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GLOBAL IN TIME SPATIAL ANALYTICITY OF

SOLUTIONS TO FRACTIONAL BURGERS’
EQUATIONS
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In Memory of Hebe A. Biagioni

Abstract

We investigate the asymptotic behavior for ¢ — 400 of the radius
Plu)(t) of the spatial uniform analyticity of solutions u(t,2) of the initial
value problem for fractional Burgers’ type equations with source term,
ze, N=RorQ=T:=R/(2xZ). Two different estimates are proved:
for # € B and in the periodic case z € T under suitable decay of LP(£2)
norms of w when t — +oc. We also exhibit explicit solutions to Burgers’
equation which show that our asymptotic estimates for py,(t) as £ — +oc
are sharp in case 2 = R,

1 Introduction

‘We consider the IVP for inhomogeneous evolution equations of parabolic type
with conservative quadratic term

A+ |D|™u 4 9. (u?/2) f(t,z), t>0,zr€0 (1.1)

Usmo = Y, (1.2)

|

where §2 = R or, if we consider 27 periodic data, @ =T = R/(2rZ), m > 1,
and |D|™ = |D,|™ is the (nonlocal if m ¢ 2N) operator

IDI"w(z) = [ ev|e|mib(e) @, dE = (2m)ld¢ (1.3)
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(respectively,
1 ; .
DPPw(z) = — 3 elemi(e)) (1)

2
i £el

if 2 = R (respectively, €2 = T). Here
W(E) = Fogw = / e "w(x) dx
®

(respe(_tti\»'(!l}t
2
W(E) = Fogw = j e w(x) dr)
0

stands for the continuous (respectively, discrete) Fourier transform if Q@ = R
(respectively, 2 = T). In the periodic case we suppose that u’(x) and f(t,z)

have mean values zero, i.e.,

/Qﬁ u(z)dr = 0, (1.5)

w27
flt.r)dr = 0. t>0. (1.6)
2]

The initial data u” can be singular, e.g., in some Sobolev L?(£2) based spaces
or in homogeneous Besov spaces. If m = 2 we recover Burgers’ equation, while
for general m such evolution equations are related to physical models, see [6],
[7]. [8], [23] and the references therein.

It is well known (cf. [14], [28], [13], [3], [4], [24], [16], [17], [11], [27], [10] and
the references therein) that, broadly speaking, solutions u(t, r) to semi linear
parabolic equations with analytic nonlinearities become uniformly analyvtic with
respect to the spatial variables x for ¢ €]0, {y], for some £, > 0. One is naturally
led to the following definition: given u € C(]0,T[: L;,.(R)) and t €]0, 77, we
define

pr(t) =sup{p > 0:u(t, ) € O(,)} (1.7)
with ppg(f) := 0 if it cannot be extended to a function in O(€,) for any p > 0.
Here

Q,={zeC":|Imz| < p}, p=>0 (1.8)
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while O(I') stands for the space of all holomorphic functions in an open set
I'C €%
We are interested in finding conditions on weak global in time solutions of
(1.1), (1.2) leading to
i e y 8
t_lﬂnx P (t) = +oc. (1.9)

The main novelty of the present paper is the thorough analysis of the asymptotic
behavior of py,(t) for t — 4o0c.

We point out that in general (1.9) does not hold unless we require a priori
decay of |lu(t,)||» as ¢ — +oo for some p > 1. Indeed, the results on the
uniform analyticity and explicit examples of solitary wave solutions u(f,x) =
v(z + ct), for some ¢ € R (cf. [18], [9], [21], [20], [5]) show that it may happen
that pp(t) = const for t > 0.

On the other hand, the results in [3] on analyticity for self-similar solutions
of Navier-Stokes and Cahn-Hillard tvpe equations in R™ suggest an estimate of
the type p,(t) > ct'/™ t — 400. Roughly speaking, we will show that under
suitable decay conditions on a solution u and suitable uniform analytic-Gevrey

estimates on the source term [ we can always find ¢ > 0 such that
P (t) = ct/™, t>0 (1.10)

In the case of periodic data we are able to improve the estimate for large f,
namely
p[u](f) = cf, t>1 (111)

We will present explicit solutions u(f,z) of (1.1) for m = 2, © = R (Burg-
ers’ equation) with initial data Dirac delta functions such that (1.10) is sharp.
Moreover, every such u(f, z) extends to a meromorphic function in ¥ € C with
simple poles for every = 0.

