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Abstract

In this note we consider solutions of a nonlinear model for internal
waves and its linearized version. We obtain a series of regularizing esti-
mates for solutions of the linearized problem via the oscillatory integrals
theory established in [9]. We also show a local smoothing effect for solu-
tions of the nonlinear problem reminiscent of the one proved for solutions
of the Benjamin-Ono equation in [15].

1 Introduction

In this note we will consider solutions to the initial value problem (IVP) for the
equation
0, (O — BHPu + ud,u) = yu, .t €R, (1.1)

where 3.7 > 0 and H denotes the Hilbert transform, i.e. Hf = (—isgn(€)f)",
and its linearized version.

When 3 # 0 and v > 0 the equation above models the propagation of long
internal waves in a deep rotating fluid (see [2], [3], [17]). In the context of
shallow water the propagation of long waves in rotating fluid is described by

the Ostrovsky equation (see [14], [12] and references therein).
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Before describing our results we first rewrite the equation (1.1) by using the

antiderivative,

o110 =5 ([ swrae - [~ parar) (12)

(see [5]). Using this definition we then consider the following IVP

O — BPHu — 07w+ ud,u =0, zx,t€R,
(1.3)

u(x, 0) = ug(x)
where u is a real valued function. We will also admit negative values for v, so
we siniply assume -7 # 0. The equation in (1.3) can be seen as the well-known

Benjamin-Ono (BO) equation,

o — PHu +ud,u =0, (1.4)
with an extra nonlocal term. N
From the definition (1.2) it follows that d;'f = (1%1}". Then it is natural
to define the function space X, as
X.={f€eHR):9,;'f € H*(R)}, s€R. (1.5)

Our main purpose here is to obtain some regularizing effects for solutions of
the linear problem associated to the equation in (1.3) and for solutions of the
nonlinear problem (1.3).

For solutions of the linearized problem we establish Strichartz estimates,
smoothing effects of Kato type and estimates of the maximal function type.
The results will depend on the values of the parameters + and 3. We are able
to prove global or local versions of the estimates previously mentioned according
to the sign of the product 3 - .

For several nonlinear dispersive equations the presence of these kind of
smoothing effects have been useful to establish existence of solutions for non
regular data. Thus it is an inferesting problem to determine whether or not
solutions to the linearized equations enjoy these properties.

Regarding the IVP (1.3), we have the following local well-posedness result.
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Theorem 1.1. Let 3 -v # 0, 5 > 3/2 and uy € X,. Then there exist T =
T(s, ||uollx.) = 0 and a unique solution u of the IVP (1.3) such that

we C([0,T] : X,(R)UC[0,T] : X,_a(R)).

Moreover, suppose that ul — ug € X (R) and u™ is the solution of (1.3) with
data u™(0) = ufy. Then given T' € (0,T), there exvists Ny = Ny(T") such that
Jorn = Ny, u™ is defined in [0,T"] with

lim sup [|u"(t) — u(t)||x, = 0.
e (VY4

The proof of the first part of this theorem follows the same argument as the
one given by Iorio [4] to establish local well-posedness for the IVP associated
to the BO equation. The continuous dependence uses the Bona-Smith approx-
imations [1]. Since these arguments are well known by now we do not give the
proof of Theorem 1.1.

We will show that the solutions given by Theorem 1.1 are locally half deriv-
ative smoother than its initial data. This result was established by Ponce [15]
for solutions of the BO equation. Our proof follows closely the arguments in
[15].

The study of well-posedness for the IVP associated to the BO equation (1.4)
has recently gained a lot of interest. In [18] Tao proved local and global well-
posedness for data in H'(IR) by using a gauge transformation. Kenig and Koenig
[8] established local well-posedness for data in H*(R), s > 9/8 improving a
previous work of Koch and Tzvetkov [11] (see also [4], [L6]). The approach used
by Kenig and Koenig seems to be more applicable to different situations than
that for the BO equation. In a forthcoming paper we will use this framework
to improve the local result stated in Theorem 1.1.

This note is organized as follows: the main results will be given in Section
2. The linear estimates will be proved in Section 3. In Section 4, the local

smoothing effect for solutions of the IVP (1.3) will be established.
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2 Main Results

In this section we will state the main results obtained in this work. To simplify
our analysis, from now on we will consider # = +1 and v = 1. So we will denote

¢2(€) = FEE] — €. Next we define the solution of the linear problem

v (v — - v =0, A eR,
d,t:FS‘_.fﬂu. lv=0 =zteR, (2.6)
v(x,0) = vy(x)
via the Fourier transform as
Vilt)vg =c / s tites8) 5, (¢) de. (2.7)

3

The first set of estimates far solutions of the linear problem are the so-called

Kato’s smoothing effects.
Theorem 2.1. Let f € L*(R). Then
1DV, () flluz iz, < el + TV 12 (2.8)
and
ID2V- (O fllgerz < €l fllza- (2.9)

Another important regularizing effects satisfied by solutions of the linear
problem (2.6) are given by the Strichartz estimates. In our case they are as

follows.

