®@a+d®ec, Ald)=cab+dad,
e(a) = €e(d) =1, e(b) = e(e) =0,

S(a) =d, S(b) = —q'b, S(c) = —ge, S(d) = a.

It is clear that this Hopf algebra is neither commutative nor co-commutative.
When we put in this Hopf algebra an involution, that is, an anti-linear map
# 1 SLy(2) — SLy(2), such that (2*)* = a and (z.y)* = y* 2" , Va,y € SL,(2)

and satisfying
at=d, b =-g, c=-¢'b d=a,

then this algebra is the quantum group SU,(2), which was the first quantum

group to appear in the literature [16].
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Definition 2.9 Given a Hopf algebra H and a vector space A a left action of
H on A is a linear map

p: HRA — A,
h@a = hea

satisfying > o (Id®v) = b o (u ® Id), and > o (n&® Id) = Id, or in terms of the
elements g (hea) = (gh)ra and 1>a = a, ¥V,g,h € H, Ya € A. A vector
space A with a left action of a Hopf algebra H is said lo be a left H-module.

If A itself is an algebra and the action satisfies h-(ab) = S (hqya)(he >b),
then A is a left H-module algebra.

One can also define the notions of right action @ : A®@ H — A, right H-

module and right H-module algebra.

Example 2.10 A Hopf algebra H can act over itself by left and right regular
actions
L,(b) =arb=ab, R,(b) =b<a= ba,

and by left and right adjoint actions,
adp(a)(b) = av b= awbS(ay),  adp(a)(b) =baa="_ S(an))baw).

Proposition 2.11 With the left or right adjoint action, H s respectively o left
or right H-module algebra.

Proof. This proof is instructive in order to be familiar with the techniques of

Hopf algebras. Take, for example, the left adjoint action
adg(a)(be) Zambrb(am) (1)
Using the co-umnit axiom, the expression (1) reads
ady(a)(be) = Zamc a2y )beS (o) ) Z”(l)h" a2y )eS () ). (2)
Finally, with the aid of the axiom of antipode, we have, from (2)
ady(a)(be) = Za[l}bS gy Ja@eSlaw) = (adp(am) (b)) (adr(ap)(e).  (3)

O
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Definition 2.12 Given a Hopf algebra H and a vector space A, a left co-action

of H on A is a linear map

Ap: A — H®A,
a — Ajpla)

satisfying the relation (A @ Id) o Ay, = (Jd® Ap) o Ar. and (e ® Id) o Ay, = Id.
The vector space A with a left co-action Ay of H is said to be an H-comodule.
If A itself is an algebra and the co-action satisfies Ap(ab) = Ap(a)Ag(b)
and Ap(1) =1® 1, the A is a left H-comodule algebra.
One can also define right co-actions Ag : A — a® H, right H comodules

and right H-comodule algebras.

In the Sweedler notation, a left and a right co-action can be represented as

Ap(a) Z d P ad”  Agla) Z a ®aW.

In this notation, the axioms for co-actions read

Z a{—L}(l] ® a_r_—l}m ®d? = Z a=V @ @D g g0
Y d®gaVy®aVy = Y a0 gdOW g,
Z E[a(_l)_}a(“) = a,
Y a%%V) = a

Example 2.13 A Hopf algebra [ co-acts on itself by the co-product and be-
cause the co-product is an algebra homomorphism and the co-unit axiom is

valid, we can easily show that f is an H-comodule algebra (left and right).

Example 2.14 Let H be a Hopf algebra, the left and right adjoint co-actions

of H on itself are defined as
AdL((J.) = Z (.1{1}8({1(3}) & (2, Adﬁ(&} = Z 2y ® S(G(l})ﬂ.(g}.

More examples can be found in references [13, 12].
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3 Covariant Differential Calculus

In the following considerations, A denotes an arbitrary algebra and H a Hopf
algebra. Let d; : A — H @ A denote a left co-action of H on A. Similarly,
op : A — A® H denotes right co-action of H on A. The algebra A is to be
thought as a left (right) H-comodule algebra.

