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A GEOMETRIC SUFFICIENT CONDITION FOR

EXISTENCE OF STABLE TRANSITION LAYERS
FOR SOME REACTION-DIFFUSION EQUATIONS

Arnaldo Simal do Nascimento Janete Crema *

Abstract
Given a finite number of suitably distributed hypersurfaces in a bounded

domain, we show how the spatial heterogeneities of a reaction-diffusion
problem should depend on the geometry of the hypersurfaces in order to
give rise to a one-parameter family of layered stable stationary solutions.
These solutions in turn develop internal transition layers and have each
hypersurface as an interface separating the regions where the solution is
close to different constant equilibria.

1 Introduction

The main concern in this paper is the issue of how spatial heterogeneities in
some reaction-diffusion equations can give rise to stable spatially heterogeneous
stationary solutions.

Specifically we will consider diffusion processes governed by the following
evolution problem:
dv. 2 1 A 1o ] +
B¢ =°¢ div (a(2)Vuv: )+ f(z,v.), (f,2) e RT xQ
v.(0,1) = ¢p(x), T€N (1.1)
% =0, (t,2) e RT x 90
where ¢ is a small positive parameter, @ C RY (N > 2) is a smooth bounded
domain . the inward normal to J9 and a is a strictly positive function in
C*(9).

*The first author was supported by CNPq.
Key words. reaction-diffusion system, internal transition layer, equal-area condition.
AMS subject elassifications. 35B25, 35B35, 35K57, 35R35.



http://doi.org/10.21711/231766362004/rmc274

54 A. S. DO NASCIMENTO J. CREMA

Given an arbitrary smooth hypersurface S € £ without boundary, we es-
tablish sufficient conditions on the difusibility function a(x), the reaction term
flz,+) and the geometry of S so that (1.1) possesses a stable stationary solution
which develops internal transition layer, as £ — 0, with interface S.

The reaction term f € C*(Q x IR) is required to satisfy the following hy-

potheses:

(fi) There exist constants a and 3 and a function # € C(Q) satisfying o <
B(x) < 3, f(z,a) = f(z,8) = f(z)) =0and f.(z,a) <0, f(z,0) <
0, Vo € Q.

(f2) _j'f flz,£)dE =0 (the equal-area condition)

and [7 f(z,€)dé <0, Vv € (a,3), Vo e

(fs) There exist constants a, b e ¢ such that |f(r,u)| < a+blu|” with 1 <o <

FEfN>3and1<o<xif N=2.

In order to put our work into perspective we set

Flz,0) ™ ~ [ (o, €)d

which, by virtue of (f2), is positive in (a, 3) for Vo € © and define the positive

function

h(z) & q12(z) / ® P2 £)de.

Also let S € Q be a smooth compact hypersurface without boundary with
principal curvatures at y € S denoted by ki(y) (i = 1,...,N — 1), mean
curvature by H(y) and the inward normal vector field to S by v. Given a point
y € S, written in the local representation of S as y = (y', p(y')) for some smooth
function , y € RY and small § we set

N-1

A, 8) ¥ by + ov(y)) T[ (1 —drily).

i=1

Suppose that for each y € S fixed, § = 0 is a strict local minimum of A.
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Then we prove that (1.1) possesses a family of stable stationary solutions
{v-} which develops internal transition layers, as ¢ — 0, with interface S sepa-
rating € in two regions €2, and £25. Moreover v. converges uniformly in compact
sets of Q, (23) to a (F). A similar result is easily obtained for a finite number
of nested hypersurfaces and in this case the solution will be referred to as a
multiple-layer pattern.

The assumption that § = 0 is a strict local minimum of A has a geometric

meaning. Indeed by setting, for each y = (y', (y')) € S,
A(8) = h(y + dv(y))

a straightforward computation shows that a sufficient condition for this hypoth-

esis to hold is

X(©0) = 2h()H() (12)
N'0) > hWLY £3)+ (¥ - 17H ) (1.3)

Conditions (1.2) and (1.3) are simpler in two-dimensional domains. Indeed
suppose N = 2 and S = ~(s) is a smooth simple closed curve in £ whose signed
curvature is denoted by x(s), 0 < s < L, L being its total arc-length. Then
(1.2) and (1.3} become

N(O) = hiv(s))k(s), ¥sel0,L) (1.4)

M) > 2h(y(s))k*(s), Vs€[0,L) (1.5)

In this case (1.4) and (1.5) conform with the conditions obtained in [1] and [2],
where S = ~(s) was assumed to be a level-curve of h. This hypothesis has been
dropped here.