Theorem 2.2. Let f € L*(R). Then

V4 () fllizaze < el Flle2, (2.10)

and
V- @) fllgre < e +TY9) 1 fll2, (2.11)
where 2/g=1/2—1/p, p>2 (orq= 5 and p= {25, 0 € [0,1]).

Remark 2.3. In the above results we have either global or local estimates de-

pending on the signs for ¢+ and their first and second derivatives.
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To complete the set of estimates for solutions of the linearized problem we

have the maximal function estimates.
Theorem 2.4. Let f € H*(R)N H~*'(R), s, > 1/2 and s, > 1/4. Then
V@) fllzzez < @+ T2 fllg-er + 1 f Nl o). (2.12)

Remark 2.5. The Stricharz estimates and Kato’s smoothing effects above are
similar to those ones obtained for solutions of the linearized BO equation. The
only obstruction given by the extra nonlocal term in equation (1.3) is the lack
of global smoothing effects. This is reflected in the estimates (2.8) and (2.11).
On the other hand, due to that extra local term the mazimal function estimates

differ from the one proved for solutions of the linearized BO equation (see [10]).

For solutions of the IVP (1.3) given by Theorem 1.1 we show the next local

smoothing effect.

Theorem 2.6. Lel s > 3/2. Ifue C([0,T]: X,(R)) is the solution of the IVP
(1.3) forug € X,. then

ue L3([0,T] : HLP2(R)). (2.13)
Remark 2.7. The proof of this result follows by using the same argument given
by Ponce in [15]. For the sake of completeness we will give a sketeh of it.

3 Linear Estimates

We begin this section by proving the smoothing effect of Kato's type associated

to solutions of the linear problem (2.6).

Proof of Theorem 2.1. To show (2.8) we consider ¢' € C3°(R), v = 1 for
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€ [—3/4,3/4] and supp ¢ C [—1,1]. Then
DYV, (t)f =  enernentd |2 fe)ag
R
= [ emrans® g2 e) fl) de
J (3.14)
e [ amerinn® g2 (1 - (o) fle) de

R

= ;‘11(1‘, f) + 44.2(2:,t).

Since ¢/, # 0 for |£] > 1 we can apply Theorem 4.1 in [9] to lead to

sl
sup( / s, 1)[2 dt)7* < sup / Ay, )2 dt) 2
0 ’ (3.15)
(= @) FEOR
|‘:‘+(f)

where in the last inequality we have used that |1 —(&)|/|¢/, (€)| € L™.

d€)'? < el|fll 2,

On the other hand, the Sobolev embedding gives

il I
5 1/2 s 1/2 >
sup ( / A, P dt) < e / IDV2@ % llip dt) < T f]]a.
0 i

(3.16)
Combining (3.14), (3.15) and (3.16) the estimate (2.8) follows.
To obtain inequality (2.9) we notice that ¢_ belongs to a general class defined
in [9]. Therefore from Theorem 4.1 in [9] the estimate (2.9) is deduced.
0
Next we prove the Strichartz estimates associated to solutions of the linear
problem (2.6). The main tool will be the techniques used by Kenig, Ponce and

Vega [9] to deal with oscillatory integrals.
Proof of Theorem 2.2. To establish estimate (2.10) we observe that

¢l (€)] = 2.



LONG INTERNAL WAVES 107

Thus

Y
1940z < 5 / || / -t of )9/ Fe) e o)

=T 2

The inequality (2.10) follows by using Theorem 2.1 in [9] since ¢, is in the
general class defined in [9].

Next we prove (2.11). We consider ¢ € C3°(R), ¥ = 1 for £ € [—5/4,5/4]
and supp v C [—3/2,3/2], then we have

V- () g2z < / || ] o~ €+5¢ FLey(e) dell g )

(3.17)
o = _ /
+C(/ || /f"m"{ﬁ)Jr"”Ef(f_}{l—'t_."}(f_}) d&“%;,dt)l q

" g

= Bl + BQ.
To estimate By we use the Sobolev embedding, Holder’s inequality and the

regularity on ¢’ to obtain
T
;o g 3y
m<e( [ 17« i)™ <, (3.18)

Since [¢” (£)| # 0 for |€] > 3/2 we rewrite By and apply Theorem 2.1 in [9]

to deduce that

By (/ ” / gits- @i g1 (E)I“’*I—)(W“)df” 1) " < el fle

0 R
(3.19)
where # € [0, 1].
Combining (3.17), (3.18) and (3.19) the inequality (2.11) follows.
O

To end this section we prove the maximal function estimates for solutions

of the linear problem (2.6).

