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GENERALIZED HOPF DIFFERENTTALS

Uwe Abresch Harold Rosenberg

1 Introduction

A basic tool in the theory of constant mean eurvature (emc) surfaces in space
forms is the holomorphic quadratic differential discovered by Heinz Hopf. How-
ever, for more general target spaces the (2.0) part of the second fundamental
form of a eme surface fails to be holomorphic.

The basic new result in [2] is that for eme surfaces in the product spaces
§? x R and H? x R holomorphicity can be restored with the help of explicit,
geometrically defined correction terms.

Our generalized holomorphic quadratic differential is good enough to pro-
ceed along the lines of Hopf and prove that an immersed cme sphere S# in such
a product space must in fact be one of the embedded, rotationally-invariant sur-
faces described in the work of W.Y. and W.T. Hsiang [10] and R. Pedrosa [15],
which are the simplest cme surfaces in the product spaces. The distance spheres
do not have constant mean curvature anymore.

The next step is to investigate the scope of the new construction [3]. More
precisely, we ask for which class of (oriented) Riemannian 3-manifolds (M?, g)
there exists a correction field L that induces a holomorphic quadratic differential
on any immersed cme surface 2 9 (M?, g). There is an amazingly simple
necessary and sufficient condition, namely, L must satisfy a certain explicit
inhomogeneous ODE-systern.

Integrability for this ODE-system is by no means automatic; it rather im-
poses serious restrictions on the geometry of the 3—manifold. A tedious clas-

sification reveals that solutions exist if and only if (M?, g) is a homogeneous
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bundle over a surface with totally-geodesic fibers. Again an analogue of Hopf’s
theorem can be established.

Further applications of our generalized holomorphic quadratic differential
are conceivable. In particular, we expect that the theory of cme tori can be
extended to the homogeneous target spaces under consideration [1, 5, 6].

The preceding results suggest that homogeneous 3-manifolds with at least 4-
dimensional isometry groups are an appropriate setting for global results about
minimal surfaces and cme surfaces. In order to test this thesis, we discuss some

global properties of minimal surfaces in the Heisenberg group.

2 Classical Results
for Cmc Surfaces in Space Forms

In this section we review the two most prominent classical results about surfaces
with constant mean curvature. These results have been obtained in the 1950ies
by A.D. Alexandrov and H. Hopf, respectively [4, 9]. Their proofs provide two
very different approaches to the subject. In fact, even today it is fair to say

that they represent the key ideas of the entire subject.

2.1 Alexandrov’s Result.

Theorem. Let ¥* be a closed embedded cme surface in R, in H®, or in a

hemisphere S%. Then ¥? is a standard distance sphere.

In other words, soap bubbles in B* and H* are always distance spheres.
In §?, the same holds provided one restricts oneself to soap bubbles that are

contained in a hemisphere.

Idea of the Proof. Pick a totally-geodesic (hyper-)plane that does not in-
tersect the cme surface ©2 and sweep it across that surface. In the given target
spaces each of these planes H, gives raise to an isometry, namely the reflection

oy through H;.



GENERALIZED HOPF DIFFERENTIALS 3

Figure 1: Alexandrov’s moving planes argument.

When the plane enters the domain © bounded by X2, one considers in ad-
dition the image p,(3?) of the part ¥? of the cme surface that the planes have
already swept across. Initially g,(¥7) lies in the interior of €; however, it cannot
stay there, since otherwise the planes H, could not leave the compact surface
%2 which is absurd. So there is a first point of contact. Let p and ¢, denote this
point and the corresponding parameter value in the planar sweep respectively,

Generically, the point p is contained in the interior of the mirrored part
01,(X7,), and thus the two surfaces are tangential at p with matching orienta-
tions. In a neighborhood of p, it is therefore possible to write the reflected piece
as a graph over £2 = 09. Since g;,(X3 ) is still contained in Q, the underlying
function u cannot change sign in a small open neighborhood of p, and so u = 0
by the Hopf maximum principle. In other words, o, (37,) is itself a piece of the
original surface ¥2. and so one finds that ¥? is invariant under the reflection
Oty -

In the borderline case, where the first point of contact lies on the plane H,,,

one can resort to a refined version of the maximum principle to prove that %2
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is invariant under g, in this case, too.

Varying the family of planes H,, the preceding argument shows that X2 is
in fact invariant under the reflection through any plane through its center of
mass. Hence it must consist of orbits of the orthogonal group O(3) generated
by these reflections. But all these orbits, except for the one through the center
of mass itself and possibly also the one through its antipodal point, are closed
2-manifolds.

O

The description and the figure make it amply clear why this argument is
customarily referred to as Alexandrov's moving planes argument.

It is an extremely flexible argument that has been applied in many other
contexts since. It immediately applies in the n-dimensional case, and, instead
of assuming that the hypersurface has constant mean curvature, one may work
with any other elliptic curvature function, i.e., with any curvature function that
leads to a local equation satisfyving the maximum principle. Examples of such
curvature functions are the scalar curvature, the Gauss-Kronecker curvature, or
the curvature functions defining elliptic Weingarten hypersurfaces.