The paper is organized as follows: in Section 1 we define scales of Banach
spaces of Gevrey functions and state the main results. Sections 3 and 4 deal
with the fundamental solution of 3, +|D|™ in the framework of Gevrey spaces for

2 =R and Q = T, respectively. The key of the proof, a suitable decomposition
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4

of the Green function, is given in Section 5. The proofs of the main results
are given in Section 6. We derive sharp estimates for py, () for some explicit

solutions to Burgers’ equation in the last section.

2 Gevrey spaces of uniformly analytic func-
tions and statement of the main results

First we introduce L*(R") based Banach spaces of uniformly Gevrey functions
G2 (R"), o > 0. Here f € G2, (R" : L*(IR")) means that for some C' > 0

clol
sup ( 5up |6 f( < 400, (2.12)
aE£+ (O)

where ol = o), a = (@q,...,0,) € ZY. |, if 0 = 1, we obtain that every

feGE (R") is extended to a holomorphic function in {z € C"; [Imz| < C~1}.
If 0 < e < 1 we get that G7(R" : L") is a subspace of the set of all entire
functions in C of exponential type 1/(1 — o) (see [26] for more details).

We recall the spaces of time dependent uniformly analytic functions in R
(cf. [3], [4]). Let g € [1,+0oc], & >0, 8 = 0. We define the global in time spatial

Gevrey type Banach space A?(8; L9(§2)) as follows
A6, L)) = {ueC(j0,x: H, Q) : ||lullogs < +o0}  (2.13)
where

Ioloss = 3 P s (£5 400t ) (2.14)
acZy

Here H;>(Q) = N, H;(R2) C C™(Q), ie., H7®(R) is the set of all u €
C*(R) such that &%u € LY(R) for all « € Z, while in the periodic case we
have H*(T) = C*(T) = C32(R). Next, we write §'(R) (respectively 8'(T) =
D'(T)) for the space of all tempered (respectively periodic) distributions in
R (respectively T) while ||f| re stands for the L9(Q) norm of f. We observe
that if § = 0, g = 2, with the convention 0° = 1, A%(0; L%(Q)) coincides with
the global Kato-Fujita weighted space Cy(L(Q)) with norm [Julle = ||ul|o.40,
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used in the study of Navier-Stokes equations and, more generally, semilinear
parabolic equations with singular initial data, e.g., see [1], [3], [4], [25] and the

references therein. We introduce also the (semi)-norm

M5 = lullogs — llullog
el
= Y Sraw (E5 )0 ut, )ns) (2.15)
agZT A0 !

and the corresponding partial sums

. ) gled 1814811 mar
Sylu: 0,q,0] = Z -7 Sup (f =0l ovut, )| Le) (2.16)

a€ZTN0lalsN T

for all N € N. We note that A%(§; L(2)) — A%(8"; LI(2)) provided 0 < §' < §
and if v € A?(8; L)) for some fixed §; > 0 then

)
tui‘).q:& < Etu‘l?,q:ﬁu? 0<é < 5“' (217)

Next, we denote by Sj(T) the space of all 27 periodic distributions with
mean value zero. Let g € [1,+oc], § > 0, 7 > 0. We define the global in time

L7 based spatial Gevrey Banach space A%(d; L7) as follows
AL(6; L) = {ue€ (0,00 S(T) ﬂ(H,;x'('ﬂ‘)) ull7gs < +00},(2.18)
where

-~ 6 |(x o
lolis = 3 s (0 rutt o). (219

r:EZ;‘_

We introduce also the (semi)-norm

ks = llulygs — lully
Fr_\|
- Z sup( n (00 ) [l ult, )| 1a H)), (2.20)

agZn\0 20

where

lallzp =l = sup ("t Mluxcn)- (2.21)

g
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Clearly AZL(4; L9) < AZL(d': L) provided 0 < &' < § and if u € A%(d; LY) for

some fixed oy > 0 then

q:dn*

M < GhEL,  0<i<h 222

As we will use mainly L? based Gevrey norms on the torus T, we introduce

simplified notations [|ul|$® = |lul|7F, S = M3, and so on.

We will use the partial sums

i) lel
Syt T, 8] = Z sup (e”" (M)' |0~ ult, .)||) . N € N(2.23)
aczr\0jajen 0 @

Sobolev embedding theorems and the Cauchy integral formula for the radius
of convergence of power series imply that if u € A%(5; L4(Q?)) (respectively,
u € A%(d; L7)) then u(t, ) is holomorphic in the strip {z € C : |[Imz| < §t'/™}
(respectively, { € C: [Imz| < dt}).

We state the first main result of the paper.

