Matemdtica Contemporanea, Vol. 27, 117-146

". S B M http://doi.org/10.21711 /231766362004 /rmc277
N/

(©2004, Sociedade Brasileira de Matemética

BOUNDARY LAYERS OF ARBITRARY DIMENSION
FOR A SINGULARLY PERTURBED NEUMANN
PROBLEM
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This note is dedicated to the memory of Hebe Biagioni.

Abstract

We study the concentration phenomena for the equation —2Au—+u =
u? in a smooth bounded domain Q@ € R” and with Neumann boundary
conditions. The exponent p is greater or equal than 1 and the parameter
¢ is converging to zero. For a suitable sequence £; — 0 we prove existence
of positive solutions u; concentrating at the whole boundary of {2 or at
some of its components.

1 Introduction

This note features some recent results from [35] and [36]. We are concerned

with conecentration phenomena for solutions of the singularly-perturbed elliptic

problem
—*Au+u=1u" in§,
=0 on d9, (E)
u >0 in €2,

where 2 € R", n > 2, is a smooth bounded domain, v is the interior unit
normal vector to 992, p > 1, and ¢ is a small positive parameter. Our aim is
to show the existence of a sequence £; — 0 for which (F.;) admits solutions

concentrating at JQ or at some of its components,

Key Words: Singularly Perturbed Elliptic Problems, Local Inversion, Fourier Analysis.
AMS subject classification: 35825, 36834, 3520, 35J60.

*Thanks UNICAMP for the hospitality.

fSupported by FAPESP 04/07035 and CNPq-4T8896/2003-4.


http://doi.org/10.21711/231766362004/rmc277

118 A, MALCHIODI M. MONTENEGRO

Problem (P.) arises in the study of pattern-formation for a class of reaction-
diffusion equations. For example, in 1972 Gierer and Meinhardt proposed the

following svstem

Uy =di AU —U+ Y in QX (0,+00),

Vi=dAV-V+%  inQx(0,+00), (GM)
M= = on 982 x (0, +00),

to describe a biological experiment with hydra, see [22]. Here the functions
U, V represent the densities of a slowly-diffusing chemical activator and of a
fast-diffusing inhibitor respectively. Therefore it is reasonable to assume d; <

1 < dy. The numbers p, g.r, s are non-negative and satisty the inequalities

0<p_l< .
q s4+1

By the so-called Turing’s instability [46], system (G'M) may exhibit non-trivial

steady states when the coefficients dy and d» are very different. In the limit

dy — 400, such states can be described by solutions of (P:), see the survey [3§]

for details.

n+2
n—2*

In the case p < problem (P.) admits solutions, called spike-layers, con-
centrating at one or multiple points of Q. It was first established in [32], [39],
[40] that least-energy (mountain-pass) solutions of (P.) are spike-layers which
possess a local maximum point ¢. at 9§ such that H((Q).) — maxsq H, where
H is the mean curvature of d<Q.

Further studies on spike-layer solutions (for the Dirichlet problem as well)
can be found in [17], [19], [24], [25], [26], [27]. [30], [31], [47], [48]. Due to the
work of the last ten-fifteen years, the phenomenon of concentration at points is
now essentially understood, necessary and sufficient conditions for the location
of boundary and interior spikes are available.

Roughly, a spike-layer solution u. scales in the following way

u:(x) ~ wolx/e).
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More precisely, if (). is a local maximum of w., then there holds
u(Qe + &) —wo(-)  in Ci(R")  (resp. in G (RY)),

where R” denotes the half-space {x,, > 0} and where wy is the unique positive
radial solution of

—Awg+wy=wh inR" (resp. in R%});
wol(z) — 0 as |z] — +o0a.

The limit domain is R” or R} if Q. lies in the interior of 2 or on € respectively.

Spike-layer solutions are produced using minimax methods. gliuing tech-
niques and, under suitable non-degeneracy conditions, by finite-dimensional
reductions. Very recent results deal with the full system (GM), see for example
[20], [28], [41]. Similar techniques have been used for the study of the Nonlin-
ear Schridinger Equation (NLS) in the semiclassical limit, or other singularly-

perturbed problems, see e.g. [2], [3]. [7] and references therein.

It has been conjectured for some time that problem (P.) should generically
admit solutions concentrating on k-dimensional sets, for k=1,....n —1. The
case k = n is excluded since (F.) is not expected to exhibit phase transitions.

In presence of symmetry some results have been proved in [4, 5, 6, 8, 10, 18]
for problem (F.), the Dirichlet problem, and the semiclassical NLS. See Remark
1.3 below for more precise comments.

In the general case, the above conjecture was first proved in [35] for the
case n = 2 and k& = 1, under the technical assumption p > 2. In the present
note we settle the case & =n — 1 for all n, assuming only the condition p > 1.
Hence, besides allowing p € (1,2), we can also deal with the supercritical case.
This is mainly allowed by the fact that the limit profile of our solutions solves
a one-dimensional problem (see the comments below), for which there is no

restriction on p. Note that, by the results of [14], in the case of spike-layers

n+2

(for the stationary NLS equation) the condition p < 2=

is also necessary for

concentration.
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The solutions we obtain are boundary-layers and scale qualitatively in the

following way, as £ tends to zero
u(2',x,) ~ wo(x,/e); o' eR*™ Lz, eRy,

where now wy is the solution of the problem

—wi +wy =wj  in Ry
wy(z) — 0 as T — +0o0; (1)
wh(0) = 0.