In fact, the moving planes argument has even turned out to be fruitful for

studying a certain kind of nonlinear elliptic equations [8].

Remark. Yet, when working in §%, the theorem requires the additional hypothe-
sis that the eme surface £2 should be contained in a hemisphere. To understand

the meaning of this additional hypothesis observe that

e cach distance sphere §% C §* is actually contained in a closed hemisphere
§%, and

e in 5% itself there exist Clifford tori, i.e., cme surfaces of genus 1. Even
worse, following the ideas of Kapouleas [11, 12] one can construct cme
surfaces with arbitrarily large genus. Of course, none of these surfaces
can be contained in a hemisphere, but it is possible to construct such

examples in an arbitrarily small neighborhood of an equator.
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o

2.2 Hopf’s Result.

Theorem. Let S® be an immersed sphere in R?, H?, or S* with constant mean

eurvature. Then S? is a standard distance sphere.

This theorem differs from Alexandrov’s theorem in two ways. First of all it
is about immersed spheres rather than closed embedded surfaces. Secondly, in
the case that the target space is the 3—sphere, there is no additional hypothesis

requiring the surface to lie in a closed hemisphere.

Remark. For many years it had been an open question whether — at least
for surfaces in euclidean space — the results of Alexandrov and Hopf might be
special cases of a more general theorem. However, in 1984 H. W. Wente [18]

showed that there actually exist immersed cme tori in R*.

Ingredients in the Proof. The key step in Hopf’s approach is to realize
that for any immersed cme surface 2 the Codazzi equations imply that the
(2,0)-part Q = 7a0(hs) of the second fundamental form hy = {.,A.) is a
holomorphic quadratic differential on the surface.

On the other hand, it is a standard fact that a holomorphic quadratic dif-
ferential on §? = CP' vanishes.

The upshot is that @ must vanish on any immersed cme sphere in a space
of constant curvature. Expanding the definition of Q. one finds that

QYL,Ys) = - (he(Y1,Ys) — hs(J Y1, T Y2))

1

~4ie (hs(JY2, Vo) + hs(Y, T Y2))

and thus the identity @ = 0 is equivalent to saying that the traceless part of hy
vanishes. And complete, totally-umbilical surfaces ©? in space forms like R,
H®, or §* are known to be distance spheres.

O
Remark. The preceding proof is very different from the proot of Alexandrov’s

theorem. In fact, because of the identity dQ = 0 one may regard the quadratic

differential @ as a famaly of first integrals for the cme equation.
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3 Straightforward Generalizations

The purpose of this section is to explain which of the facts about cme surfaces
in space forms can be extended in a straightforward manner to cme surfaces in
the product spaces §2 x R or H2 x R. It will be helpful to unify notation and
write M2 as a shorthand for the simply-connected surface of constant curvature
#. Writing formulas for surfaces in M2 x IR is not only shorter than listing the
two cases separately; it also helps in understanding how things scale and what
kind of limits can possibly occur.

First, in these spaces distance spheres do not have constant mean curvature
anymore. However, there still exist rotationally-invariant eme spheres, and so
they are used as standard comparison objects instead. Their properties are
described in the first subsection. In the second subsection we then explain how

Alexandrov’s result can be extended to cme surfaces in these product spaces.

3.1 Rotationally-Invariant Cmc Spheres
S2 in the Product Spaces M? x R.

The meridian eurve ¢(s) = (r(s). £(s)) of any rotationally-invariant cme surface

can be obtained solving the following ODE-system:

2 r = —sin(f)
L= cos(f) (1)
29= 2H—cos(f) - ct(r)

Here the pair (r, £) denotes the standard coordinate functions on the orbit space,
which is either [0. 7/y%] x R or [0, 00) x R depending on whether the first factor
of the target space is a sphere or a hyperbolic plane. The #-variable can be
interpreted as a partial Gauss map; the vector field (cos 6, sin 8) is precisely the
unit normal vector field of the meridian curve.

The function ct,, that appears in the expression for 3"; f is the generalized
cotangent function, i.e., the solution of the Riccati equation ¢t/ = —k —ct? that

has a pole at s = 0.
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Figure 2: Meridian curves for cme spheres in S% x R

A first integral.

The ODE-system for the meridian curves of rotationally-invariant cme surfaces
given above is invariant w.r.t. translations in the £é-direction. For this reason it

has the following first integral:
Ly i=cos(f) - sn(r) — 4H - sn,.(3r)°

In fact, this expression was already known to the Hsiang brothers [10] when
they did their work on soap bubbles in products of euclidean and hyperbolic
spaces in 1989.

Note that the meridian curve e(s) intersects the boundary of the orbit space,
which is the projection of the fixed point set of the given 1-parameter group of
rotations, if and only if the first integral I, ,;, vanishes or, in case k > 0, also if
ILiw=—4H/k.

Explicit solutions.

