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Abstract

In this paper we consider compact oriented hypersurfaces with constant
mean curvature immersed in the Euclidean sphere 877!, Recently, re-
stricting to hypersurfaces M with two distinet principal curvatures with
multiplicities 1 and n — 1 respectively, the authors jointly with L.J.Alias
[AAB]. obtained an integral inequality involving the square of the norm
of the second fundamental form of M. The equality holds only if M is
the H(r)-torus. In the present paper we show that under the same con-
ditions, M is the locus of a codimension-one submanifold moving along
one of the lines of principal curvatures of M. In the process we give a
sketch of the integral inequality in [AAB] and establish a certain ordinary
differential equation involving the invariants of M.

1 Introduction.

Let M be a closed hypersurface of the (n+1)-dimensional unit Euclidean sphere
§"*1. As usual, let S be the square of the length of the second fundamental form
A of M. In [HV], Hasanis and Vlachos proved that if M is a compact minimal
hypersurface with two principal curvatures, one of them with multiplicity & =1
and S > n then S = n and M is a Clifford torus. In [BBCL], the second
author jointly with Barbosa, Costa and Lazaro obtained a generalization of
the above result with no hypothesis on the constancy of the mean curvature,
They obtained a characterization for the H(r)-tori 8"~'(r) x 8'(v/1 — r?) with

r? > (n — 1)/n. More precisely:

Theorem 1.1. [BBCL] Let M be a compact oriented hypersurface immersed in

the sphere ST, with two distinet principal curvatures X and [o with multiplicities
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1 and n — 1, respectively. Let ® = A — HI be the traceless second fundamental

form of M. Suppose in addition that n > 3 and |®|* > Cy, where

n(n?—2n+2)H% n(n-—2)|H|
dn—1) 2n-1)

Cyp=n+ n?H?2 +4(n—1).

Then H is constant, |©> = Cy and M is isometric to an H(r)-torus S"7(r) X

SH V1 —r2) with r* > (n—1)/n.

Recently, Perdomo [P] and Wang [W], simultaneous and independently,

proved that if M c §**! is a compact minimal hypersurface with two prin-

cipal curvatures, one of them with multiplicity & = 1 then

fi\.r(|_4|‘2-n) <0,

with equality if and only if M is a Clifford hypersurface. Recently, the authors
jointly with L.J. Alias [AAB] extended the result of Perdomo and Wang for
compact hypersurfaces with constant mean curvature and obtained a new char-
acterization of the H(r)-torus 8" !(r) x §*(v/1 — r2). Explicitly, we have the

following result (Theorem 3 and Corollary 4 in [AAB]).

Theorem 1.2. Let M be a compact oriented hypersurface immersed in the
sphere S*1 with constant mean curvature H. Suppose in addition that M has
two distinet principal curvatures A and p with multiplicities (n — 1) and 1,
respectively and let ¢ = £1 be the sign of the difference A—p. If & =A—HI is
the traceless second fundamental form tensor of M and Py is the Alencar-Do

Carmo polynomial

. nin—2 .
Pr(z) = 2* + 02 gy n(l+ H?),
n(n—1)
then
f Pu(cfe]) = =2 / |V In|@|* <0, -1
) T M

with equality only if M is an H(r)-torus S"71(r) x SY(v/1 —r?).
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In [O], Otsuki gave necessary conditions for a minimal hypersurface of the
sphere to be a product of spheres. He showed that if a compact minimal hy-
persurface has two principal curvatures with multiplicities greater than one,
then the hypersurface must be a Clifford hypersurface. On the other hand, by
studying a certain ordinary differential equation he was led to the construction
of infinitely many non standard minimal hypersurfaces. Those hypersurfaces
have only two principal curvatures with one of them of constant multiplicity
k= 1. By making use of a technique similar to the method of Otsuki, we prove

the following result.