Definition 3.1 A first order differential caleulus (FODC) over an algebra A is
a pair (U, d), where I' is an A-bimodule and d : A — T is a linear map satisfying
the Leibniz rule

dlab) =a - db+ (da) - b, Va,be A

such that I' = span{a - dbla,b € A}. The elements of a FODC T are called
I-forms.
Two FODC, I’y and T's, over A are isomorphic if there exists a bijective

linear map ¢ : I'y — I'y such that ¢la- dib-c) =a- dpb- ¢, Ya, b, c € A.

Example 3.2 Consider A = Clz], the polynomial algebra over C in one vari-
able. Let T' be the free left A-module generated by the generic element dux.
Fixing a polynomial p € A, we can define the right A-module structure by
dz - & = p(r)dz. One can prove that for each p we have a unique A-bimodule
structure on I'. For the derivation d : A — I' we define recursively
d(z) = dz, d(z™) = Z x'plx)dr,
itj=n—1

and extend linearly to A.

Let us consider some particular examples. For p(x) = x, we have the ordi-
nary commutative differential calenlus in one variable. If p(x) = gz, ¢ = 1 then
we have

n—1

d{z") = Z reride = Z ¢ e = qq%ll;r“_ld:r,

i+j=n—1 j=0

In this case we have the following general expresion:
g 1

df(z) = Dy f(z)dx = %—Qdi
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The symbol D, f is called the ¢-derivative of the function f. Finally, for p(x) =

&+ ¢ we have

(:r 4 C)u _ :rvr

d(z") = Z iz 4 c)idr = da.
i+j=n—1
with general expression
af(z) = de_

c

Definition 3.3 Let A be a left (right) H-comodule algebra. A FODC over A is
said to be left (right) covariant if U is a left (right) H-comodule with left (right)
action Ap : ' = H@T (Agp: T —TI'® H) such that

Apfadb) = br(a)(1d® d)or(b).

Respectively
Agladh) = dpla)(d@ Id)dr(b).

If A is an H-bicomodule algebra, then we can define I' as bicovariant if it is
both left and right covariant and (Ap @ Id) o Ap = (Id®@ Ag)o Ap.

Example 3.4 The algebra A = Clz] of the preceeding example can be con-
sidered as the universal envelopping algebra U(R), with co-product A(z) =
1®x+ 2@ 1. The co-action of A on itself can be interpreted as the action of
the additive group R on itself by translations. By an easy calculation, we can
verify that the commutative calculus on A given by the polynomial p(x) = & is
bicovariant with

Ap(de) =1 & dx,
moreover, this is the only bicovariant calculus on A, with this co-action.
Going beyond first order calculus, it is possible to construct noncommutative

analogues of the De Rham complex of a C* manifold with the property of

covariance.
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Definition 3.5 A differential colculus (abbreviated, o DC) over an algebra A
is a graded algebra T" = @~ , T, that is, a direct sum of vector spaces T"",
with a product A 1 TN x TV — DA and g linear map d : T — T of
degree one (that is, (L") C T+ ) such that:

1 #=0.
2.dlpan)=dprn+ (=1)"p Ady for p € T and n € T".
3. ' = A and I'" = span{anday A ... A daylag, ..., 0. € A},

The elements of each subspace T™ are called n-forms.

Proposition 3.6 Let T" be a DC over the algebra A, then we have the follow-
ing:

a) The pair (T, dpw) is a FODC over A.

b) dlagday A ... A day,) = dag A day A ... A da,.

¢) (apday A ... A day) A (Gpaadipsg A ... A danar) = (1) apardag A ... A
dagin + 3o (=1 Tagday A oA dap@epr) AN d

Proof. (a) The item 3) in the definition of a DC over A assures that ['"! =
spanf{adbla,b € A}. If p € A and € I'" then p A 1 = pr, then the item 2) in
the definition aplplied to djpso : A — '™, reduces to the ordinary Leibniz rule,
proving that T'"! is a FODC over A.