The result we are going to describe is the following,.

Theorem 1.1 Let 2 C R" be a smooth bounded domain, and let p > 1. Then
there exists a sequence €; — 0 and a sequence of solutions u., of (P.,) with the

following properties

(i) u., concentrates around OQ as j — +co, namely for every v > 0 one
has [, (eﬂ\?’uz—j["’—i-uf}) — 0 as j — +oo, where " = {z € Q :
dist(z,090) > r};

(ii) if xo € O and if vy denotes the interior unit normal to OQ al xq, then for

every k € N there holds
e, (g5(x — 20)) — wolx - vo) in CF,(Vo),
where Vo = {x € RY : z- 1 > 0}, and where wy is the solution of (1).

Using the scaling u(x) — u(cx), problem (F.) is transformed into

—Au+u=u" in Q.

% =0 on 9., (P.)
>0 in Q.,

where Q, = 1Q. For p < ™=, solutions of (P.) can be found as critical points
of the functional I. : H'{(€}.) — R defined by

1/ B 1 :
Lw =5 [ (IVuf+#?)—— [ [uf*y  weH'(Q), (2
(u) 2]s(l AR e L e aRdtg @)
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where the space H'(€).) is equipped with its standard norm |ju|? =
Jo, (IVul? +u?). In the following, we use the notation u. for both the solu-
tions of (P.) and (P.).

The phenomenon of concentration at curves or manifolds for (P.) is very
different from that of concentration at points. Essentially, the difficulty here
is that the energy of the solutions is very large (of order £'-"), and so is the
Morse Index (also of order ' ="). The first assertion can be deduced by a simple
dimensional argument, while the second is due to a loss of coercivity in the non-
scaling direction of u.. For an heuristic explanation of this fact, we refer to the
introduction of [35], see also Remark 2.14 below. Note also that we can prove
existence just along a sequence £;. This seems to be a general property of this
phenomenon, removable only in special cases, see Remark 1.2.

In the case of spike-lavers, both the energy and the Morse index stays
bounded as £ goes to zero. Viceversa, by the results in [16], if the Morse
index of a family of solutions stays bounded as = — 0, these solutions must
concentrate at a finite mumber of points.

The proof of Theorem 1.1 is based on a local inversion argument. The main
difficulty is that, since the Morse index of the solutions is changing with £, the
linearized operator I(u.) will not be invertible for all the values of £ in an
interval (0,z¢). We get invertibility only along a sequence £;, and the norm

of the inverse operator blows-up at the rate Efj""‘,, see Proposition 2.12. This
produces a resonance phenomenon which can be described as follows.
Let v € (0,1), and let v denote the inner unit normal to JQ.. Consider the

neighborhood . of 9€). defined as
T ={2 +a.w : &' €8,2, €(0,7)}.

Let {¢;}; denote the eigenfunctions of —A;. where A; is the Laplace-Beltrami
operator on d€2, and let {\}; be the corresponding (non-negative) eigenvalues.

Let z, be an eigenfunction of I”(u.) with eigenvalue ¢. Then we can de-
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compose z, in Fourier series (in the variable z) in the following way

z. (2 2,) = Z (ex) 2o (20); ¥ e d, x, €(0,77).
=0

If the eigenvalue o is close to zero, it turns out that all the modes ¢z, are
negligible, except those for which A, ~ £72, see also formula (3). This is stated
rigorously in Proposition 2.9. Tt follows that, qualitatively, the resonant eigen-
values of I”(u.) have eigenfunctions with more and more oscillations along J€.

as £ tends to zero.

We describe below the general procedure employed here to attack the prob-
lem. The proof of our main result is based on the Contraction Mapping Theo-

rem, once two preliminary steps are accomplished.

Step 1: finding an approximate solution. Given an arbitrary positive
number £, we are able to find an approximate solution . of (!3) for which
[[7:(us)|| = O(?). The function 1wy - is constructed essentially by power series
in € with & iterations, where the number k depends on n, p and #. Thus wu; .
has roughly the following form

U (@', 2,) = wolw,) + ey (!, 2,) + .. Xy (e, 2y,

T ed, z, €J.=[0,e7]
Here 1y, . .., w0y are smooth functions on d€2 x .J., which are defined inductively
in their index. Basically, each function @ is obtained by an inversion argument
from 1wy, ..., w;_; and the geometry of Q0. Despite the resonance phenomena of
the operator 17, here we can perform this inversion because we are assuming a
smooth dependence on the variable £z’. In some sense, since resonance oceurs
only at high frequencies, see the comments above, smooth functions on 90
(scaled to £2.) are not affected by this phenomenon since their Fourier modes
are mainly low-frequency ones. The rigorous derivation of u; - is performed in
Subsection 2.2. The smoothness of Q is essential to construct 1y, ..