Theorem 1.3. Let M be an n-dimensional hypersurface of S*T(1) with con-
stant mean curvature H and two distinct principal curvatures p and X. Suppose
in addition that n > 3 and the principal vectors corresponding to p is a 1-
dimensional space. Then M 1s the locus of a codimension-one submanifold
X"=1(s) moving along the line of curvature determined by . Locally X" '(s)

is wsometric to an (n — 1)-dimensional sphere 8" *(c,) of constant curvature

2
I(In |H — A|= )
CRZ{E‘L‘EET‘“)‘} + A"+ 1.

The function w = 1/(A — H)Y™ satisfies the ordinary differential equation
d*w (-n. -1
—w

22 andn
&) 7k

+EH—H2—1):01

wr

and S"(c,) is the intersection of the unit sphere S"1(1) with a n-dimensional
linear subspace E™(s) of the Euclidean space R™2 which are parallel to a fived
E™.

In this note we give a sketch of the proof of Theorem 1.2 and present a

complete proof of Theorem 1.3.

2 Preliminaries

Let M be a compact hypersurface with constant mean curvature H immersed

in §**'. As in [AAB]. choose a local orthornormal frame field £y, ..., E, in a
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neighborhood U of M and let wy,...,w, be its dual coframe. As is well known,

there are smooth 1-forms w;; on U/ uniquely determined by the equations

dwy == wiy Awj, wyy+wy; =0. (2.1)
F=1

The square of the length of the second fundamental form

A= i hijwi @ wy,

ig=1
is given by S = Y Ij;. Note that hy = h;; and

ij

1 T
B =% Y. 2.2
c ;fru (2.2)

The covariant, derivative of h;; is given by
Zh-f.js:wk = dhy; — Zh'huwmj - th.jwm-e- (2.3)
k m m
It is well known that Ay, is symmetric in all indices. From now we will assume
that M™ is a compact hypersurface with constant mean curvature having ev-
erywhere two distinct principal curvatures A and p with multiplicities n — k and

k, respectively. We now recall a classical result of Otsuki [O].

Proposition 2.1. Let M be a hypersurface in $"' such that the multiplicities
of its principal curvatures are constanl. Then the distribution D, of the space
of principal vectors corresponding to each principal curvature A is completely
integrable. In particular, tf the multiplicity of a principal curvature is greater
than 1, then this principal curvature is constant on each of the integral leaves

of the corresponding distribution .
A consequence of this result is the following lemma:

Lemma 2.2. Let M™ be a compact oriented hypersurface in S* with constant
mean curvature and two principal curvatures N and p. with multiplicities n —

k and k respectively. If 1 < k < n — 1. then M is isometric to 8" *(r) x

SE (V1 —r2).
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Proof. We may choose a local orthonormal basis Ey, .. ., Ey, Ex41,. .., E, such
that for 1 <i<kand k+1<j<n,

EieDy={veT,M:pe M, Av= v}

EieD,={veT,M:peM Av = uv}.

By Proposition 2.1 above, we have Ej(A) = Ej(p) =0fori < kand k+1<j.

As nH = kX + (n — k) is a constant function, it follows that
KE;(A) = (k—n)E;(1) = 0.

Therefore po and A are constant and M is an isoparametric hypersurface. Note
that since M is compact, then M is isometric to $"*(r) x S¥(v/1 —r?).

3 Sketch of the proof of Theorem 1.2

As in [AAB] we introduce the traceless second fundamental form & = A — HI.
Taking into account the different choice of sign in the definition of ¢ in Alencar

and do Carmo [AC] we have the Simons formula:

%mqwt? = |V®* + |®|* (n(1 + H?) — |®|*) + nHtr(®*).

In the following lemma we are going to evaluate the Laplacian of In|®[. It

turns out that Aln|®| depends on the polynomial

nn—2)H

Py(z) = 2* + z—n(l+H?).

nin—1)
Lemma 3.1. Let M be a compact oriented hypersurface with constant mean
curvature H immersed in 8™ having two principal curvatures X and pi, with

multiplicities n — 1 and 1 respectively. Then

S
|22
where ¢ = %1 s the sign of the difference X — pu.