(b) It is a direct consequence of items 1) and 2) of the definition of DC.

(¢) This statement is proved by induction on n:

For n = 0 it is trivial and for n = 1 we have, by the Leibniz rule,
apday Alasdag A .. Adayoy) = —apadas A Adayag +agd{eiag) AL A dag oy
Suppose valid for n and evaluate

w = (apday A ... Adans1) A (@ngodangs Ao Adangig),
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then we have

(aodar) A (daz A ... Adapsr) A (Greadanis Ao A dGpar) =

W
= (ai,dal ((—=1)"asdaz A ... Adayiron +

+Z —1)""dag A ... Ad(Gry1Grg2) A - o Adaprse) =

Il

(=1)"Magardag A ... Ada, ., +
n+1
+ Z(—l)"“"'andal Ao Ad(@rar ) Ao A danerek

O

This previous result shows that the basic properties of a differential complex
are preserved in a noncommutative context. In order to construct noncommuta-
tive differential calculi, let us present a DC over an algebra A which is universal,
in the sense that every other DC over A can be obtained by a suitable quotient

of this caleulus.

Example 3.7 Let A be an algebra and let Q'(A) = A% C A@ A be the kernel
of the multiplication in A. We define alsod: A — A’ byda=1®%a—a® 1.

It is easy to see that d satisfies the Leibniz rule:

Il

1@ab—ab@1l=10ab—axb+axb—ab®1=
(da)b + adb.

d(ab)

Il

It is obvious that adb € A® for all a,b € A, now let a @ b € A2, we can write
a@b=a®b—ab® 1 =adb

Therefore, 2'(A) is a FODC.

Now, define the A bimodules §2" = Q'( A} @4 ... @4 Q(A) (with n factors
(1'(A)) and take the tensor algebra Q(A) = @, Q" (A), where Q%(A) = A
and the product is given by the tensor product over A. The balanced character
of the tensor product over A and the Leibniz rule in each tensor factor allows

one to write

2'(A) = span{apda; @4 dag @4 ... @4 da,|ag, aq, ..., 0, € A}
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Finally, if d : ©2(A) — Q(A) is a linear map such that on monomials is given by
d({agday ®4das @4 ... ®ada,) = dag®@ada; ®adas @4 ... ®a4da,,

then d* = 0 and this makes Q(A) a DC over A, namely, the differential envelope
of A.

The universal character of Q(A) can be easily shown: Given another DC
over A, (I', ﬁ), define a linear map

P QA) — P ~
apday R4 ... Rada, — apday A ... Ada,

The universal character of the tensor algebra extends automatically the linear
map 1 to a unique algebra homomorphism. By construction, the map ¢ is
surjective and one can verify trivially that ¢ed = dot). The subspace ' = Kert)
is in fact a bilateral ideal of £2(A) and because ¢ intertwins the differentials d
and d we can prove that d(A) € N. Therefore, we have the isomorphism ' &
Q(A)/N. The FODC Q'(A) is a universal FODC, considering the restriction

of the above isomorphism.

Definition 3.8 Let A be a left (right) H-comodule algebra and T'" a DC over
A. The caleulus T is said to be left (vight) covariant if there exists an algebra

homomorphism Ay :T" — H@T" (resp. Ag: 1" — '@ H), such that

Aplagday A ... A day) = Z A N at(,o)da.(lm A...Ada®,
Ag(agday A ... A day) = Zaﬁo}da{lm A hda® @alalV .. oD,

Proposition 3.9 If A is a left (right) H-comodule algebra, then the universal
FODC QYN A) and the universal DC Q(A) is left (right) covariant.

Proof. Given two left H-comodules A and B. one can define a left H-comodule

structure on A ® B by
Apfa®b) = a0 @b,

The right H-comodule structure is given in a similar manner.
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Take an element adb € 2'(A), then

AL((MHJ) AL(G’- @b—ab® 1) =
Z a2 60 @ b — Z a0 0 @p0 @1 =

Z a0 2 aDaAn® = 5, (a)(Id @ d)d,(b).