Note that as s increases the slope of A(d) at 0 = 0 will change sign whenever
k(s) does, while its positive concavity increases with the curvature of . Also
at those points (s) where x(s) = 0 (saddle or planar points), A(d) will have a

local strict minimum at § = 0.



56 A. S. DO NASCIMENTO J. CREMA

We know from [4] that the equal-area condition in (fs) i8 a necessary hy-
pothesis for the existence of a family of stationary solutions to (1.1) developing
internal transition layer as will be the case here.

Note that it is not required that e, #(x) and 3 be consecutive zeros of
f(x,). Indeed there may be other zeros of f(r,-) lying between o and 3 for
which the equal-area condition may hold. However it is required through the
second assumption in (fy) that F(x,v) satisfies F(x,a) = F(xz,5) = 0 and
F(z,v) > 0 for v € (e, ), in other words, F'(x,-) is a double-well potential in
[ev, 3.

As for hypothesis (f3) it is required only because for a technical reason we
need the corresponding energy functional to be C''.

Throughout this work we will refer to spatially heterogeneous stable station-
ary solutions to (1.1) as patterns, for short.

For scalar equations like the one being considered, patterns can be created
either through nonconvexity of the domain or spatial heterogeneities.

The question of how spatial heterogeneities can give rise to patterns has
been subject of research for quite some time.

For the one-dimensional case when f(x,v) = f(v) is close to a piece-wise
constant function the existence of pattern induced by the function a was con-
sidered in [6] and [7].

In [3] this question was addressed for the case in which Q is the unit N-
dimensional ball, a a radially symmetric function and f(x,v) = f(v).

The existence of multiple-layer pattern for (1.1) was also considered in [11]
for the case Q@ = [0,1], @ = 0, # = 1 and the reaction term takes the form
v(1 —v)[v —(1/2 + aye + o(£?))] with a;=constant.

The results of [11] was generalized in [2] to the case in which € is a smooth
arbitrary two-dimensional domain, f(z,v;) = hao(x)v(1—v)(v—7(z,£)), where
Y(r,e) = 1/2+ g.(x) with g.(z) = o(s) as £ — 0, uniformly in Q and the nested
curves S; (i = 1.....m)) were assumed to be level curves of the function
(ahy)'/2.

Although we do not care here, the reaction term f might have been allowed
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to depend on £ in an appropriate manuer so as to generalize the results of [2].
Our approach gives existence, stability and the geometrical structure of pat-

terns for (1.1) simultaneously and the method of proof is based on I'-convergence.

2 Preliminaries on BV -functions

Before proving the main result we recall some notation on measures and
results on functions of bounded variation. The reader is referred to [12] for
further background. The Lebesgue measure in IRY is denoted by £ and the
m-dimensional Hausdorff measure by H™.

If 1 is a Borel measure on © with values in [0, +-oc[ or in RN, N > 1, its total
variations is denoted by |u| and the integral of a |u|-integrable function f will
be denoted by [, flu]. The space BV(Q) of functions of bounded variation in
) is defined as the set of all functions v € L'(€2) whose distributional gradient

Dv is a Radon measure with bounded total variation in Q, i.e.,

[Dv|(92) = sup / v(z)dive(z) dL < oc.
o & OO, RY)
lo] <1

If v € W, then the total variation measure satisfies |Dv| = £ L |Vv], i.e.,
| Dv| = |Vu|dL, where V denotes the usual gradient.

We denote by BV(€; {«. 3}) the class of all w € BV(£2) which take values
a, /3 only.