The ODE-system (1) actually has enough first infegrals in order to describe

the meridian curve as the level set of a function that resembles the standard
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quadric:
1 = (4H® + k) -snZ(3r) + 4H? -s0?, ($3€V1+ =) (2)

Here sn,. denotes the generalized sine function, i.e., the solution of the differen-
tial equation snf 4+ sn, = 0 with initial data sn,(0) = 0 and sn;, (0) = 1.

To help with intuition, we specialize this equation to the case k = 1 and
rewrite all the oceurrences of the generalized sine function in terms of its classical

counterparts sin and sinh.
1 = (1+4H?) -sin®(3r) + 4H? -sinh*($€ V1 + 5 )

It is also easy to check that for k£ = 0 equation (2) indeed boils down to the

classical quadric 1= H?. (r? +£2%).

Observation. The cme spheres S with 0 < 4H? < x are not contained in the

product of a closed hemisphere and the real axis.

Principal curvatures.

In each product space M? x R there still exists a totally-geodesic slice for the
action of the 1-parameter group of rotations that preserves the cme surface.
Hence the principle directions are the tangent vectors to the meridians and the
circles of latitude, respectively. W.r.t. this basis the second fundamental form
is given by

’ H + 5 - cos*(6) 0

iy = .

0 H — 75 - cos*(0)

Thus the spheres SZ in the product spaces are not totally-umbilical. The linear

combinations 2H - hy — k-dé?, however, are multiples of the induced metric 1*g.

3.2 Alexandrov’s Result for Cmc Surfaces
in the Product Spaces M? x R.

The moving planes argument used in the proof of Alexandrov’s theorem carries

over verbatim to cmc surfaces embedded into the product spaces M? x R. The
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argument proves less though, since the product spaces admit fewer reflections;

all planes of reflection are either vertical or horizontal.

Theorem. Let X% be a closed embedded eme surface in H? x R or S% x R.

Then ©? is a rotationally-invariant vertical bi-graph.

In other words, here the conclusion is that the surface £? is one of the

rotationally-invariant cme spheres S2 described in the preceding subsection.

Remark. Closed embedded cme surfaces ¥2 — §2 x R that do not project

into some hemisphere §2 are only guaranteed to be vertical bi-graphs.

Caveat. In 8% x R, there again exist embedded cme tori and embedded cme
surfaces of higher genus. In other words, the restriction to cme surfaces that
project into a hemisphere is again an essential hypothesis. However, not all of
the rotationally-invariant cime spheres S2 € 82 x R do project into hemispheres,

and so this restriction is highly undesirable.

4 New Results for Cmc Surfaces
in the Product Spaces M? x R

The theorems presented in this section have been obtained in cooperation with
Harold Rosenberg from Paris 7 [2]. Our principal contribution is to introduce
a holomorphic quadratic differential along the lines of Hopf's work for eme
surfaces in these more general target spaces. Based on this result we then
establish the analogue of Hopt's classification of immersed cmc spheres in the

product spaces.

4.1 Obstacles for Generalizing
the Holomorphic Quadratic Differential.

In fact, there are two obstacles that are commonly mentioned when it comes
to extending Hopf's holomorphic quadratic differential to cme surfaces in more

general target spaces.
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First, for target manifolds (M3, g) other than space forms, the r.h.s. of the

Codazzi equations
(VxA Y —-VyA-X.Z)={(R(X,Y)v.,Z).

does not vanish anymore. Here v and A = Dv denote the unit normal field
and the Weingarten map of the cme surface, respectively. V and D denote
the Levi-Civita connections of the surface and the 3-manifold, respectively. As
usual, Vx Y = (Dx Y)*", Thus we find that d(ms0(hy)) does not vanish for
all eme surfaces in the products M2 x R anymore.

The second issue is that the rotationally-invariant cme spheres S% in the
product spaces M? x R are not totally-umbilical as explained in Subsection 3.1.
In particular, 7y o(hs) cannot be holomorphic on any of the spheres S%, which

puts the problems with the Codazzi equations into a somewhat different light.

4.2 Main Results.

Inspecting the formulas from Subsection 3.1 more closely, one discovers one
encouraging fact though: For each sphere S? the (2,0)-part @ of the field
q:=2H hy — k1*(d€?) vanishes. The important observation here is that ¢ is a
linear combination of iy and ¢*(d€?) with constant coefficients.

So there is hope that @ may be holomorphic on all cme surfaces in the

product spaces M2 x R, and this indeed works ont:

Theorem 1. Let (k, H) # 0, and let L := d&* be the symmetrie bilinear form

corresponding to the vertical projectors in M2 x R. Then the expression
Q =2H - ?I'g‘{)(h.z) — Hk '}Tg.“(I*LJ -

defines a natural holomorphic quadratic differential on any immersed cme sur-

face v: 3% % M2 x R with mean curvature H.