Theorem 2.1 Letl<m <3,2<p<+4o0,p>1/(m—1) andp < 2/(m—2)

in case m > 2 with the convention p < +oc if m = 2. Set

G ilm)=t=bi 4 2 (2.24)
m P
Suppose that for some 6y > 0 the source term
f € A% (8; L'(R)). (2.25)
Then if
u € C([0,00: §'(R)) [ Co( L (R)) (2.26)

is a weak solution to (1.1). then there exists & = 8(m, ||ullo.ze. || fll26.1:60) €]0, do]
such that
u € A(5; LP(R)). (2.27)

(2.26) holds if u° € | D|*™(LP(R)) =: H;*"(R).

Next, we deal with the periodic case.
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Theorem 2.2 Suppose that for some 3y > 0, 75 > 0 the source term
f € AP (6 : L'(R)). (2.28)
Then if for some g > 0
u € C([0,00[: S'(T)) () Chv 12 (2.29)

is a weak solution to (1.1), (1.2) then there exist 6 = d(m, ||lullg™, || fII7Ts,) €
10, 80] and @ > 0, 0 < min{r, 0y} such that

u € A%(6: L*). (2.30)

In particular, (2.29) holds if u° € Hy %™ (T).

3 Estimates for the fundamental solution in R

We denote by E,.(t,) = E,.(f,x) the fundamental solution of the operator
d + | D™

E.l,2) = [m g e HE™ g = {1175(%) (3.31)
where £,,(2) = / el e
Lemma 3.1 Let o > 1/m. We have
£, € G° (R:LP) (3.32)

for all 1 < p < oo. In particular, if m € 2N, then &,, belongs to the Gelfand-

Shilov space b:::”l]m (R) ¢f. [15], namely there exist a.b > 0 such that
|8F f(2)| < a* (k) m-DmebllV™ - p ez 2 eR. (3.33)

Proof: We have

|D2Eml o

[A

/ Iel“e 1™ e

1
- ﬂ_r_ n(rx+l}/m Le=n d?f o '—'F( I[l s 1)/?_”) (334)
T
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for all & € Z,, with I'(z) standing for the Gamma function. The Stirling
formula leads to (3.32) for p = 0o
In order to derive L'(R") estimates we need somewhat more subtle argu-

ments. Let |z| > 1. Suppose that o € N, o > 2. In view of the identity
1 o i2E izf 9 95
—0,(e'**) = €', (3.35)
iz

for z # 0, and the fact that £%¢ 1" € C%(R) for @ > 2, we can integrate by

parts twice and obtain

1

{);‘Em(,_.‘-') = =— _Ea‘z(fu _ﬂm) (_ff
“ JR
1 iz m — g
= —;[%g ﬁQ(y(&)e &l H&. (336)

where Q™(€) = a&**((a — 1) — 2|&|™) + m&|E["2*(m|&|™ — (m — 1)). The
integral in (3.36) is convergent near £ = 0 since Q,,(£) is bounded by C|g|~1+™

for |&] < 1 provided « > 1 or a = 0, m > 1. Therefore

|02Em(2)] < WZ i (3.37)
with
co = ﬂ’ﬁr((a—n/?n) (3.38)
s = @r((cwm-n/m) (3.39)
o= zﬂr((num—l)/m) (3.40)
s = —g—%—u["((a—i-m—l)/m). (3.41)

It remains to show that &, € L'(R) if 0 < m < 1. We will use oscillatory
integrals and the Fourier transform of homogeneous distributions (ef. [19]). Let
weOPR),0<pf)<1forfeR p(l)=1if [¢| < 1;suppp C [—2,2]. Set

k=Fk(m)=min{feN: fm>1}. (3.42)
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Evidently k > 1 if m > 1. By the Taylor formula we get

T - = =1r ) -
¢ - Z €™ + 7k (€)
=0
d 1
r‘fn(E} — _k]i);\ E&im"'[ (1 _t}ﬁ-_l_(;—ﬂﬂ‘” df
J0O

which yields the following decomposition

Sm(Z) = S:];a m +2Hm (343)
=0

£L(z) = / e=€(1 - p(e))ee™ ag (3.44)

) = [ etelersie) (3.45)

Hi(2) = %/ﬁ etoe)e)f @, f=1,...,k—1.  (3.46)

We can integrate by parts twice in the integrals in the RHS of (3.44) and (3.45)
and obtain that & (2) = O(|z|™?) as 2 — oo, for j = 1,2. The integration
by parts is not possible in the integrals defining H! (z) since non integrable
singularities of the type Q(|£]717#), i > 0 appear near £ = 0. We will represent
the convergent integrals in the RHS of H!, (z) as sums of two oscillatory integrals