Proof of Theorem 2.4. Consider the following open covering of R — {0},

Qk a (_2k+1‘ __2|!.:—1) U (2;"_]__ 2k+])‘ ke?.
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and a subordinated partition of unity {@,}32 . and let

Bt —c [ om0y 0.
R—{0}
As in [10], it suffices to prove that for any k € Z. there exists a function
HE € L'(R) satisfying
[Tt 2)| < Hi(2),
for any @ € R and |t| < T and such that

| HiE Nl rmy < e(1+ T)eght,

where a and b are some suitable constants.
Let us take t € [-1", 7. We shall consider different cases.

3.1 Case 1: k> 3.

If £ € Q. then [¢,(&)| < 6-2%. Then for |z| > 12-2FT, we have |t¢/, (&) + €| >
m| > 1 |z,

Assume that 12-2"T > 1 and let us consider a function i € C>~(R) such that
supp h C {&: [t¢’(€) + z| < § |z} and that equals one in {€ : [t¢/ (&) + 2| < 3 |2]}.
Performing two integrations by parts and using the remarks above we obtain
that when |2] > 12 . 2*7",

. , ; g
f t,v.[td:_*_(EHJ:rﬁ}{pk(g){l - h(f))d&‘ < e
B—{0} ||

If € € QN {&: |td(§) + x| < 3|z|}, we have that

p _ S x1
[t (€)] = 2@ & ‘ (3.20)
lte’: ()| .
> e (3.21)
1 | o=k i
> glaf2™. (3.22)

Where in the second line we have used that if |£| > 3/2 then

2(l€f* - 1) > 3(2l€f* +1). (3.23)
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Now we can use Van der Corput lemma to get,

k2

s 2
piltox(E)+al) 5 (Vh(E)dE| < ¢ -,
‘[3_{0} »’71{6) (E) £ = |.T-'|V"

Thus for 12 - 2¥7 > 1, the theorem follows by choosing

an Vel <1
Hi(z) =4 2e+dm 1<l <12-2¢T
o x| > 12 24T,

so that [|H || @ < e(1+T)Y22%. Otherwise we may set

2k x| <1
HE(z) = ko B
¢ (@) {ﬁp > 1,

with | HE || @ < 2~

3.2 Case 2: k< -2.

Now |¢.(€)| < 5-27*if £ € Q.
To estimate I,7, we do not have inequalities such as (3.20)-(3.22), but we

can use that for £ € 4, [£] < 55 and then
" 2 3
[928) = =z -I[EF)
4
1
> 24—
4
lo” (&)
1€l
Similarly as in the previous case we define
2k ,z) <1
HE(r) = % + 22 1<z <10-2°%T
2 x> 102727,

for 10- 27T > 1, with ||H; | 1@ < e(1+ T)Y?27%/2 and

2 |z|<1
HEx) =4 % 7 C
k ( ) { l*f—rg 4 [.‘I,'| 3

with ||Hf[|L1[R] < 2% otherwise.
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3.3 Case 3: —1<k<2.
In this case we have that |¢/,(£)| < 32 and we can take

1, |z| <64T
== - ¥ B
Hy(x) = { Ly, |z] > 647,

and so || Hy; || pywy < (1 +T) for 64T > 1, and

_ 1zl <1
}15(3:):{ L &34

@2

with ||H. ||lz1m) < ¢ otherwise.

These estimates lead to the result. For the details, see [6].

4 Nonlinear Estimates

In this section we establish the local smoothing effect advertised in Theorem
2.6.

We need the following commutator estimates due to Kato and Ponce [7]

Lemma 4.1. Let J* = (1 —3*)%2. Ifs> 0,1 <p < oo, f,g9 € 8(R), then

there exists a constant ¢ = e(s,n, p) such that

1175, £lgllp < e LIV Fllpa 177 gllpa + 117° Fllpall gl } (4.24)
and
7 (Dl < AU fllps 179l + 17 fllpsll gl } (4.25)
1 1 1 1 1
where l <pp,pa<oocand —=—~+ —=—+

P P P2 D5 Di
Here [-.-] denotes the commutator [A, B] = AB — BA.
Applying the operator J* to the equation in (1.3), multiplying it by J%u,

integrating and using Lemma 4.1 we can obtain
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On the other hand. using a similar argument we have that

1d, ., 3 3

- — i =< o||lult =0 |1 3

07 O < cllu@®l u(t) 2

We notice that in these computations the operator ;% appears so we need to
use an analogous argument as the one employed in [13]. Hence we get the a

priori estimate

t
)1, < cuol, exp ( [ ) ) (4.26)
0
which will be useful in what follows.