The proof of this theorem is essentially a direct computation, though a

much more elaborate one than in the case of constant curvature target spaces.
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In Subsection 4.3 we explain in more detail what the basic ingredients are and
give a structural argument why things actually work out.
As in H. Hopf's work, Theorem 1 is the key fo classifying immersed cme

spheres:

Theorem 2. Any immersed cme sphere S? in a product space M? x R is con-
gruent to one of the embedded, rotationally-invariant eme spheres S% described

in Subsection 3.1.

The proof of this theorem closely follows the argnment in the classical case
that has been described in Subsection 2.2. Again the starting point is to combine
Theorem 1 with the fact that the space of holomorphic quadratic differentials
on §* = CP! is trivial. In order to finish the argument, it suffices to classify

cme surfaces with @ = 0.

Theorem 3. Let (k, H) # 0, and let 1: B2 &= M2 xR be a complete surface with
constant mean curvature H and vanishing holomorphic quadratic differential Q.

Furthermore, let 0 := aresin(dé - v). Then the following holds:

o if k+4H? >0, then the surface % is congruent to one of the embedded,

rotationally-invariant cme spheres 53 described in Subsection 5.1.

o if K+4H? <0, then £* is a complete open surface. Depending on the
sign of the function 4H?* + K cos*(0), it is either congruent to a disk-
like surface D? or a particular parabolic surface P2 or a surface C? of

catenoidal type.

Remark. The disk-like cme surfaces D? and the cme surfaces C2 of catenoidal
type are rotationally-invariant. They are homeomorphic to disks or annuli,
respectively. The parabolic eme surfaces P2 on the other hand are orbits under

suitable 2-dimensional selvable subgroups AN € SO(2,1) x K.
For the purposes of this survey we refrain from giving a precise definition of
the noncompact cme surfaces with vanishing holomorphic quadratic differential

(). We rather illustrate their meridian curves in Figures 3-6.
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4.3 On the Proof of Theorem 1.

We begin explaining the three basic ingredients used in various computations
throughout the proof.

First of all, we need a way to compute the d-operator on the space of
quadratic differentials on an oriented Riemann surface (£2.1*g). Since the al-
most complex structure .J on such a surface is parallel, the d-operator can be

expressed in terms of the Levi-Civita connection V as follows:
IQ(X;Y1.Ys) = 3(VxQ+i-V,x Q)(Y1,Y2)
= v%(]-m)x Q(Y1,Ys) .

Note that the preceding formula is not the definition of the d-operator. It even
fails for complex manifolds when the hermitean metric under consideration is

not Kaehlerian; this does not happen in the case of Riemann surfaces though.
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Decomposing the Weingarten map A as A= H -1+ Ay, where Ay denotes
the traceless part, turns out to be extremely useful, since on surfaces traceless
syminetric endomorphisms anti-commute with the almost complex structure .J.

Finally, the Codazzi equations play a key role. For surfaces ¥.2 in 3—mani-
folds the curvature term on their r.h.s. can be factored through the curvature

ellipsoid and can thus be expressed in terms of the Einstein tensor G:
(VxA Y —-VyA4.-X,27)
=(XxY,GwxZ) ={(XxY)xZ,Gv).

Since v L X, Y, Z, the final simplification step on the r.h.s. is a consequence of

the following identity for cross products:
GXxY)=1tr(G)- X xY—-(GX)xY -Xx(GY).
The key steps in the argument.

a) The Codazzi equations imply that
9(mao(hs))(X:Y1,Y2) = (U(X3Y1,Ye), Gv)

where

P(X;Y1,Y3) = % [(X_; VN Y+ (X7, Y5) Y1+] ;
X~ =101+i)X, Y i=101-i))Y,.

Even without going into all the details of the computation, one can see that
¢ is a trilinear map of type (2,1) that depends just on the metric and the
almost complex structure J. It seems worthwhile to point out that the space
of such maps is just 1-dimensional. This readily yields the claimed formula for
d(m2,0(hy)) — at least up to a constant factor.

b) In order to compute the d-derivative of the second term which is the pull-
back of the field L := d&? of vertical projectors, it suffices to express the covari-

ant derivative ¥V on the surface £? in terms of the covariant derivative D of the
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3-manifold and split the Weingarten map as A= H - 1+ Ay

A(ma0(t"L))(X: Y1, Ya)
= (Yy",Diyy L Yy ) - 2H - (y(X; Y1, Y), L)

The same reasoning as in (a) can be used in order to see without much compu-
tation that the terms involving the mean curvature H constitute a multiple of
the second term on the r.h.s. of the preceding formula. Moreover, it is possible
to argue that there does not exist any trilinear map of type (2, 1) that depends
linearly on a traceless symmetric endomorphism, hence the absence of terms

involving Aj.

¢) For the product spaces M?

K

x R the field of vertical projectors is parallel,
i.e., DL = 0. Furthermore, because of the way in which the Einstein tensor
G describes the curvature ellipsoid, it is clear that G = —x - L. With this
additional information, it is evident that the linear combination of 9(ma(hs))
and O(m0(1*L)) that expresses the d-derivative of Q evaluates to zero.