(tempered distributions) with singularities at z = 0. We can write

f Eo(©)lEm dE = / e€]¢m e + f (1 — (€)™ BE(34T)
R R R

The first oscillatory integral in the RHS of (3.47) is the inverse Fourier transform
of the homogeneous Schwartz distribution [£|™, and it is homogeneous of order

—1 — m/, hence
/ ea’z£|§|mt‘. a‘s = m?’|z| l—mr*’.l zE R\O (348)
]

for some ¢ € C, with ¢ = 0 if mé € 2Z, since in that case the LHS
equals (modulo a multiplicative constant) the mé—th derivative of the Dirac
delta function (cf. [19]). The outcome of (3.48) is that the LHS belongs to
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L'(|z| = 1) for all ¢ € Zy, m > 0. As to the second oscillatory integral in the
RHS of (3.48), as (1 — (£))[¢|* is smooth, we can integrate by parts and write

, 5
]R eX1— g™ B = 5 | o (- ple)lE™) B (3.49)

for all z € R\ 0, N € N. Since
igg(lJrIé[)‘”‘”‘fla.?" (A—@@)™)| = My<+4oo  (3.50)

if N = [mf] + 2 ([r] standing for the integer part of r) we get by (3.49) that

‘fn ﬁiz‘f(l == (ﬂ(&))|£|m£ H{ E [z|" S ‘:—12, |ZI 2 1 {351)

1
dth Cy = My | ——————
R L fm L+ JghVr
L*(R) estimates. Standard interpolation arguments conclude the proof of (3.32).

Suppose now that m = 2k, k € N. Then ¢ €1" = ¢ ¢ SE;’;;W"’ (R) by

properties of the Fourier transform in the Gelfand-Shilov spaces (cf. [15], see

d¢ < +oo. This yields the validity of the

also the direct estimates in [4]). The proof is complete.
O

The next theorem derives Gevrey type estimates for the fundamental solu-

tion E,, for all m > 1 which might be of independent interest.

Theorem 3.2 Letm > 1. Then
En € An0-9(5L9) (3.52)
OE, € AYmu0-9(5, L7) (3.53)

for every q € [1,+oc], and we claim that there exist two positive continuous
bounded functions C(q) and D(q), 1 <r < oo, such that

1A

C(q) Bxp m-1y/m(C(q)d),  0>0; (3.54)
C(Q)OExp (m-1ym(C(g)d), 6= 0; (3.55)
D(q) Bxp (m-1ym(D(q)d), 6 >0; (3.56)
D(q)0Exp (m—1y/m(D(q)0), 8> 0, (3.57)

||Em||lfm(1—1f‘?,'i‘?'5

1A

lEﬂ‘»lle(l—l;'q}.-q:*"

[

||8Eln || 1/m+1/m(1-1/q).q:4

[

FjEmllf'm+1,r'm{l—1/q] aid
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where
oo k-1
Exp,(z) = Z TR zeR (3.58)
k=1 ;
for a = 0 while
- 1
Brpo(z) = Y 2 = <1 (3.59)
k=1 =
Proof: One observes that
; 1
3 _ ok A (k) i Q.
BB =8Ete) = Wé‘ rT) t>0z€R (3.60)

for all £ € Z,. Lemma 3.1 and the Stirling formula imply that there exist

continuous positive functions C;(p), j = 0,1, 1 < p < +o0 such that

€N Loy < (Ci(p))HR™, keEN, j=0.1. (3.61)

mn

Hence, combining (3.60), (3.61), we get

. (C;(9)9)
||dJEm ||J.,a‘m(1—1/q}.q:d < (Y ( Z (}J) m—l}/m (362}

which yields the proof of (3.54) and (3.56) in view of (3.59) and (3.59). Similar

arguments lead to (3.55) and (3.0';). The proof is complete.

4 Estimates for the fundamental solution in
the periodic case

Let us consider the fundamental solution EP<7(t,-) in the case 2 = T. We recall

m

an expression for EFe" (1. x) via its Fourier series, namely

BT (t,2) = FO BR(t,€) = Zr:*"‘f—*'f‘ : (4.63)
=
In view of the mean value conditions (1.5) and (1.6) one introduces

1 i m
B (t,0) = P ER (L8 — ) = 5= D €5, (4.64)

77?
£EEND
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Clearly
I EL (¢, z) Z ™ ()" (4.65)
T eezno
and the Parseval identity yields
Io*ER(t, )2 = D *e ",  keN. (4.66)
£€Z\D

We show a discrete analogue to Lemma 3.1.