This makes Q'(A) a left covariant FODC. The right covariant structure can be
constructed similarly.

Using the nuniversal property of the tensor algebra, we extend A uniquely
as an algebra homomorphism on (A) and verify that this extension turns ((A4)
into a left covariant DC over A. The same for the right covariance.

]

One important class of examples of covariant differential calculi is given in
the case when the algebra A is a Hopf algebra and the covariance is considered
with respect to the co-action of A on itself by the co-product. In this case,
there exists another characterization of the universal FODC, as shown in the

following theorem:

Theorem 3.10 Lei A be a Hopf algebra. Then the universal left covariant
FODC Q'(A) is isomorphic to A ® Kere = Aw(A), where

w: A — A® Kere.
a — 1@ (a—ela)l)
The correspondence is given by the identifications w(a) = >_ S(ap))daw) and
da =Y amw(ag ). Ya € A. Moreover, the one forms w(a) are left invariant,
that is, Ap(w(a)) =1 @w(a), Va € A.

Proof. Define the following two linear transformations:

T: A2 - A®Kere,
a®@b — Z (LE)(]J (Y (b(z} = E(f)(g])l)

d: A Kere — A2,
a®b — 3aS(by)) ® by
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Let us verify that these linear maps are mutually inverses. Take an arbitrary

element a @b € A?,
‘b(‘[’(& ® b)) = Z(I?’((lbu) & (b(g] - E(h(g))l)) =
= Z‘I’(Gb(l) @ bay) — Plab® 1) =
Y abayS(be) @by =a @Y elba))be) =a@b.

The second equality is due to the co-unit axiom, the third equality is due to the
fact that ab = 0, the fourth equality is due to the antipode axiom and finally

the fifth equality again due to the co-unit axiom.

Now take an arbitrary element a @ b € A ® Kere,

V(@a@b) = Y WaS(by) @ba) =Y aS(b)be & (be) — e(be)1) =
= a®)  elbuy)be) —a @Y e(bn)be)1 =
= a®@b—a®eb)l =ab.

The third equality is given by the antipode axiom and by the linearity of the
co-unit, the fourth equality by the co-unit axiom and the last equality by the
fact that e(b) = 0.

With these two isomorphisms, we can identify the one form da = 1@a—a®1
with the corresponding one form Y ag) @ (ap), — e(a@))1) = 3 apyw(aw)), and
in the same manner, identify w(a) = 1® (a—e(a)1) with the corresponding one
form Y~ S(aq))dag.

Let us verify the invariance of w. Remembering that the co-action of A on

itself is given by the co-product, we have
Apfadb) = Ala)(1d @ d)A(b), Va,be A
Take an arbitrary element a € A,

A(w(@) = Au)_ Slag)dag) =
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= Z(S(a(z}) ® S(amy))(1d ® d)(am) @ aw) =
- Z S(a)as @ S(an))dag = 1® S(agye(aw))dag) =
= 1® S(ag)dag) =13 w(a)

O

Note that the concept of left invariant differential one form can be con-

structed on any left covariant FODC (I, d) over A. The expression is the same,

wla) = 3 S(aqy)dap). Because of that expression, it is easy to note that

w(1) = 0. In what follows, we will write wy to denote left invariant one forms

in the universal FODC Q'(A) and w to denote left invariant one forms in any
FODC.

Definition 3.11 A bicovariant FODC over a Hopf algebra A is a FODC which

is at the same time left and right covariant and
(ard'X' A;{) o AL = (AL & fd) =] AR

The left invariant one forms are not necessarily right invariant, nevertheless,

we have the following result:

Proposition 3.12 Let I' be a bicovariant FODC over a Hopf algebra A and
let w(a) = 3" Slaqy)dagy be the left invariant one forms in T'. Then Agpow =
(w® Id) o Ad".