O

A more conceptual point of view.

As explained in (a) and (b), the key terms in the expressions for the d-derivatives
of map(hy) and myo(e* L) are already determined by representation theory up to
some universal complex-valued factors. This argument readily implies that both
these terms are multiples of (¢(X;V),Ya),Lv ). Thus there is a fized linear
combination of we(hs) and mon(e* L) that is holomorphic on all cme surtaces
in M2 xR whose mean curvature equals the number used in the definition of Q.

By construction the quadratic differential ) itself vanishes identically on
the rotationally-invariant cme spheres S2 described in Subsection 3.1. and so
dQ = 0, too. The tensor field ((X:Y;,Y3).Lv) on the other hand does
not vanish identically on these cmc spheres. This identifies @ as the linear

combination that is holomorphic on all eme surfaces.
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4.4 On the Proof of Theorem 3.

Here the basic idea is to prolong and work with the unit normal field
v: %29 N2 =T (M? xR) .

The formula ¢ = 7 o v can then be used to recover the immersion itself.

In this setting the problem of classifying eme surfaces with vanishing holo-
morphic gquadratic differential boils down to studying integral surfaces of some
explicitly given 2—dimensional distribution in the tangent bundle of a 5—manifold.

More precisely,

Lemma. Immersions ¢ with constant mean curvature H and Q@ = 0 corre-
spond to maps v: X% — N2 that are integral surfaces of some 2-dimensional
distribution E, C TN?.

In fact, this lemma is just a slightly unusual way of writing the fundamental

equations of submanifold geometry.

Observation. The distribution E,, is invariant under the action of the isometry
group Isop(M?2 x R) of the product space. This action has 4-dimensional orbits
that are separated by the invariant function
©: N} — [—3m,3n]
v arcsin(d - v) .

In particular, it is sufficient to analyze for one point p in each fiber whether or
not there exists an integral surface of £, through p and, if so, to determine this
integral surface.

Of course, in general © will not be constant along such an integral surface.
The range of this function can easily be studied with the help of the integral
curves s — ¢(s) of the component of grad ¢ that is perpendicular to ». The
explicit formulas for Ey reveal that the function #: s — O o ¢(s) satisfies the

following differential equation:

20 = 3 (4H? + k cos?(0)) .
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Analyzing this differential equation, it is not hard to determine the integral
surfaces of £, explicitly. As explained above, the various congruence classes
are characterized by the corresponding ranges of ©. The corresponding meridian
curves have been depicted in Figures 3-6.

Since the ranges discovered in the preceding step cover the entire interval

[—im,im], it follows a posteriori that Ey is integrable everywhere.

5 Further Generalizations

Next we investigate the scope of the construction introduced in the preced-
ing section. In particular, we ask: For which (orientable) Riemannian 3-
manifold (M3, g) does there exist a correction field L that induces a holomorphic
quadratic differential on any immersed cme surface. In this generality, it is of
course 1o longer possible to define the correction field L by means of an explicit

expression.

Theorem 4. Fir some constant H € R. Let (M® g) be an oriented Rieman-
nian manifold, and lel Ly be o C-valued, fraceless, symmelric bilinear form

on M?®. Then the expression
Q = T'T‘z,o(h-il + 1" Ly)

defines a holomorphic quadratic differential on any surface t: $* & (M3, g)
with constant mean curvature H. if and only if Ly solves the differential equa-

tion

DX Lg — 1 I:*XAG"Q}{LO] < (*)

1
2

Here the square brackets denote the commutator, and =X stands for the
skew-symmetric endomorphism Y — X x Y induced by the cross-product.
Remark. Focusing on traceless fields Ly does not restrict the class of quadratic

differentials €. It is a mere normalization, as the projector wo clearly annihi-

lates all multiples of the induced metric ¢*g on the surface £2.



GENERALIZED HOPF DIFFERENTIALS 17

The preceding theorem should not make one expect to find holomorphic
quadralic differentials for cme surfaces in a generic Riemannian 3-manifold.
First, thinking about 3-manifolds with bumpy metrics, it is absurd to expect
getting any kind of unigueness result for minimal surfaces quite in contrast
to the rigidity that conceivably follows analyzing the holomorphic quadratic
differential in more detail.

On a more technical basis, the ODE-gystem (x) is strongly overdetermined.
So, one should expect that the corresponding integrability conditions impose

serious restrictions on the geometry of the underlying 3 -manifold (M7, g).

Theorem 5. Let {.-ﬂ”._g) be a simply-connected, oriented Riemannian mani-
fold, and let H € R be some real constant. Then equation (*) is solvable if and
only if (,-’f-f 3 g) is a homogeneous space with an at least 4-dimensional isometry

qroup.

Recall that homogeneous Riemannian 3—manifolds (M3, g) come with 6-,
4-, or 3-dimensional isometry groups. The ones with 6-dimensional isometry
groups are the space forms.