In [35], for n = 2, we were able to satisfy the above requirement only for

0= Ei To deal with a general n we need a better approximation since both the
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energy of the solutions and the norm of the inverse operator grow faster when

the dimension n is larger.

Step 2: inverting the linearized operator I”(u; ). This is a rather delicate
issue since, as we remarked before, the linearized operator is not invertible for
all the values of . Qualitatively, using the Wevl's asymptotic formula, one finds

that the {-th eigenvalue o; of I”(wy..) is given by
o~ =1+ 25T, (3)

see Subsection 2.3 for details. It follows that a; ~ 0 for | ~ ', and that
the average distance between two consecutive eigenvalues close to zero is of
order £"°*. We show indeed that along a sequence £; the spectrum of the
linearized operator stays away from zero of order 5;""', and hence we get an
inverse operator with norm proportional to ej_[”_n‘ The way to prove this fact
is based on a first rough comparison of the eigenvalues with those (essentially
known, see Proposition 2.5) of a model problem, obtaining an estimate of the
Morse index of the solutions. Then, Kato’s Theorem allows us to choose the
values of £ appropriately and to invert the linear operator along a sequence
;. Notice that Kato’s Theorem requires some information not only on the

eigenvalues. but also on the eigenfunctions, see Subsection 2.1.

Final step: the contraction argument. If the operator 1 (uy ) is invertible,
a function . of the form u. = u. + w is a solution of (P,) if and only if w is

a fixed point of the operator F., where F. is defined as
Fe(w) — _I:{'uk.e)_l [I;('ltk.s) —+ G(“—‘)] ¥

w]))™™ 1, Since

Here G(w) is a superlinear term satisfying ||G(w)| < O(]|
along the sequence ¢; the norm of the operator I”(u;.)~" is of order ™", we
need to choose # to be sufficiently large (see Step 1), depending also on p. in

order to get a contraction.
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A further difficulty in dealing with the case n > 3 is that the exponent p
could also be supercritical. This case is tackled with a truncation argument,
proving a priori estimates in L. These are based on a combination of norm

estimates, obtained using Step 2, and elliptic regularity theory.

Remark 1.2 We do not expect that in general concentration at manifolds of
dimension k., with k > 1, occurs along o continuous range of €. This is possible
(and verified) instead in very particular situations, under some symmetry as-
sumptions. In this case the resonance phenomenon can be ruled out working in
spaces of symmelric functions. However, since the Morse index of the solulions
is still changing with =, bifurcation of non-symmetric solutions occurs from the
branch of the symmelric ones, see [4], [15], [45].

For the general case it is reasonable to expect imperfect bifurcation, namely
that the set (z,u.) C B x H'(Q), where u. is a boundary-layer, looks like an
hyperbola when the Morse index of uy.. is changing.

Similar resonance phenomena were observed in [34], [44)] for a class of ordi-
nary differential equations. We believe that a similar picture should take place

also in this case.

Remark 1.3 Under symmetry assumptions, it is possible to analyze different
aspects of concentration at manifolds.

In [41], [8] it is considered the case of standing waves for the semiclassical
Nonlinear Schridinger Equation, and il is shown how the location of the con-
centration set arises as a combination of the effects of the potential and the
volume of the support of the solutions (this phenomenon is absent in the case of
concentration at points). In particular in [4] necessary and sufficient conditions
are given for the location of the concentration set.

In [8]. [18] concentration on circles is produced considering solutions of the
NLS with non-vanishing angular momentum, and the potential is now balancing
volume and centrifugal forces.

In [5] it is analyzed the effect of the boundary of the domain. In particular,

for problem (F-) in a ball, it is shoun that there exist solutions with a spherical
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crown of mazima at distance | loge| from the boundary. The radial profile of
these solutions is that of an interior spike, hence they are of different type with

respect to those analyzed here.

Remark 1.4 (A) Concentration along curves or manifolds also occurs for other
classes of equations, like Allen-Cahn, Ginzburg-Landaw or Yang-Mills, see e.g.
the recent papers [11], [12], [43].

The phenomenon is different from our case, since the resonance phenomena
there (although present) do not affect so drastically the structure of the solu-
tions. In fact, under generic non-degeneracy assumptions, concentration occurs
without gaps in the scaling parameter.

The main reason for this difference is the following. For these equations the
basic solution (transition layer. vorter, instanton) in the direction orthogonal
to the manifold of concentration is, loosely speaking a minimum. In our case,
instead, the function wy is @ mountain-pass, giving rise to a negative eigenvalue
for the 1-dimensional problem, see Proposition 2.1. As a consequence the eigen-
values of the linearized operator in n dimensions grow from a negative number
and eventually cross zero, as described in formula (3).

(B) Problems of finding constanl mean curvature surfaces shrinking atf a

curve or along a manifold present similar features, see [33] and [37].