Proof. Take an arbitrary element a € A4,

Apg(w(a))

Ar(d_ S(aw)da) =

> (Sla) ® S(an))(d @ 1d)(a@) ® aw) =
= Y S(a@)dag ® S(aw)ay =

Y wla) @ Slaw)ag)

O
The following result relates the bicovariant first order differential with Ad"
invariant right ideals of Kere C A, that is, ideals R C Kere such that Ad# (R) C
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R ® A . This result is one of the most important properties of bicovariant
differential calculi and provides a full characterization of them only in terms of

the structure of ideals of the underlying Hopf algebra.

Theorem 3.13 (i) Let R be an Ad® invariant right ideal of Kere C A, then
N = Awy(R) is an A-sub bimodule of Q'(A) and the quotient I = QY (A)/N is
a bicovariant FODC over A and R = {a € Kerelw(a) = 0}.
(ii) Conversely. if I' is a bicovariant FODC, then Rr = {a € Kerew(a) = 0}
is an Ad® invariant right ideal of Kere and T = Q'(A)/Awy(Rr).
Proof. (i) First, let us take a closer look on the A-bimodule structure of
QL(A) = Awy(A):
awy(b)-c = Y aS(by)(dbe)e =
= Y aS(b)d(baye) = Y aS(bg))beyde =
= Zﬂg f)“})h(z}({]}w( b{‘;}(’[,}) Z(L(— b)‘i(”wb (g}) =
= Y acywu(e(buy)beyce) — Y acqwy (e(b)ew) =
= Y acqywu((b— e(b)1)em) =
= Z acqywy (be).
The left A-module structure of A is evident, to verify the right A-module

structure, take an arbitrary element awy(b) € N and ¢ € A,

awy (D) e = Zac{l 1(bey) =
= > acqwu(ble — ele)1)) +a ) cuye(ee)wu(b) =
= Z aciywy (beg)) + acwy (b) € N,
the first term is in A" because b € R and R is a right ideal of Kere, the second
term is evidently in A'. Then A is a sub-bimodule of Q!(A) and T' = QY(A) /N
is a FODC.

The covariance is verified if one can prove that Ap(AN) € A& N, and

Ar(N) CN ® A:

Arfawy(b)) = Ala) (L@ wu(b) = D aq) @ agwu(b).
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Similarly
Aglawy (b)) = Ala)(w @ Id) Ad®(b),
which is in A" because, by hypothesis R is Ad® invariant. Therefore, I' is a
bicovariant FODC.
It remains to verify that R = {a € Kere|lw(a) =0} = Rr. If a € R, then

w(a) = Z S(a(l))da,(z) == ZS(({-{]))(]. Bz — Q) & 1) +N =
= z S(awy)agwe(ag) +N =wu(a) + N =N =0.

Conversely, if w(a) = 0, for some a € Kere, then wyy(a) € N. It is easy to see
that wy(a) =1 @ a and then we can conclude that a € R.
(ii) Let I' be a bicovariant FODC, ¢ € Rr and b € Kere,

wlab) = > Slambay)d(ambe) =
Z S(b(1})3(&{1))0.(2)(”)(2) + Z SU)(]])S((E[[))(da(‘z})!‘J(g] =
e(a) > S(by)dbe) + > S(bey Jw(a)bez) = 0.

Il

From the fact that (w® I1d)Ad"(a) = Ap(w(a)) we can conclude easily that Ry
is Ad® invariant. The second assertion follows from the item (i).
O

Example 3.14 Any Hopf algebra admits a commutative bicovariant differen-
tial calculus, choosing the ideal (Kere)?. It is easy to see that (Kere)? is in fact a

bilateral ideal of Kere. It remains to verify th Ad® invariance. Let a, b € Kere,
(®Id@Id)Ad*(a®b) = Y elap)be ® S(aubn))asbs =

= Y by @ S(bay)S(apyelap)))ag b =
Z by ® e(a)S(buy)ba =0,

similarly, we prove that (Id @ ¢ ® Id)Ad"(a ® b) and then, we conclude that
Ad"(ab) € (Kere)? @ A.
Next, we have to check that the bicovariant calculus obtained is in fact

commutative, in the sense that the invariant one forms commute with elements
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of A. Consider a.b € A,

I’I.(]_]Ld(Efj(g)) =5 (L[l}w(fl(g)) + (J.(]}&J({T}E{I’L(g))} =
aw(b —e(b)1) = aw(b).