Lemma 4.1 Let m > 1. Then we can find Cy = Cy(m) such that for every

n €]0, 1] we have

b1
Co
”}.l + l,"eraf_;z’m

o5 Bzt )l < < () g 2tk 50 k € 2,
(4.67)

for 7 =0,1.

Proof. We will give the proof for j =1 (the case j = 0 is easier to deal with).
Since [€] > 1 implies t*|€]F < t*]€]F™ for all £ > 0 we get

g itE het-1 2 2 ft/ 2i(1—un) €] 42/ m+2h ¢ 2he+2
4 <- '— 1] e 5] m
@B < e e pmHikg
EeTNO
1fm
< _—21‘1 1}]|§|”'(r|£| )2k+2.-"m
gez\u
Ly tl}rn} = i ST
— 2t o—2t{1—n}j
€ ﬂ-('_){]_ — ?}.) )2k+2/m ;L
(2?(1 q)‘}m 2k+2/m
- 4 tl/’m
as ?T(2(1 = n))?k +2/m
X W,(2(1 =)t 2k + 2/m) (4.68)
where
Unalrs ) = 3 e (rj™) (4.69)
j=1

We focus on estimating W,,(r; £) for r > 0, { € Z,.

We need an auxiliary assertion.
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ml ,—rz™

Lemma 4.2 Let m > 0, £ = 0, r > 0. Then the function g(z) == z™¢

admits a unique mazimum at z = ((/mr)Y™ and

¢ A%
swpaz) = ()= (5) ¢ (4.70)
=20 r r
Proof: Straightforward calculations lead to
F2) =m™ e (L=v2™), &30

and g'(z) > 0 for z €]0, (£)V™[ and ¢'(2) < 0 if z €](£)"™, +o0[. The proof of
the lemma is complete.
O

Next, we apply the lemma and readily obtain

V() < et Z 1+ Z e—"_?""(_rjm)F

]ijff{:Jl-’r"“ J‘Z{E)lf"l

[A

oo
r—l/rr:{p{f+].};'m€—f +] e (_ryvr:)f' dU
1]

+o¢
— 'ir'_l-"lrm (f{l‘.’-}-]}f\rne £fm s / e Y yf dy)
0

= plm (E-{P'+L}fm(?—? 1 %F(f’f L 1/m)) ; (4.71)
1

Finally, applying (4.71) with r = (2(1 — n)t, ¢ = 2k + 2/m to (4.68) and

using the Stirling formula, we complete the proof of (4.67).

5 Decomposition of the Green function
First we derive Gevrey estimates related to the contribution of the source term
f(t,x) in the case Q = B. We define the Green function G, as Gn,[f](t,-) =
i
f E,(t—s.)* f(s,-)ds.
]
Lemma 5.1 There exists C = 0 depending only on p and m such that
SN [Gm [f]‘ 9,}?)__ 6] S CSEEP (‘-’T-’o—l].’"’\'?t(ca} H.f”;‘:l?,pﬂ
5 2 C"Ea"p{m—l],f'm(C‘s)lﬂze,pﬁz;é (5.72)
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for all f € A®(50; LP?), N € N, § €]0,80[. In particular, letting N — +o00, we

get
GCmlflllops < COELP n1)/m(CO) [ fll2pp /0
+ CEwp m-1)m(COlfbr 1 (5.73)
and
tim 1[Gl fllos = O (5:74)

Proof. We recall the well known property for derivatives of the convolution
F(f*g)=0""fxdg, G =01,k

We have

shpk/m t
(GulfH(t) = == [ (En(t=s)+ fls.)ds,
. S0
6;‘. ._k/m f
= ;' A ak_lfagm(t - & ) * f(‘}?, )) ds,

B /f gl gh/m ((t —8)Hm I En(t—s ‘))
o

({f — S)l;’m 4 Sl,‘fﬂ)fcsr kl
sTf(s, ) ds
dktkjm

L'. !
X3
;/D ((t— s)Um 4 glfmkgr

(t — 5)k=)/m

x ~—— _ gIE (t—s3,-
=) o=
Ta‘_}sj,ﬁ‘nﬁ—'r )
T (s, ds (5.75)

Applying first the Young inequality for the LP(R) norm with 1+1/p = 1/¢+2/p,
1/qg =1—1/p, then a summation from & = 1 to N in (5.75) and changing the

order of summation we get

Sn[G[f1:0.p, ]