Observe that all simply-connected, homogencous 3—manifolds with 4-dimen-
sional isometry groups admit natural equivariant Riemannian submersions with
1-dimensional. totally-geodesic fibers. They are classified up to isometry by
the curvature s of the quotient surface and the bundle curvature 7 of these
submersions. The range of this invariant is the entire plane except for the curve
# = 472 which corresponds to spaces of constant curvature. In this family one

distinguishes six different homogeneous structures:

l k>0 k=10 k<0
=0 | $2xR R* H!xR
r#0 | S Nil(3)  SI(2,R)

Berger

The first row consists of the product spaces M? x B. When discussing these
spaces in Section 4, we have ignored the case k = 7 = 0, as it boils down to

euclidean 3-space with the standard flat metric; only the automorphisms are
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restricted to isometries that preserve the splitting as R? @ R. In the second row
one encounters 3 new classes of simply-connected Riemannian 3-manifolds: the

3
Berger 1

Berger spheres § the Heisenberg group Nil(3), and the universal covering
of SI(2,R). These are the target spaces where the existence of a holomorphic
quadratic differential Q) on immersed cme surfaces has not been known before-
hand.

The isometry group of the Berger spheres is an index-2 extension of the
unitary group U(2) contained in O(4). In the other two cases, however, we are
dealing with maximal homogeneous structures, Altogether, with Theorem 5
we have constructed holomorphic quadratic differentials for cme surfaces in
homogeneous 3—-manifolds corresponding to 7 of the eight maximal homogeneous
structures that appear in Thurston theory [16, 17]. Only Solv(3) is missing; the

reason is that it only admits a 3—-dimensional isometry group.

Remark. Inspecting the proof of Theorem 5. one finds that equation (*) always
admits a homogeneous solution Lq, i.e., a solution that is invariant under the
action of the full isometry group Isu{,(ﬂ:f 3. g) of the homogeneous space. This

solution is necessarily a multiple of the traceless Einstein tensor Gj.

Following the argument from the proof of Theorem 3, it is possible to classify
the cme surfaces on which the holomorphic quadratic differential @ correspond-
ing to these homogeneous solutions L, vanishes identically. As a result, we can

generalize Hopf's result even further:

Theorem 6. Any immersed eme sphere S% in a simply-connected homogeneous
space (M®,g) with an at least 4-dimensional isometry group is in fact an em-

bedded, rotationally-invariant cme sphere.

For the proofs of all 3 theorems presented in this section we refer the reader

to the forthcoming paper [3].

Remark. There are special situations where the ODE-system (x) has other
solutions Ly than the homogeneous ones. This occurs for instance in hyper-

bolic 3-space H? when studying cme surfaces whose mean curvature H equals
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the mean curvature of the horospheres. In the literature these surfaces are re-
ferred to as Bryant surfaces. They are known to have more than one nontrivial

holomorphic quadratic differential [7].

Discussion of the results.

In contrast to the 5 symmetric spaces, all three bundle geometries S7_ . Nil(3),
and §|(2 ,R) are not locally-conformally flat. Thus one cannot say that the addi-
tional symmetries of the Willmore functional are responsible for obtaining holo-
morphic quadratic differentials on immersed cme surfaces. On the other hand,
it is also not correct to believe that the existence of an at least 2-dimensional
Ricci eigenspace is the distinctive geometric property. This time, the problem
is that the standard metric on Solv(3) has a double Ricci eigenvalue. too.
However, it seems natural to think of the holomorphic quadratic differen-
tial (@ constructed in Theorems 4 and 5 as a famaly of first integrals for the cme
equation that is due to the 1-dimensional isotropy groups of the bundle geome-

tries and the 3-dimensional isotropy groups of the space forms, respectively.

Observation. The isotropy group G, of any point p in a simply-connected,
homogenecous 3-manifold (M3, ¢) with a 4-dimensional isometry group contains
the 180°—rotations around all horizontal geodesics through p.

In fact, G, is isomorphic to the orthogonal group O(2) C SO(T},ﬂ:—f‘") gell-
erated by these rotations, provided that the bundle curvature 7 is nonzero.
Otherwise, (M?,g) is a product space, and G, is isomorphic to the slightly

larger group 0(2) x O(1) € O(T,M?).

P»-

This simple observation has a lot of impact for the global theory of minimal

surfaces in this class of homogeneous spaces.

Corollary (Schwarz symmetrisation). In homogeneous bundles with 4-dimen-
sional isometry groups, it is possible to extend any minimal surface 2, whose
boundary consists only of horizontal and vertical edges. to a possibly immersed

global minimal surface 32 consisting of patches congruent to ¥,
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As usual, the basic patch $? can be obtained by first constructing an appro-
priate boundary polygon and then solving Plateau’s problem for this contour.

In our opinion, the principal results presented in this section, i.e., Theorems 5
and 6 and the Corollary, strongly suggest that the homogeneous 3-manifolds
with at least 4—dimensional isometry groups are the proper setting for studying

global properties of minimal surfaces and cme surfaces.