Il

w(b)a

Il

Example 3.15 An interesting class of bicovariant differential calculi can be
obtained for universal envelopping algebras U(g) [15]. Consider an irreducible
right U(g)-module, (V,p). Take A € V and define py : U(g) — V as pala) =
A - pla). In the universal envelopping algebra Kere = U(g)\(C1), and we can
casily see that Kerp, is a right ideal of Kere. The Ad® invariance follows from

the co-commutativity of U(g):

Arfﬁ(a) = ZH(QJ ® S(i’}.(u)ﬁ-[;i) = Z(}.(g} ® S(ﬂ.{]})ﬂ-{g) =
= ZE((}.(U)(L(Q) ®R1=a® 1.

Then, the bicovariant FODC over U(g) can be written as I’ = U(g)@(Kere/Kerp, )
= U(g) @ V, this last identification is possible because p is an irreducible rep-
resentation, then py is surjective. The invariant one forms can be written as
w(a) = pala), Ya € U(y).

For elements X € g we have dX = w(X) = pa(X),

dX =) Xpw(Xe) = Xw(1) + Lw(X) = w(X).

The commutation relations between the invariant one forms and the elements
of U(g) can be verified as follows: Take v € V and X € g, the surjectivity of py
implies that there exists an element o € U(g) such that v = py(a) = wla) (for

sake of notation, we are writing only v instead of 1 @ v, therefore, we have

v-X

pala) - X = meﬂ;\(ﬂ-xm) = Xpa(a) + pa(aX) =
X v+ vp(X). (4)

Il

This allows one to write recursively, for monomials X, X5... X, € U(g), the
following expression

n—1

d(XlXE! X\u) = Z Z Ya(].} P&(X (ltL) s v 2 o'(n)J'

k=0 0ESkn—i)
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where Sy, . _p) is the subgroup of permutations of S, such that (1) < .-+ < a(k)
and o(k+ 1) < - < g(n), called (k,n — k) shuffles.

The calculi obtained from irreducible representations are irreducible, in the
sense that they cannot be expressed as a direct sum of smaller bicovariant
FODCs over U(g) [15]. There are other non irreducible caleuli over U(g) which

can be constructed using matricial representation, see for example [2].

The theory of bicovariant differential calculi over Quantum Groups was first
established in the reference [17]. There, the FODC and the differential caleu-
lus over SU,(2) was constructed. This quantum group has two different four
dimensional first order differential caleuli. The theory of quantuimn vector fields

and gquantum Lie algebras are developed in the same reference.

4 Quantum Principal Bundles

As seen in previous sections, the formalism of Hopf algebras is very suitable
to incorporate group actions in a noncommutative context. A very natural
construction in the quantum group approach for noncommutative geometry is

the definition of noncommutative principal bundles [3, 11].

Definition 4.1 Let H be a Hopf algebra, P be a right H-comodule algebra and
let

M = PH = {y e Pl|Ag(u) =u®1}
be the invariant sub-algebra of P. We say that P = P(M,H) is quantum
principal bundle with structure quantum group H, base M and with universal

differential caleulus of the following conditions are satisfied:

1. The map x = (u@ Id)o (ld® Ag) : P& P — P® H is surjective (freeness

condition).
2. Kery = Uy = PQQY(M)P (exactness condition,).