A

' 1
? T
(t ﬂ (t — g)L/ml+1/p) 26 d“;) C(p)o
Exp (m—1)/m (C’(p){s) ||f[| 9072

t 1
&
(t A (t — 5)/m(+1/n) 520 ds)

EXD (m—1)/m (C‘I(p){s)lfbg!wg;é (576}

=

+

x
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Since the restrictions on p and m in the case Q@ = Rimply 20 < 1, 1/m(1+1/p) <

1 we have

X 1 . 1
a =
t /U (t — s)/m(+1/p) 520 ds = £ (1 — 5)1/m0-1/p) 520 ds
= B(1-1/m(1+1/p),1—26), (5.77)

B(yt, v) being the Beta function. The proof of (5.72) is complete.
Next, we investigate the source term in the periodic case.

Lemma 5.2 Let 6,7,n > 0, # <7 < 1,0 <n < 1. Then there exists C' =
C(n.7.0) > 0 such that the following estimate holds

SNTIGRTf1:0:0] < T ONFIEY + VTS (5.78)

for all N € N, f € AZ(&), 0 €]0,80], 6 < C'. In particular, letting N — 400,

we obtain

w by < (r T— o5 @ IIZT + 1T (5.79)
and
Lim 77 [fIEF = o (5.80)
Proof. We have
JA b
(Gt = 2k / (Bl — 3,7) % £(s, ) d,
5Lt — s)k-
—_ ______dk JEi —
(5 s

—c’Pf(s ‘) ds. (5.81)
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Choosing 1 €], 1[ and applying (4.67) for j = 0 we get

k ot he—j+1 ghk—j
. Ch—i+1gk—i
o sy ~(—8)(t—s) —(r—0)a__ & O
U < 32 [ et
i
w8
x |l Ta’ffs-.'))llmdé’ (5.82)
A-
Crk ;+1§L i
< m Z(l _n .ic J+1/(2m)
(ifsj
X sup (Ilc 1 )Ilp) (5.83)
a2 Jg:

where

B ( ) ( 1 e—p(t—.‘!}ﬁ—uﬁ
m M, V) = sup e | LR
Hi f}}] ]ﬂ (i- — S).mm} )

Then we conclude as in the previous lemma
O

Similarly to the arguments in Lemma 5.2 (applied for the L? norm) we get

_ ) ;
Sy[GLf1;8] < Baln—6,7 - N T—n—cs W4

C
+ B0 75T (5.84)

The proot of the lemma is complete.

The next assertion is the first crucial step in deriving the analytic-Gevrey

estimates for large 1.

Lemma 5.3 Letd > 0, k € N. € €]0,1[. Then

Jk'tk/'m

0k Gulu)(,2) = NE™ul(ta) + RE Lt e),  (5.89)
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where

NEM)(t, )

Il

{(1-£)t ghgkim
fn / :Ut—s, (ht1)/m

X sﬁ*"(m-”—m) u?(s,y) dyds, (5.86)
RPlu)(t.x) = Ryglul + Pllul(t, ) + QF°ul(t, z), (5.87)
t 1/m k k
by e . t )
Riolul(t.z) = /__ ] (f_.,.)um_i_qum) E\(t — s)D/m
X E(H”{m)u s,y) dyds, (5.88)
k k
=4 B tlfm 5;‘_&
Pk {15]“,33) = ;/(‘I—E)t-/lk ((t__s)l{m _i_sl,"m) (A‘-—a)!(t—s)w"‘
o qoefmm

s T —1 4%s G -
x & +1)((t_$)im}u(s,-y) ] dyuls,y) dyds, (5.89)

=1 . £ $14m g gha
Qk' {u](t- x) = ;]{I -—E)L]TR ((t =2 s)lfm + q]{'m) (k = U‘}r(f = S}l)fm

=y } 5&1 g™ fm

(k—a+1)
x rE:"m ((t - 5)1,"::1 = O:I! J;:-; (" U)
Fa—oi 8(0—01]/1:; )
—— ;M uls, y) dyds 5.6
* Tla—a) 0 uls,y) dyds, (5.90)
with the convention Q5°[u] = 0 if k = 1.
Proof: We have
k.{.k m
{Flu]}(t,z) = i (G pluu,](t, x))
= {Flu} (t,2) + {Flu]}}a(t.2), (5.91)
where
a‘ﬁ-rﬁ:-"’nr (1—e)t
{F'[u] fl(t,:.!:) tes [ [ IHLE, (t — 5,7 — y)u’(s.y) dyds

dkff\,fm r—y
(k+1) 2( 0 4 '
/ f k' =) (Hl)m&n ((f_s)um)u (s,y) dyds
=§I

(5.92)
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and

r_l/’m ke 6&:—:1
{F[ f T:) Z/ r)t./ ( t— S}l{m + S]{m) (;‘- = (}‘)I(f = S)l}{m

a=0
T — y 5(1.&.”;']:”.