Proof of Theorem 2.6. Let ¢ : R — R, increasing, ¢ € C"°(IR), such that
¢ € C3°(R). Let u(t) be a solution of the equation

O — HPu + (ud,u) — 07 u=0. (4.27)
It follows that
AHu + Pu + H(udyu) — HI, 'u = 0. (4.28)

Formally we obtain

f{atm.)’u + S Hu Hu — J HPuJu + JPut Hu
+ J*(udpu) Jou + JH(udu) S Hu (4.29)
— JuJ 07 v — S uJ HIT wle(x) dx = 0.
To make rigorous this identity and the ones below we have to make use of the
continuous dependence of the solutions given in Theorem 1.1.
Now we proceed to estimate each term in (4.29). The first two terms in
(4.29) can be written as

1d

53 {FFudu+ J*HuJ Hu}e. (4.30)

The last two terms in (4.29) can be bounded by

‘ / (Tt — Tt Mo }c-")(;r.)‘ <ellu@®l 0w, (4.31)
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Integrating by parts we have that the third and fourth terms satisfy
/{—Jsﬂfaiu.]”u + P Pul Huyd = f JETug ug — f ST Hu S *Hud'

where If = (|€|f(€))¥. Since the terms on the right hand side are similar we

will estimate only the first term in the above expression. Observe that
fJ*I-‘f_zJ“'ur,ﬁ’ = /J"Jrluj*‘qb’%— [J*(I — JyuJug
= / JH 2y ot 2y 4 f JEH 2y g2 T+ / JH(I = JyuJug'
where we used Plancherel’s theorem. Since (Ifﬂf(f ) = m(€) f(€) with m €
L>, Mihlin's theorem implies that
| f I = Jyud*d| < cllu(®)]?. (4.32)

Also

/ . JH2y g2 6T = / Jou([J, ¢ Ju — [JY2, @) T 2n).
Lemma 2.1 in [15] implies that ‘

| ] T2 2 g7 < clu(@)l2 (4.33)

Next we estimate the term [ .J°(ud,u).J*u¢. We rewrite it as
[J'”‘(tsdw.).fsu.qﬁ = /U.]s(?,.,_.'u.f‘”‘ucﬁ+ /[J“‘,u](),_.uJ*’t.t@

= -—% /aﬂz-}*u.f“uqu - % /?;.Js-u.f‘“-ué’—t—/[J*‘,u}amqu-uq).

Using the Cauchy-Schwartz inequality and Lemma 4.1 we have that
‘ f J"(t.a,&)xu).]*u(i:‘ < eflu(®) |1 o0 [lu(s)]2. (4.34)

Next we estimate the term [ J*H(ud,u).J*Hugp. So we rewrite it and inte-

grate it by parts to obtain
]J”.‘H(u&,u}.]*’ﬁfﬂqﬁ = /(J*ﬂ{(u@,.u) - uJ“fJ{aEu)J"'f}{uqb—i—f-u.J”ﬂ'CaruJ”f}fugb
- ] (G = ) + 30 (02) =l — (1 = JyubJ*Hug

-—% / S Hu* Hud — % / S HuJ*Hud'.
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Hence applying Lemma 4.1 and Mihlin's theorem we get

‘/J‘“U{(u(?,-u).f”ﬂ{uqﬁ < cllu(®)) + |7 (w?) — 2ud* | g2 ||ult) | 12

(4.35)
+ lu®) e @IS + ) oo llu()II3-
To conclude the estimate we use Lemma 2.4 in [15] to lead to
|75 (1) — 20" | g2 < cllu(t)]|, when s > 3/2. (4.36)

Gathering together the estimates (4.30)-(4.36) and integration in time we

have that

b ) T
f f T 2 < o2 + () |2 + ¢ f )| ool O)]12
o 0

T
“/ lu(t) | dt’ + e Tllu(t) 12105 "u®)]..
]
Using the a priori estimate (4.26) we have

T
f f T4 28 < M(luolx., T, 6).
0

Lemma 2.1 in [15] implies then that for ¢ € C3°(R)
JB"'LQ(U@) e Lz{[O,TI s L2(R))'

This completes the proof.
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