The first item in the definition of quantum principal bundle is motivated by

the fact that the group action on a classical principal bundle is free, that is the
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map a : P x G — P x P which associates the pair (u, g) to the pair (v, u-g)
is injective. The second condition needs some explanation. In the classical
case, smoothness and dimension arguments combined with the freeness of the
group action ensures that the quotient is a manifold and the fiber through a
point u € P is homeomorphic to the Lie group G. At the infinitesimal level,
by dimension arguments, the Lie algebra g of G is isomorphic, by the map
which generates the fundamental vector fields, to the vertical part of T, P, for
each u € P. In our case one needs to suppose directly that the image of the
fundamental vector fields span all the vertical vector fields. In terms of forms
we can say that the horizontal forms span the anihilator of the invariant vector
fields.

The concept of quantum principal bundle with universal caleulus is related

to the more algebraic concept of Hopf-Galois extension

Definition 4.2 We say that a right H-comodule algebra is a Hopf Galois ex-
tension of H if the canonical map x = (p@ Id)o (Id@ Ag): Py P - P2 H

is a isomorphism, where M = PH is the right invariant sub-algebra.

Theorem 4.3 A right H-comodule algebra P is a Hopf-Galois extension of H

if, and only if P(M, H) is a quantum principal bundle with universal calculus.

Proof. Consider the following diagram:

0 - PQYM)P — PP — P®uP — 0

! JL Lx
0 — PR®H — P®H — 0

Using the snake lemma, we have the exact sequence
0 — PQY(M)P — Kery — Kery — 0 — Cokery — Cokery — 0.  (5)

Assume first that P is a Hopf-Galois extension, then Kery = Cokery =
0. By the exactness of (5), we have Cokery = 0 which express the freeness
condition, and we have the isomorphism PQY(M)P = Kery, which express the
exactness condition. Therefore P(M, H) is a quantum principal bundle with

universal caleulus.
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On the other hand, if P(M, H) is a quantum principal bundle, then P! (M) P
= Kery and Cokery = 0, again, by the exactness of (5) we have Kery = 0 and
Cokery = 0, which implies that y is an isomorphism and P is a Hopf-Galois
extension of H.

O

If the differential calculi involved are not universal, then the definition of
quantum principal bundle requires more conditions. Let I'p be the FODC over
P and Np be the sub-bimodule of Q'(P) such that T'p = QYP)/Np. Let
My € Kere be the right ideal of Kere which defines the bicovariant FODC
I'y. Three conditions are important in order to define the quantum principal
bundle: the right H covariance of the FODC I'p and the compatibility of the
canonical map y and the exactness condition with the sub-bimodules such that
the same structure remains valid in the quotient. Let us define first the map
XN Ip — PR (Kere/ My ) by xu(p) = (Id@wy)ox(pr), where my @ Kere —
Kere/ My is the canonical projection and py is a representative in ’ﬂ'_;r:‘ where

Ty QY(P) — Tp is the respective canonical projection.

Definition 4.4 We say that P = P(M, H Np. My) 15 a quantum principal
bundle with structure quantum group H and base M = P if the following

conditions are satisfied:

1. Themap x = (pRId)o(Id® AR) : P& P — P® H is surjective (freeness

condition).
2. Ar(Np) CTNp @ H (right covariance of T'p).
3. x(Np) € P& My (fundamental vector fields compatibility condition,).
4. Kerxn,. = Uhor (ezactness condition).

Example 4.5 Let P be aright H-comodule algebra with invariant sub-algebra
M = P we say that P is a trivial quantum principal bundle if there exists a

linear map ® : H — P satisfying the following conditions:
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1. @ is convolution invertible, that is, there exists a linear map ® : H — P
such that 3 ®(aq))®(aw) = 3. ®lag))P(ag) = €(a)l.

2. ®(1y) = 1p.

3. Apo® = (®®Id)oA.

From these properties, we can easily conclude that Ago® = (®®Id)ooo A,
where o is the flip morphism in H @ H.

These bundles are quantum principal bundles with universal calculus, usu-
ally known in the Hopf algebra literature as cleft Hopf-Galois extensions. To see
this fact, let us first prove that P is isomorphic, as vector space, with M @ H.