The outline of this note is the following. In Subsection 2.1 we collect some
preliminary facts and we study a family of auxiliary one-dimensional problems,
proving some continuity and monotonicity properties. Subsection 2.2 is devoted
to the construction of the approximate solution u,. .. In Subsection 2.3 we give
a characterization of the eigenfunctions and the eigenvalues of the operator
T, which basically coincide with those of 1”(1.), see Proposition 2.13. In

Subsection 2.4 we prove Theorem 1.1.

2 Idea of the proof of Theorem 1.1

In this section we give a sketch of the proof of theorem 1.1. We provide complete

proofs of a couple of results, referring to [35] and [36] for those which we do not
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report here.

2.1 Notation and preliminary facts

In this subsection we introduce some notation which will be frequently used
later on, and we present the linear theory of some auxiliary one-dimensional
problems.

Throughout this note, ' denotes a large positive constant. For convenience,
we allow C to vary among formulas (also within the same line) and to assume
larger and larger values. The number ~ will be fixed in Subsection 2.2. We often
work in the functional space H'(Q.) endowed with its natural norm, which we

142

|| without any subscript. Solutions of (F.) for p < 22

denote simply by are
found as critical poiuts of the functional 1. : H'().) — R defined in (2).
Consider the problem
—uw'+u=v" inRy;
w0 in R, ; (4)
u'(0) = 0,
with p > 1. It is well-known, see e.g. [21], that problem (4) possesses a solution

wy which satisfies the properties

wph(r) < 0, for all r > 0, (5)
limy oo €"0p(r) = @ > 0, iMoo :EE:; =—1,

where ¢, is a positive constant depending only on p. Using some ODE analysis,
one can see that all the solutions of (4) in H'(R.) coincide with wy.
Solutions of problem (4) in the class H'(R.) are critical points of the func-
tional T defined as
= 1 : . 1 '
T(u) = - / (W) +ut) = —— ] P, we H'RL).  (6)
2 Jw, ( ) p+1Je,
We have the following non-degeneracy result, see e.g. [21], [42].
Proposition 2.1 The function wy is a non-degenerate critical point of 1. Pre-
cisely, there exists a positive constant C' such that
T (wo)[wo, wo] < —C7'woll3; T (wo)[e,v] = CJu3,

forallve HY R, ), v L wy,



BOUNDARY LAYERS OF ARBITRARY DIMENSION 127

where || - ||o denotes the standard norm of H(Ry). As a consequence, we have

o< 0 and v > 0, where p and 7 are respectively the first and the second

" = 5 . . %
eigenvalues of I (wy). Furthermore the eigenvalue pi is simple.
Our next goal is to characterize the eigenvalues ¢ (in particular the first

two) of the following problem

{(1 —o)(—u" + (1 +a)u) =puw?'u, inRy; )

u'(0) =0,

where a is a positive parameter. Equation (7) arises in the study of some
linear partial differential equation after performing a Fourier decomposition,

see equation (15) below.
In order to study the eigenvalues of (7), it is convenient to introduce the fol-
lowing norm | - ||, on H'Y{R)

lull2 = /R (@) +(1+and);  ueH'(R,). (8)

Let H, be the Hilbert space consisting of H'(R, ) and endowed with this norm.
We denote by ( , )a the corresponding scalar product. We also define by duality

the operator 7, : H, — H, in the following way
(Tott; W)= / (v'v"+ (1 + a)uv — pwf,’_l-uv) : w,v € H,.
By
Then equation (7) can be written in the abstract form
T, u=ou; u € H,. (9)
Note that when a = 0, T,, coincides with Tﬂ(wo). We have the following result.

Proposition 2.2 Let p, and 7, denote respectively the first and the second

eigenvalues of T,. Then . is simple and the following properties hold true
(i) @ p, is smooth and strictly increasing;

(ii) o — 7. is non-decreasing.



128 A. MALCHIODI M. MONTENEGRO

The eigenfunction v, of T, corresponding to p.. normalized with ||v.|l. = 1,
can be chosen to be positive and strictly decreasing on Ry, The map a v v, is

smooth from R into H'(R,). Furthermore, i, > 0 for a sufficiently large.
Given a > 0, we also define the function F(a) to be
F(a)=2a(1 - ua)/ v2 > 0. (10)
e

Note that, by the smoothness of a — v,, also the function o — F(a) is smooth.

We also need to consider a variant of the eigenvalue problem (7). For v € (0, 1),

let J. denote the interval

and let
H ={ueH(J) : u(s") =0}.

We let H, . denote the space H! endowed with the norm

[l

he = / (') + (1 + a)u?); w€ HY,

e

and ( , ). the corresponding scalar product. Similarly, we define 7, - by

(T U ¥z = / (u'v' + (14 a)uw — pw)uv); u, v € H,,.

e

The operator T, . satisfies properties analogous to T,,. We list them in the next
Proposition, which also gives a comparison between the first eigenvalues and

eigenfunctions of 7, and T, ..