Aln|o| = = (|VO[2 —2|V|][2) — Pul(cla]), (3.1)
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Proof. Note that

OS2 |A(ln |® @2( AlD v|P )
| "] A(In | @) |®| |<1>i|| |(I,[zllll
= |o|A®] - V||

; [N ,
2 §A|®[——2|v:®||2.

A straightforward computation gives,

t'r((I>3) - (?? F¢,|3

Using Simons formula, one gets

Aln|®| = —— (V8] - 2|V8|]Y) - Py(cl®]).

I@IQ
Lemma 3.2. Let M™, n > 3, be a compact oriented hypersurface with constant
mean curvature H immersed in S""' having two principal curvatures A and p

with multiplicities n — 1 and 1 respectively, then

Vo = n+2

— V2| (3.2)

Proof. Let Ey, ..., . B, be a local orthonormal frame field so that &(E,) = ik,
and

®(E;) = \E;,
for all 1 <4 < n— 1. Note that
Ve[ = VAP =} hij,
ik

with

§ i = dhyg = Rimmg — Y Rinjiimi.

m e
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From this and a straightforward computations gives

VI®[?  (n+2
win—1) n

|[V®|? = (n— 1)(:'?,4—2)? )fv;¢>||?,

Theorem 1.2 follows from Lemma 3.1 and Lemma 3.2. In fact,

1

Alnle =

(IVO]? —2|V|®|?) — Pulc|®|)

2—n
IR |V|®|[* — Pu(c|®])

2—n 3
= =2 |VIn|®|2 - Pu(c|®]).

n

Integrating now over M we conclude that

 — 2
/PH((:|¢=|):—(” }f IV In|®|[2
M n M

This finishes the proof of Theorem 1.2.

As a new application, in the minimal case we may use the same technique

to retrieve Hasanis-Vlachos result:

Theorem 3.3. Let M be a eompact minimal hypersurface of S"T1 with two
distinct principal curvatures with multiplicities 1 and n — 1 respectively. If
S = n s the square of the length of the second fundamental form, then S =n
and M is a Clifford torus.

In fact, by making H = 0 in Lemma 3.1, we note that
2nAInS =4n(n—S)+ (2—n) |VInSJ>.

Hasanis-Vlachos theorem will follow as a consequence.
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4 Proof Theorem 1.3

We will assume that the principal curvatures of M are given by Ay = .-+ =
A1 = Aand A, = u and choose a local orthonormal frame Ey, ..., E. 1, E,
such that for 1 <i<n-—1

EieDy={veT,M:pe M, Av= v}
E.eD,={veT,M:pe M, Av= uv}.
Recall that, for all ¢, .k e I = {1.2,...,n},

E hijper. = dhy; — E Rl = E L
k m m

From this it follows that
dp(Er) = (n— 1)dA(E) =0,
for all k € I — {n}. To see this, just choose m € I — {k,n} and note that
dA(Er) = Rk = M = (P — Ponm ) Wi (En) = 0

We also note that for i # n,

n

Wy = Zh‘)m(EL)Wk Zh h_,ifl

rwlI

Hissa B =
= et b ;;l P
= o Wy + P w; + S it Wy
A— U A—pt ;ﬂl”\"‘“
vu, E; VA E,) s (h i Jw;
- Qi Sal,, 5 Guclialf,
VA E,
= {/\_}u >w,-,