As M C P define a linear map
8: M@H — P
boa +— bd(a)

whose inverse is given explicitly as @' (u) = 3= u@®(uV 1)) ® uV ).
Some routine verifications need to be made, for example, that the image of
O~ is in fact in M @ H:
(Ar@1d) (07" (u) = > Ap(u)Ap(®(uY ) @ ul ) =

— Z”{GJ(G}@(UH}(E)) R uOW gD 4)) @ uM 5 =
= > uOB(uV ) ®ub ) St J[2)(l}) u® s =
= > uduM ) 8 vy S @) @ u
= > uOuP ) @ 1@ uly

Afterwards, one needs to verify that © and ©~! are indeed mutually inverses:

8O ') = 0 uVduVy)@uly) =
= 3 u% Hmm ’H[”(:».}) =
_ Z u@e(uD)
o (e®a) = O l(f@(a)) =

= b99(a) 0N 1) @(a)" ;)) ® BV 5 ®(a)V ) =
= ) b(ap)P(ae) ® am) =
= b® (Z am)aw) = b a.
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In order to prove the freeness condition, consider an element Y w), ® a* €
P ® H and define p € Q'(P) as

p= Zm‘i’(&km) ® ®(a* ().
Then, we have
(n@1d)o (Id® Ag)(p) = 3 _ urd(a*))®(a* ) ® ab@ =D we @ a*.

Finally, it remains to check the exactness condition, that is Kery = Pd(M)P.
The inclusion Pd(M)P C Kery is trivial, take u,v € P and b € M, then

x(u(dbyr) = yuleb->@1lv)=
xlu@br —ub®wv) =
ub@v@ @ pWy) — 4@ @ oM = 0.

The inclusion Kery € Pd(M)P is less trivial, take in this case an element
p = Y., udv; € Kery, since ® establishes an isomorphism beftween P and
M ® H, consider v; = Y, bf®(a¥), then we can write

0 = (uRId)o(lde@® P)o (Id®A)o x(p) =
= (peld)o(ldad®®)o(ld® A)(Z uf-f}:-"@(a:“(l)) ® a.:_"{.z} —ubf®(af) ©1) =
ik
= (u® Id)(Z('ﬁt;bﬂf@(ﬁ?m) ® 'i’(u'f(g}) ® q’{a?(s}) —ubf®(a)) ®1)®1) =
i
= Z(u,-bf ® ®(aF) — wbre(aF) ®1) = Z b d®(ak).
ik ik

Hence, using the Leibniz rule, we have

o
I

> wd(bid(af)) =
ik

> wi(dbf)®(al) + Y ubfd®(af) =

ik ik

3 wi(dbf)@(at) € P(AM)P,

ik
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Example 4.6 An example of nontrivial quantum principal bundle can be given
by the quantum Hopf fibration. Here P = SU,(2). with Hopf algebra structure
given in the Example 2.8. The structure quantum group is given by the algebra
of coordinate functions on U(1), that is the polynomial algebra C[z, z~'], where

21 is the inverse of z and with Hopf algebra structure given by
Az ) =z""®#";, =1, S@E*)=2

There is a Hopf algebra projection 7 : SU,(2) — U(1) defined by n(a) = z,
m(b) = m(¢) = 0 and 7(d) = 2='. With this projection, we can write the right
coaction of U(1) on SU,(2) by Ag = (Id & 7) o A. Finally, the quantum two
sphere Sﬁ C SU,(2) is the invariant sub-algebra. This algebra is generated
by {1,b = ab, b, = ed,b; = ad} and its relations can be deduced from the
relations on SU,(2).

It was shown in the reference [3] that SU,(2)(S?,C[z,27'], ) is indeed a

nontrivial quantum principal bundle,

The noncommutative geometry from the point of view of quantum groups
is greatly developed, and it is possible to construct noncommutative anologues
of associated vector bundles, equivariant functions, frame bundles, connections
and Riemannian geometry. To the interested reader, more details and important

results can be found in references [3, 4, 14, 15].
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