Proposition 2.3 Let ... and 7, denote respectively the first and the second

cigenvalues of T,, .. Then i, - is simple and the following properties hold true
(i) a— . is smooth and strictly increasing;

(i) o +— Tae is non-decreasing.
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The eigenfunction v of T, - corresponding 1o fio.-. normalized with |va <||a: =
1, can be chosen to be positive and strictly decreasing on R. Moreover there

erist a large constant C' and a small constant & depending only on p such that

g e s 1 1
|ha—fae| < Ce™*; Wa—Vaell @,y < Ce2e 8T for i € |:—ET 41'}

and for £ small. The function v, . in this formula has been sel identically 0
outside [0, 7],

Remark 2.4 Using the Courant-Fisher method, one can also prove that 7, >

Ta for all values of v and <.
We use Fourier analysis in order to study equation (ﬁ!). For v > 0, let us define
the set S. and the metric gy on S. as
= aQs x J.s = 895 X [O~ E_T] ) Yo = gs @ (df)Q (11)
where 7. is the metric on J€). induced by B". We also define the functional
space
Hs, = {ue H'(S.) : u(z',e™) =0 for all 2’ € 90, }

endowed with the norm
llullf, = f (IVgoul® +u®); u€ Hs,.
Se

Let ¢ be the metric on JQ induced by that of R”, and let A, be the Laplace-
Beltrami operator. Let {\}; denote the eigenvalues of —Ag, counted in non-
decreasing order and with their multiplicity. Let also {¢}; denote the corre-
sponding eigenfunctions.

Given u € Hg,, we can decompose it in Fourier components (in the variable

x') as follows
u(r 5:) = Z or(ex (2, € 9., x, € J.. (12)

Using this decmnposition. one finds

lullfy, = = Z/ (ug)® + (1 + £ X)uf) = 1ZIIH:H I
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Writing for brevity || - ||;.- instead of || - ||.2,,, the last equation becomes

s
2 1 2
lulliag, = 7= > llie. (13)
i

This is how the norms || - || introduced above enter in our study; in particular
we will choose o belonging to the discrete set {£2)\};.

We are also interested in an eigenvalue problem of the form
Ts.u = ou; u € Hg,, (14)
where T_ is defined by

(Ts.u,v) = / (Vgott + Vot + uv — pwl~ uv) dV, w,v € Hs..
4

Writing w as in (12), equation (14) is equivalent to

_ _ ~2 8 1 i
{(1 o) (—w +(1+e*N)w) =pwy w in J, for all [. (15)

uy(0) = 0;

Since T, represents a model for the study of I7(ug.), it was essential for us to
perform a spectral analysis of the operators T,,.

The spectrum of T is characterized in the next proposition. We recall the

definition of the (positive) number 7 in Proposition 2.1.

Proposition 2.5 Let 0 < § be an eigenvalue of Ts.. Then o = ju. for some

index [. The corresponding eigenfunctions u are of the form
(it zn) = z (e Yo (), 1 €., x, € J, (16)
{i:=c}
where {ay} are arbitrary constants. Viceversa, every function of the form (16)
is an eigenfunction of Ts. with eigenvalue o. In particular the eigenvalues of Ts.
which are smaller than T coincide with the numbers {p .} which are smaller

than 7.
Proof. Let u be an eigenfunction of Ts, with eigenvalue ¢. Then we can write

u(@ ) = (onvge(a) + Bi(2a)) di(ez’),

i
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where a; are real numbers, and where (9y,v;.);. = 0 for all I. We have
Slep v (x,) + Ty ety(z,)) di(zx”) Ts.u=ou
o Y (e (Tn) + t(x,))di(ex’).

By the uniqueness of the Fourier decomposition, the last equation implies

Il

Il

=0 il o #£0; and Tty =0ty forall (17)
Proposition 2.3 i7) and Remark 2.4 yield
Toe X T 20, (18)

which means that 7}, . > 7/d on the subspace of H, - orthogonal to v, .. Hence

the second equation in (17) and the fact that o < 7 imply @ = 0 for all [.
Moreover, since A, — . is a monotone function, the first equation in (18)
shows that all the indices [ for which a; # 0 correspond to the same value A;.
This concludes the proof.

]

We finally recall the following theorem due to T. Kato, ([29], page 444) which

is fundamental to us in order to obtain invertibility, see Proposition 2.12.

Theorem 2.6 Let T(y) denote a differentiable family of operators from an
Hilbert space X into itself, where y belongs to an interval containing 0. Let T'(0)
be a self-adjoint operator of the form Identity - compact and let a(0) =g # 1
be an eigenvalue of T(0). Then the eigenvalue o(x) is differentiable at 0 with
respect to x. The derivative of o is given by

g% = {eigen-ualues of Py, 0 %(U) o P,,n} ;

where Py, : X — X,, denotes the projection onto the oy eigenspace X, of T(0).

Remark 2.7 We note that, when perturbing the operator T'(0). the eigenvalue
ao can split in several ones. Hence in general g possesses a multivalued deriv-
ative. Anyway, since the operator T(0) is of the form Identity - compact, and
since aq 18 different from 1, oy is an isolated eigenvalue and the projection P,

has a finite dimensional range. Hence the splitting of oy is finite.
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2.2 An approximate solution

In this subsection we construct approximate solutions wuy . of (P.) of arbitrary
order in . Basically we expand a solution u. of (F.) in powers of ¢ and then

use suitable truncations.