(k—a+1) - =
% &Y ((t— 7l dy(u(s,y)) dyds. (5.93)
The Leibnitz rule leads to
1 1 a—1
a'51;,.*(u2) = 2u_Oju+ Z 8’1; a“ u (5.94)
for v = 2. Combining (5.93) and (5.94), we get (5.87), (5.89), and (5.90).
O

We define C§°(L?) as the set of all Cy(L") such that
sup (tmt?)|ecult, Mw) < +oo, a€Z,. (5.95)

The next assertion plays a erucial role in the proof of global in time uniform

spatial analytic regularity of solutions to the IVP for (0 = R.

Proposition 5.4 Let ue C;*(L?), p =2, g=p/(p—1). Then

SN[Gom[utta], 6,p,8] < C*(q)de™" Bapn(Clq)de™")|ullf,

1- 1 d ‘
x s (1= 8)/m(+i/n g2 &
+2 5 " v 5
+ C%q) 1_¢ Ezp.(C(q) 1 E}luﬁ!p;a

1 5
1
s /l"i (1 — S)l,']fm.p)smg dS

. : 1
+ (C{G‘) l[uello,Lr ‘/(1_5) (t — s)/m(+1/p) 520 ds)
S&[u; 8, LP]
1
+ (Cg((})df‘ﬂ?pm(c Q)o) f (1) {l )L;m[] +1/p) .,23 d‘;)
X (S%_y[u:8.0.L"))? 5.96
N-1
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foralle € [0,1[, N € N, 6 > 0. In particular. we can find &0 €]0, 1], such that

|
3 1 :
Bl OE(Q)||M||9‘LP/{_,, mmds <1/2, g €[0,g0). (5.97)

Proof: First, we observe that u € Cg°(LP) iff Sy[u;6,p,0] < +oc for all
4 >0, n € N. Next, we estimate the L” norm of the LHS by the L” norms of
(5.86), (5.88), (5.89), (5.90). The summation from k& = 1 to N and standard
combinatorial arguments lead to proof of (5.96).

O

In the periodic case we do not need the decomposition of G, [uu,] in view

of the exponential decay property. We have

Proposition 5.5 Let n €]0,1[, # €]0,n]. Then there exists Co > 0 such that

" Cod
SP[Gluu,);8,6] < UC‘ M(SF?, [u;0,6])? (5.98)
for all § €]0,Cy ', N € N, where
i e 8)(t—s) —6‘

Proof: We derive (5.98) and (5.99) by straightforward estimates of the L*(T)
norm of the LHS by (5.86) for @ = T, taking into account that 0 < § < n < 1.
O

6 Proof of the main results

The estimates in section 5 allow us to propose simultaneous proofs of the two
main theorems.

We reduce in a standard way the IVP to the integral equation

u= U, z) + G, (6.100)
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where
Ut,2) = En(t,-) *u’z) + G.lf](t ). (6.101)

Let Q@ =R. We fix £ €]0, g¢[ satisfying (5.97). Then in view of (6.100), the local
in time regularity in x and (5.96) combined with bootstrap type arguments lead

to the existence of (' > 0 such that

SN['H.} lq_\ s 5]

. / Iﬂ,p:d T C'd"{ilg__p;a
+ C(Sy_1[u; 6,p,d])? (6.102)

for all N € N, 0 < 4 < 1 with the convention
So[u;0,p,0] = U5+ Colds 5. (6.103)

Similarly, if Q@ = T we obtain, using Proposition 5.5, that one can find C' > 0

such that
SiPlu;0,8] < WYT+C(Sxti[u;6,0]) (6.104)
for N € N, § > 0, where
S57P(u;8,8] = WRT. (6.105)

We have the freedom to choose § > 0 small enough and we observe that for
0 < § < 1 the Picard type iteration inequalities (6.102) (respectively, (6.105))

imply that

sup Sy[u; 0, p, 6] =y, s < +00 (6.106)
NeN

(respectively,
sup Sy"[w; 0,6] =l < +o0). (6.107)
NeN '

Therefore Theorem 2.1 (respectively, Theorem 2.2) is proved.
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Remark 6.1 We can show global in time estimates on pp,(t) for solutions to
some evolution equations with conservative terms but with non homogeneous
dissipative parts, like generalizalions of Kuramoto-Sivashinski equations (see
[2]. [4] and the references therein). However the validity of (1.9) remains an

open problem for such equalions.
7 Sharp estimates on the radius of the analyt-
icity for Burgers’ equation