6 Minimal Surfaces
in the Heisenberg Group Nil(3)

In order to test the thesis at the end of the preceding section, we have started in-
vestigating global properties of minimal surfaces in the Heisenberg group Nil(3).
As in the previous section, we only consider left-invariant Riemannian metrics.
These metrics come in a 1-parameter family g, that is naturally indexed by
bundle curvature.

In the class of inner metric spaces this family has a limit with very special
properties, which shows up naturally in many contexts in analysis and geometry.
However, it is a Carnot-Caratheodory metric rather than a Riemannian metric.

In this section we restrict the discussion to the Riemannian case,

6.1 Equivariant Examples.

Equivariant minimal surfaces in the Heisenberg group, i.e., complete minimal
surfaces $? C (Nil(3), g.) that are invariant w.r.t. some 1-parameter subgroups
of isometries, have been classified in a paper by Ch. Figueroa, F. Mercuri,
and R. Pedrosa [14]. There are 4 distinet classes of 1-parameter subgroups
in Isog(Nil(3)), a group that comes with a canonical homomorphism onto the
group of motions Isog(R?) in the quotient plane R? = Nil(3)/Center. The list

of the corresponding equivariant minimal surfaces is as follows:

1. VERTICAL PLANES:

These are the total preimages of straight lines, and thus they are invariant
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under vertical translations. In fact, each vertical plane is the orbit of a

2—dimensional abelian subgroup of Nil(3).

2. CATENOIDS AND HORIZONTAL UMBRELLAS:
These are the minimal surfaces in Nil(3) that are invariant under the group

@y of rotations around some vertical axis.

3. HELICOIDS AND HELICOIDAL CATENOIDS:
These are the minimal surfaces in Nil(3) that are invariant under some

group ¢; of serew motions with a vertical axis.

4. SADDLE-TYPE SURFACES:
These are the minimal surfaces in Nil(3) other than the vertical planes
that are invariant under a group ¢; of isometries that projects to a 1-
parameter group of franslations. They come as a 1-parameter family of

noncongruent surfaces indexed by slope.

Observation. Among the equivariant minimal surfaces in (Nil(3), g,), the um-
brellas and the saddle-type surfaces are the ones that are graphs w.r.t. the
Riemannian submersion (Nil(3), g;) — R2 The holomorphic quadratic differ-

entials @ and the conformal types of these global minimal graphs are as listed

below:
; vertical min. surfaces
umbrellas .
planes of saddle-type
conformal type | hyperbolic parabolic parabolic
hol, quad. diff. Q=0 Q=0 Q=-c- dz*

The properties of the vertical planes have been listed here too, as these surfaces
occur both as limits of families of umbrellas and as limits of families of minimal
surfaces of saddle-type. In the first case the idea is to let the vertical axis move
to infinity, whilst in the second case one lets the slope parameter approach

infinitv.
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6.2 Scherk Surfaces in Nil(3).

The doubly-periodic Scherk surface is a global minimal surface in euclidean 3—
space that is a graph over each of the black squares in a suitable checkerboard
tiling of the plane and that also contains the vertical lines over the vertices of
this tiling. Up to scaling the piece over a single square is congruent to the graph

of the function
flx,y) :=Inocos(y) — Inocos(x)

- m 1 1.\2

with (z,y) € (—37, 37)%
In the Heisenberg group there exist minimal surfaces with similar properties.
They have been constructed in cooperation with Harold Rosenberg: the details

will be given in a forthcoming joint paper.

Proposition 7 (Local Scherk surfaces). Let ) be a square in R?, and let
v Ua denote the horizontal lift of its diagonals through a given common center.
Then, for any T # 0, there is a unique minimal graph ©* C (Nil(3), g.) w.r.t. the
Riemannian submersion (Nil(3), g,) — R? that

(i) is defined over the interior of the square Q and contains v, U7, , thal

(#) s asymptotic to +oo over one pair of edges and fo —oc over the other
pair of edges, and that

(iii) has the vertical lines over the 4 vertices of the square §) as its boundary.

Idea of the Proof. Consider the geodesic pentagon ¢ consisting of a horizontal
lift of one of the edges of the square, an adjacent segment on each of the vertical
lines, and the appropriate segments of v and ~,. This contour ¢ is a Nitsche
graph over the triangle A consisting of the given edge of the square and the two
adjacent segments on the diagonals.

As in the euclidean case there is a unique stable minimal surface spanning e,
and, moreover. this minimal surface is a graph over the interior of A. Now
the Schwarz reflection asserts that we can extend this minimal surface using

congruent copies obtained through 180°-rotations around 7; and v,. In this
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way we obtain a stable minimal graph of finite height defined over the entire

square €. (See Figure 7.)

Figure 8 A triply-periodic global
Figure 7: The local Scherk surface. Scherk surface,

The final step in constructing the local Scherk surfaces is to show that the
family of these finite height Scherk surfaces converges towards some limit surface
%32 when their height goes to +oc. This goal is accomplished with the help of
suitable barriers. By its very construction the limit surface is a minimal graph,
but some further arguments are necessary to establish that this graph is actually
defined on the entire open square.