Proposition 2.8 Consider the Euler functional I defined in (2) and associated
to problem (P.). Then for any k € N there exists a function Upe + S — R with
the following properties

n— () 3
1 (g e )| < Ck5k+l_T]; U =0 in Q. (;:;‘5 =0 ondfd, (19)

where C, depends only on €, p and k. Moreover there holds
(V)™ g (2!, 30) || < Crme™e %7
It V’)[”‘Jﬁhu.k&-(x'.LUu)”F < Cpeme®n; o' € 0,3 € Juy,m=0,1,...,
(9™, 1,2 )| < e

.‘Bu

(20)
where V' and || - ||" denote the derivative and the norm taken with respect to the

variable ¥’ (freezing x,, ). and C,, is a constant depending only on Q, p and m.

We parameterize the set S., see equation (11), using coordinates x' on 9€.
and x, in J.. Let v denote the unit inner normal to 9, and define the map
I.:d0, x J. = R" hy

Dife @) = e

We let the upper-case indices A, B,C,... run from 1 to n, and the lower-case
indices i, j, k, ... run from 1 to n—1. Using some local coordinates {@; }i=1...no1

on d€),, and letting . be the corresponding immersion into B™, we have

e (o, x) = S5 (') + 2 P (en’) = S25(2") + ewn H () 52 e (2'),

for-i.:l..‘,, 1—1,

where {H, f} are the coefficients of the mean-curvature operator on JQ. Let also

:; be the coefficients of the metric on 9. in the above coordinates (z',7,).
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Then, letting g = g. denote the metric on £2. induced by R", we have

(Or. .\ ({gy} O
ga = (82."4‘31.‘3) = ( 0 1) (21)
where
0pc 1y O Be.
b = (Goele) + ennth(er) (), Gl + son i) ) )

= Gij+eza (HiG + ngu) +e’eh H Hig.

Note that also the inverse matrix {g*#} decomposes as

. ({gg} lu)_

We begin by finding a first-order approximation for u.. to show the ideas of
the general procedure. We define the following map u — @ from functions on
). (resp. 9§, x R ) into functions on 99 (resp. 90 x R )

i(zx") = u(x') (resp. w(ex’,x.) = w(a', z,)), o' € 0. (vesp. (', x,) € ON-xR.).
(22)
Using the above parametrization, we look for an approximate solution u,. of
the form
(2’ 3n) = wo + ey (ex, 3,),

where the function @, is defined on 99 x R, consistently with (22). We note

that, from the above decomposition of g4z (and g*#), one has

1
~Au = _g"B-u,AB == \/Het_gaA (gAB,/detg) upg

- 1 1 .
SRR - (g IR Y (O~ .
= o= Y det ga”' ( det g) e det ga‘ (g ety ) s

We have, formally
det g = det(g 'g) det g = (det ) (1 + ez, tr (7 'a)) + o(e), (23)

where

ai; = HE Gy + HiGa-
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There holds
(T )i =770y =77 (H{Gyy + HiGa) ,

and hence
tr (7 'a) =% (HfGy, + Higa) = 297 HG,; = 2H;. (24)

We recall that the quantity H! represents the opposite of the mean curvature
of 9§ (by our choice of v}, and in particular it is independent of the choice of
coordinates.

Using (23), (24), writing formally (wo + cw:)? as wh + pewl 'wy + o(e),
and expanding —A, 1. + u1- = uf. up to the first order in £, we obtain the

following equation for w,

Ww(0) = 0. (25)

{—u-"l" +wy, —pwhwy = Hlw)  in Ry,
By Proposition 2.1 and the subsequent comment there, equation (25) can be
solved for any right-hand side in L?(IR? ), as in this case (see equation (5)). The
resulting expression for wy will be independent of the choice of coordinates on
d90...
The construction of a better approximate solution is performed by expanding
formally the equation —A,, 1+ u = u? in powers of £ up to order k. A rigorous
proof is in [36].

For smooth functions wy, ...y : 99 x B, let
T (2, 2,) = wolzy) + ey (en’, 2,) + .. . efb(e2’, 2,); ' e df,x, eR,.

Expanding formally the equation —A u+u = u? (imposing Neumann boundary

conditions) in powers of £, we find that @, satisfies the following recurrence
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formula for ¢ running from 1 to k

([ i i—2
- - B i—1 /5 2
— W b — pwl T = E i Gila )by, (ex’, Tn) E i—j—2W;)(ex’, Tn)
=1 =0
A P =2 gt = F ot e Y in®
+ Zn ----- Ji—1 C* F1yeendi W wy - U ( €T -n): m sy
¥ =i
W (0) =
\1’.[-;‘.(0) 0,

(26)
where the derivatives are taken with respect to the variable x,,, the coefficients
Cijr....j; are constants, G, : 9Q — R are smooth functions and L;_ j—2 are linear

second-order differential operators.