Now we set w = |A— H|~*/™. By changing the sign of H we may assume that
A > 0. Note that A\ —p=n(A—H)# 0. If \— H <0, then 0 < A < p. Since
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the sectional curvature of M is greater than or equal to zero then by Hartman
theorem M would be a totally umbilical hypersurface, which is impossible. From
now on we assume that A — H > 0. With this notation, we have

d{Inw) "
ds

1
i }q)“ —

i
Win = _E(hl [A —H

where a% = ¢ and «(s) is the line of curvature corresponding to the principal
curvature g with o' = E,,. Using the fact dA\(Ex) = 0, for all k € I — {n} and
a straightforward computation we get

n—1
dwy = (Inw)'ds A w; — (Inw)’ Z Wi Awr — (Inw) wi, Aw,
k=1
n—1

= —(lnw)"w; Awy — (Inw)’ Z wix Awy — [(Inw) PPw; A w,.
P

On the other hand, from the structure equations of ", we also have

n—1
du;x'u = Z Wik N Whpn — Wint1 A Wantln + Wi Ay
k=1
n—1
= —(lnw) Z Wite A wp + (1 + Apws A wh.
k=1
In the last equality we use the fact that w, 1, = pw, and w;, 1 = —Aw;, for

1 <7 <n— 1. Comparing the equations we have

(Inw)” + [(Inw)]?] + A +1=0. (4.1)

Since Ayt = nHX — (n — 1)A\?, we have
(nw)" + [(Inw)]?] — (n— DA* +nHX+1=0,

or equivalently

Pw n—-1 n-2

8 Lo
e e H4+(H +1)w=0.

Integrating the equation above, we have

1 1
+2H

wan—2 wn=2

dw .,
&)

+(H*+1Dw? =C,
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where C is the constant of integration. Note that

n—1 n—1
dEi’, = - Zu}ijEj _w-e'nEn - win+lEn+J. - wiEn+Q = - ZV‘)?_}E_} + Z"""ir (42)
j=1 J=1

where Z is the vector field given by

Z= (— In 'U_-‘)JER = AEn+l = En+2-

Now we consider the frame field b = (2, FEy, ..., E,;) in R"? where ¢ =
En+2. Note that mod (E] T— Eﬂ_l).l

dz = —(lll w)”'”"nEn - (11’1 "'U)’(ﬂwnEn+l - wnE:w'?.) I )"u\f‘nEn.+l - )‘UWREJI — Wy
= —[(Inw)” + A+ lwa B, — [p(Inw) — NwnEnpr + (Inw) wyEnio
= [(Inw)PwnEn — AInw)wpEnpr + () wpEryo

= —(lnw)w.Z.

Therefore

H— \s) 1Y
Z(s) = [m} Z(s0)-

for some fixed value sy of the parameter s. From equation (4.2) it follows that

(f:(E| Moo A E,,_, 1 N Z) = —(111 'n‘.[,-')FE1 FANEEE A E,,_, 1 A Zds. (4:3)

Then the n-vector field W = Ey A~ A E,_y A Z depends only on the parameter

s and it is given by

— A(s) TV
Wi(s) = [5_7;‘((%))} W (s0). (4.4)

We know that the integral leaves of the C"*— distribution

Dy={veT,M:pe M, Av=Av}
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is a codimension-one submanifold X"~ !(s) moving along the line of curvature
corresponding to the principal curvature g On the other hand, equation (4.4)
shows that the n-vector W is constant along X"~!(s). As a consequence X" !(s)
is contained in the n-dimensional linear space E"(s) determined by W(s). Note
that

n=1
dwv-_.,- + E Wi M Wi = —Win A Wi — Wint1 M W41, +w; A Wi =0 Wy A Wy
k=1

where ¢ is equal to a constant

¢ =12 = [(Inw)]” + \* +1,
on each leaf X" !(s) of the distribution. It follows that locally X" !(s) is

isometric to an (n — 1)-dimensional sphere $"~!(c.) of constant curvature c..

The function w = 1/(\ — H)Y" satisfies the ordinary differential equation

2, = ="
ﬁ—w(n' S ZH—H?‘—I):{J,

ds? w2 w"
and §"'(¢,) is the intersection of the unit sphere $"*'(1) with a n-dimensional
linear subspace E"(s) of the Euclidean space B"*? which are parallel to the

fixed n-dimensional linear subspace E"(so) in R"2,
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