O

As in the euclidean case, the local Scherk surfaces in the Heisenberg group
(Nil(3), g,) naturally come as a 1-parameter family ¥ indexed by the size of
the underlying square 2. However, it is not! possible anymore to recover the
entire family from one of its member surfaces by scaling,.

Remark. Upon enlarging the square, the local Scherk surfaces 32 converge to
saddle-type surfaces of slope zero and not to umbrellas.

Yet, it is possible to use them as comparison objects for proving curvature
bounds for global minimal graphs. These bounds can be viewed as a first step

towards a Bernstein theorem.
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On the Schwarz extension of the local Scherk surfaces $2.

As indicated above, the local Scherk surface £* from the Proposition can be
extended using the Schwarz reflection principle; one obtains an immersed global
minimal surface 2. Clearly. 2 is the orbit of £2 under the group I' generated
by the 180° rotations around the diagonals and the 180° rotations around the
lines containing the vertical segments of the geodesic pentagon e.

It is not hard to see that I' is a a discrete subgroup of Isog(Nil(3), g-), and
thus the global surface 32 js even properly immersed.

But, 2 is not embedded. In fact, the next lemma implies that ¥2 is invariant
under a nontrivial vertical translation, and thus the vertical lines bounding the

fundamental piece £ must be lines of self-intersection.

Lemma. Let 1" be the discrete subgroup in lsog(Nil(3),g,) generated by the
180°-rotations around the vertical lines over the vertices of the triangle A.
Then 1" contains a lattice. In particular, I contains the vertical translation
by 8h where h denotes the vertical displacement by which the horizontal lift of

the triangle A fails to close up.

One can visualize these holonomy effects in the following way:

Observation. The set I - (7, U~,), i.e., the union of the various images of
the horizontal lift of diagonals of the basic square ©Q w.r.t. the action of the
discrete group I, is a 1-dimensional compler that projects to the union of the
diagonals of all the black squares of the tiling and that is inveriant under the

vertical translation by 8h.
Embedded global Scherk surfaces.

Because of the holonomy effects described above, it is inevitable to refrain from
passing to the limit in the proof of Proposition 7. We shall rather use the stable
minimal graphs of finite height that have been constructed in the first step of
the proof.

The group T, that is relevant for describing the Schwarz extension of a

minimal surface spanning a contour ¢ of finite height is the extension of T’
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generated by the 180°-rotation around the segment of ¢ that is the horizontal
lift of the edge of the square £2. As a result, the Schwarz extensions of the stable
minimal graphs of finite height are in general not properly immersed anymore.
Persuing this idea a little further, one can exclude all but 3 choices for the lift
of the edge of the square.

It can be shown that all these cases do actually oceur.

Proposition 8 (Triply-periodic Scherk surfaces). For each lefl-invariant
metric g, on the Heisenberg group Nil(3), there exists an embedded, triply-

periodic, global minimal surface 32 of Scherk type.

One way to construct these triply-periodic minimal surfaces is to start out
with a contour ¢ where the end points of the horizontal lift of the edge of Q2
lie at equal distances above and below the corresponding end points of v, and
2. In fact, this contour has an additional symmetry; as indicated in Figure 8,
it is invariant under the 180°-rotation around the horizontal geodesic through
the center and the mid point of the lifted edge. In fact, this axis divides the
geodesic pentagon ¢ into two geodesic quadrilaterals ¢; and ¢ such that the
stable minimal surfaces bounded by ¢; and ¢, are the two halves of the stable
minimal surface bounded by c.

The other possibility for constructing a triply-periodic minimal surface is to
work with a horizontal lift of the edge of 2 that begins at the end point of either
71 or vo. In this case the contour ¢ degenerates to a geodesic quadrilateral, which
is congruent to either one of the pieces ¢; and ¢; obtained when constructing
the pentagon in the proceding paragraph from a square ' C R? that has /2

times the size of €.

6.3 Half-Space Theorems.

The material presented in this subsection is joint work with Harold Rosenberg,
too. From the conformal point of view, the umbrellas in Nil(3) are hyperbolic

surfaces and not parabolic ones. Yet, the following holds:
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Theorem 9. Let 2 be a proper, possibly branched minimal surface in the
Heisenberg group Nil(3). Suppose that ¥* is contained in the complement of
some horizontal umbrella. Then $2 is congruent to this umbrella by a vertical

translation.

The behavior of complete minimal surfaces in the product space H? x R is
very different [13]; there exist plenty of complete minimal surfaces in any half-
space bounded by some level set H? x {tp}. In other words, there cannot be

any half-space theorem at all.

Method of Proof. The same argument as in the euclidean case works, as the

catenoids in (Nil(3), ¢,) collapse to a doubly-covered punctured umbrella when
their necksize shrinks to 0.

O

It seems to be an interesting question whether in the Heisenberg group there

are also half-space theorems with respect to the vertical planes or the minimal

surfaces of saddle-type.
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