Proceeding by induction and using standard estimates on solutions of ODE's,

we find that there exist polynomials F;(t) such that

(V)i )|| < Cim P, )e ™

(V) wi(a!, || < CymPilz,)e e ed,z, eRy,m=0,1,...,

1(¥) ""}w;’(:r.._:r,,)|| < G Pz, e

(27)

where V' denotes the derivative with respect to 2, and C,, is a constant
depending only on €2, p, ¢ and m. In particular these decay estimates ensure
that the right-hand side in (26) belongs to L*(R,), and (26) is solvable for all
i=1,...,k

Therefore, uy - is obtained by multiplying ;. - by a cutoff function supported
in {z, € [0,e77]}

2.3 Eigenvalues of Ty,

Let 2. be defined as

S, =T.(S.) =T, (02 x L) = {z € R" : dist(z,00,) <e}.



136 A. MALCHIODI M. MONTENEGRO

We endow Y. with the metric g. induced by the inclusion in B*, and we define

the functional space
Hy. ={ue H'(£.) : u(T.(¢/,e™)) =0 for all 2’ € 9Q. },
with its natural norm
f r;||§;ts = /L (IVgul* +u?); u € Hy,,

and the corresponding scalar product ( , )u. . Using the expression of the

metric g., see equation (21) and the subsequent formulas, one finds

(1—Ce' ) llullms, < Nullps, £ (1+Ce™) |lullpg,; for all u € Hg,,
(28)
where ' is a constant depending only on (2.
Let wuy. be the function constructed in Subsection 2.2. Then we define
Ty, : Hy, — Hy_ in the following way

(Ts, u,0) p, :] (Vou- Vyv+uw —puf 'uw)dV,,;  wve Hs,. (29)

5

The goal of this subsection is to study the eigenvalues ¢ of the problem
Ts.u = ou, u € Hy_. (30)

In the next Proposition we characterize the eigenfunctions of Ty, when the
eigenvalue o is close to zero. We recall the definition of the functions ¢; and v, .
from Subsection 2.1. Proposition 2.9 is the counterpart of Proposition 2.5 for a

non-flat metric.

Proposition 2.9 Let vy > 0 be sufficiently small, and let A € (0.7/4). Suppose
o € [—=1/4.7/4], and let u be an eigenfunction of Tx. with eigenvalue o. Then
there holds

g~
U— Z Qe < CT”H”HSE* (31)

{lpg cElo—Na+Al} Hs,

for some coefficients {ay} and for some constant C' depending only on 0 and p.
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Let Ty : © — R be the function defined by
Uy (7) = up(ex), T e
We recall the following result from [35].

Proposition 2.10 The eigenvalues of the operator Ts. are differentiable with
respect to g, the eigenvalues being considered a possibly multivalued function of

e. If a(g) is such an cigenvalue, then

g—f = {eigenvalues of Q,} , (32)

where @, : H, x H, — R is the quadratic form given by

Q. (u,v) = (1—0’)3 V-u»v-af—p(p—l)/ u-Lru’;:"jzagk‘E(e-). (33)
Sl e €

Here H, C Hy, denotes the eigenspace of Ts, corresponding to o and the func-

tion ug.- is defined in Subsection 2.2.
We apply Proposition 2.10 to the eigenvalues o which are close to 0.

Proposition 2.11 Let o be an eigenvalue of Ty, belonging to the interval
[—7/4,7/4]. Then there holds

do 1 -
de EF{J)

< Ce

where v is sufficiently small, F (+) is given in (10), and C s a constant depending

only on Q and p.

Now we are in position to prove the following proposition, which characterizes

the spectrum of Tk,.

Proposition 2.12 Let ui. and T, be as above. Then there emists a positive
constant C. depending on p, Q and k with the following property. For a suitable
sequence £; — 0, the operator TEEJ : H,;EJ — HEIJ is invertible and the inverse

operator satisfies

-1
i) < 2
i

forall j € N.



138 A. MALCHIODI M. MONTENEGRO

Proof. Let {o;}; (resp. {s;},;) denote the eigenvalues of T%_ (resp. T&. )

counted in increasing order with their multiplicity. Let also
N(Z) =4{j : 0; <0}; (resp. N(S.)=4{j : 5, <0}).

denote the number of non-positive eigenvalues of Ty, (resp. Tg,). Recall that,
from Proposition 2.5, the eigenvalues of T’s_ coincide with the mumbers {p;.}; =
Jtz2y, -» Where {);}; are the eigenvalues of the Laplace-Beltrami operator —A;,
see also equations (12), (15). We also recall the Weyl's asymptotic formula, see
e.g. [13] page 169

(2m)? § = B, _
A_? dn‘i} VO((aQ) = C-u,ﬂ,} 3 as J 4o, (34)

From the strict monotonicity of & — i, := p(ar) and from the last formula we
deduce
i : X3 <p(0)} ~ Crgpe™ (35)

From Proposition 2.3, we have

3

N
==

|ttezs, c — pteza,| < Ce™™ 75 provided g2y, € [— ] _, (36)
which implies

ﬁ{j s &2 <t (0) - 06_55_1} < N(S.) < {j &2 <t 0) + C{:‘éaﬂ}

and hence
-{V(Sz) o én.__i!,pg e . (37)