The aim of this section is to investigate the spatial analyticity of some explicit
solutions to Burgers' equation. We recall that by the Hopf-Cole formula the
solution to the IVP

O+ 3 (u?/2) — Upe = 0, reR, t>0

w(0,2) = wup(x), reR (7.108)
is given by
ut,z) = —20,(lnv(t,z)) = —2% t>0,zeR (7.109)
v(t,x) = ﬁ ['; (__I_r.x;:,}'-l v(y) dy, t>0relR (7.110)
where
voly) = €W, Us(y) = uo(y) (7.111)

satisfying Us(y) = o(y?) as y — oc. We recall the well known fact that in that
case v(f, 2) = ey extends to an entire function in x € C for positive times.
Hence, the question of the radius of the analyticity p(t) is reduced to the study

of the zero(s) of the entire function v(t, ), x € C for t > 0, namely

p(t) = min{|[Imz(t)|;z € C, v(t, z) =0}, t>0. (7.112)
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We choose 1" to be a multiple of the Dirac function massed at the origin, i.e.,
wy = ed(x), ce R\ 0. (7.113)
We introduce the function

I e 5
D(z) = ~/ e ¥ dy, z€R. (7.114)

m
Straightforward arguments imply that D(z) is an entire function in C, 0 <
D(&) < 1, £ € R, and for every pu €] — oo, —1[]0, +oc| one can find o = a(u)
such that

D(z)4+pu # 0, z€C, |Imz| <o (7.115)
We have

Proposition 7.1 Let u(t,xz) be the solution of the IVP (7.108) for Burgers’
equation defined by (7.109) with initial data ue given by (7.113). Then there
exists at most one evceptional value ¢g € R, ¢q # 0, such that the entire function
D(z) + (e = 1)1 £ 0, z € C, i.e., the set N, of all = € C satisfying D(z) +
(e = 1)7' =0 is empty iff ¢ = co. Moreover, u(t,x) extends to a holomorphic
function in the strip |Imx| < 2d./7t provided N. # 0, where

d. = inf{|Imz|; z € N.}. (7.116)

We note that d. > 0 because of (7.115). Finally, if N. # 0 and t > 0, the
function u(t,x) extends as a meromorphic function with single poles at © =
26.V/7t. ke € N..

Proof. We choose as a primitive function U°(y) = cH(y), where H(y) stands
for the Heaviside function. Then we have

Lf-:lfnfecy(y) iy

v(t, z)

1 ¥
— I &
m/ﬁ/m

- = j” =T g,
oyt s Y

e 1 ]+3€3 P__(ac:fy)2d (7 11?)
"2yt Jo ’ Y )
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Combining (7.117) with the definition of D(z) we rewrite v as follows:

+o0

v(t,z) = 1+(e°—1)—= e dy
\/~ —ﬂ“r‘(Z\/_)
= T —1 7.118
+(E = DD(—57=) (r.118)
whence R, ¢# 0. Thus v(f,z) =0fort > 0, x € Ciff
J+(ee=1)"" = 0. (7.119)

2v’_

Since D(z) is not a polynomial the existence of at most one ¢, follows from
the great Picard theorem in complex analysis (e.g., cf. [22]). We note that
(e°—1)"' > 0if ¢ > 0 while (¢ — 1)~ < —1 when ¢ < 0. In view of (7.115),
(7.118), (7.119), (7.111) and the definition of d, the proof is complete.

Remark 7.2 One can investigate the spatial analyticity of particular family
of weak solutions (used in [12] for non-uniqueness in H*(R), s < —1/2) and
obtain somewhat surprising different from (1.10) asymptotic behavior of pp,(t)

fort — +oc. More precisely. let

i a ;p."{"r_-(tg .I‘)
Uy aT — —2 1;1 © -,.' — '_‘_".‘_'._ f 5 ]R
Ht{f, 'I} d 11{1 + v (f 'I,)) = 'L‘,;(t,.’!,‘) >0,r €
Uy (T = € = t 0 R
'.g 0 it 5 = ,.'I.' E

where ¢ s a positive constant. For each ¢ > 0 the function u. solves Burgers’
equation for t > 0, u € C([0,4oc[: HY?#(R)), € > 0 and u(0,-) = 0 in a
weak sense cf. [12]. Then we can prove that

lim Plu (V)
t—+oo /t1lnt

pe>0 (7.120)
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