From the Courant-Fischer method, we get

T., U )
o; = inf {sup M : M subspace of Hy, ,dim M = j} ;

wedt  [|ullfg,

and a similar characterization for s;. There holds

|(Te.w ) i, — (Ts,u, ) g, | < Ce' |, ;

el = N3, | < Ce™=ully,
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for all u € Hy,_ and for some constant €' depending only on €2 and p. Note that,

by (28), in the last inequality we can also substitute | - ||z, with ||« || g, . The

last two formulas yield
|8~ £ O™, for all j, (38)

where ' depends only on €2 and p. From (36), (38) there exists a positive

constant C', depending only on £ and p, such that
#{j : e <p(0) = Ce' T} < N(Z.) < #{j : ¥\ <p(0) +Ce},

which implies

-1 = =
N(Ea}r\-u'{j : ap Ef(”}m (’“‘, (O’) Coppe . (30)

g2 Cn.,ﬂ

For | € N, let ; = 27, Then from (39) we have

N(Ze) = N(Be) ~ Cuip (280 — 20D = € g0 (277 — 1) g™
(40)
Note that, by Proposition 2.11, the eigenvalues of Ty, close to 0 decrease when
¢ decreases to zero. In other words, by the last equation. the munber of eigen-
values which cross 0, when £ decreases from &; to 21, is of order E}_“. Now we

define
Ar={s € (g111,8) : ker Ty, # 0} By = (ery1,60) \ Ar.

By Proposition 2.11 and (40), it follows that card(4;) < Ce ™™, and hence there
exists an interval (a;, by) such that

 meas(By)

a;, b)) C By; b —a >C~ NATEY 41
(a1, br) € By b — a;| = card(A)) > i (41)
From Proposition 2.11 we deduce that
; o : _ 1 c
Ty, gy is invertible and TE’_‘L;_"L < =
1

Now it is sufficient to set £; = %522, This concludes the proof.
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2.4 Proof of Theorem 1.1
In this subsection we prove Theorem 1.1. We just treat the case p < =, For
_ 42 a1
p> M see [36].
The following result can be proved as is [35], Proposition 5.6.

142
n—2

Proposition 2.13 Let k € N be fized, and let u;, . be as in Subsection 2.2. Let
{o;}; denote the eigenvalues of Ts_, counted in increasing order and with their
multiplicity, and let {d;}; denote the eigenvalues of 12 (uy.). Then there exists
a positive constant C', depending only on Q and p, such that

o
- —dsT 2, i T T
lo; —6;] < Ce : whenever o; € [—Ef z] .

The proof of this proposition consists in showing that the eigenfunctions of
1! (up..) decay exponentially away from J9Q., and multiplying by suitable cut-oft
functions. The eigenvalues ¢; and &; are then compared using the Courant-

Fisher method, as in the proof of Proposition 2.3.

Let £; be as in Proposition 2.12. Then from Proposition 2.13 we deduce

¥

¢
17 (uge,) is invertible and 122 (uge,) M < —- (42)

Zr—1
=i

For brevity, in the rest of the proof, we simply write £ instead of ;. We apply

the contraction mapping theorem. looking for a solution u. of the form
Ue = Up e + W, w e HYS.).
If 17 () is invertible (which is true along the sequence £;), we can write
e +w)=0 &  w=—"(me) " [Llue)+Gw)],  (43)

where
G('{L’) = I;(U-k.e + 'U..') - Ié(uk,s) - I:{_ul.-,s)[u'.]'

Let us define the operator F.: H'(Q.) — HY(Q.)

E(i) = — (ff('uk‘g})“' [I(uge) + Glw)], we H'(Q.).
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Let £; be given by Proposition 2.12. We are going to prove that F. is a con-
traction in a suitable closed set of H'(€2.). From Proposition 2.8 and (42) we

get

O
G &) (E;-H 24 ||-w||f’) for p < 2,

IE (w)| << i med ‘ lJwl| < 1;
L Cs;("_” (E;-H 4+ ||-u.'||3) for p > 2;
(44)
Ce5 ™ (lwn [l + luwall™) s —woll - p<2,
I, (1) — oy (ws)| < Juonll sl < 1.
CE;{"_” (Nl || + NJwal]) [Jwr — wel p>2;
(45)
Now we choose integers d and k such that
wd for p < 2,
i>{r1 orps2 BT i 1) (46)
n—1 forp>2 2

and we set

Bi={weH(Q) : |w|| <cf}.

From (44), (45) it follows that F. is a contraction in B; for =; small. Since u.
is close in norm to a positive function (uy..), the positivity of u. follows from
standard arguments. The points i) and ii) in the statement follow from the

construction of u.. This concludes the proof.

Remark 2.14 By the above construction and some standard estimates, there
holds

I! (ue;) = IZ (uge,) + O (efmintte-1}) = I (upe,) + 0 )

It follows from Propositions 2.12, 2.13 that the Morse index of u., coincides
with N(E,) ~ 5} —
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