The essential boundary of a set E ¢ RV is the set d.F of all points in
where E has neither density 1 nor density 0. If a set £ C © has finite perimeter
in Q then d,F is rectifiable, and we may endow it with a measure theoretic

normal vg so that the measure derivative Dyp is represented as
Dyg(B) = [:fngHN_l
Brd.E
for every Borel set B C €. A Borel set B C IR" has finite perimeter in the open
set € if
Perg(B) = |Dxs|(92) < oo,
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where yg is the characteristic function of B.
The following version of the coarea formmla will be often used. Let v €

BV (£) and suppose that f is a continuous function in Q. Then there holds

] N N-1
]ﬂ £1Dv| = /M o £

Definition 2.1 A family {E®}ozz<sy 0f real-extended functionals defined in

LY(Q) is said to D-lower converge, as € — 0, to a functional E°, and we write
rLy) ) — lim E*(v) = E°(v)
~ For each v € L*(Q) and for any sequence {v.} in L'(82) such that v, — v
in L), as ¢ — 0, there holds
E%(v) <lim inf E*(v.).

~ For each v € LY(Q) there is a sequence {w.} in L'(Q) such that w. — v
in L'(9)), as £ — 0 and also E"(v) > limsup,_, E°(w,).

Definition 2.2 We say that vo € L'(2) is an L*-local minimiser of E° if there
is p > 0 such that

E°(wy) < E°(v) whenever 0 < ||v — |l < p .

Moreover if E°(vg) < E°(v) for 0 < ||[v — w11y < p. then v is called an

isolated L'-local minimiser of E°.

The following theorem in its abstract version is due to De Giorgi and version

we need here can be found in [9].

Theorem 2.3 Suppose that a family of real-extended functionals { E<}, I'-lower
converges, as £ — 0, to a real-extended functional E® and the following hypothe-

ses are satisfied:
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(2.3.1) Any sequence {u.}owo such that E*(u.) < constant < oo, is compact in
LY(9).

(2.3.i1) There exists an isolated L'-local minimiser vy of E°.

Then there exists e > 0 and a family {v:}oce<zy such that ve is an Ly-local

minimiser of E° and |lv. — vol|py) — 0, as £ — 0.

What follows has to do with the local representation of a smooth hypersur-
face S. Trying to reach a broader readership we decide not to use the language
of local charts and atlas for compact imbedded submanifolds of R" and present
instead a self-contained argument.

Given a C* hypersurface S a change of coordinates = can be defined which
straightens portions of S. Indeed if y € S then by a rotation and a translation
of coordinates we may assume that y is the origin of the system and that the
internal normal v(y) to S at y lies in the direction of the positive  y-coordinate
axis.

Let T5(y) denote the hyperplane tangent to S at y. Then there is a neigh-
borhood V(y) of y in RY and a function ¢ € C?(VNTs(y)) such that by setting

SnV(y) = {(wyn). yn = oy}

Since S is compact, there are finitely many points, say, y € S(k=1,... , K)
such that UK (S 1 V(yx)) is a covering of S. Of course, for each y; there will
be a function ;. for which the above local representation of S holds. However
for simplicity we will drop the subindex k. thus writing only ¢, regardless of
the neighborhood S M V(y;) it represents.

Let §(x) = dist(x, S) stand for the usual signed distance function which is
positive inside the open region enclosed by S and negative outside that region.

Also define a tubular neighborhood of S by

N5, (S)={z € Q: |d(x)| < do}
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where & is taken small enough so that § € C?*(Ng,). For each x € Ny, there
exits a unique point y = y(x) € S such that [y — x| = d(x).
These two points are related by © = y + v(y)d(x). For any & such that
0<d<d we set
I % (—4,4).

For a fixed y. € S, k€ {1,... , K}, define a mapping
E: (Ts(yw) N V(1)) x I, — RY

by E(yr,6) = (y1, e(y)) + vyt e(yr))-
The orthogonal projection of S N V(i) onto Ts(y) will be denoted by Ts(y)

and in general is strictly contained in Ts(yx) N V(yx). By setting
E(Ts(y) * Iss) = Clus)

then = defines a diffeomorphism between Ts(yy) % I, and C(yi) = (y7, o(y1)) +
v(y)d, for yt e Ts(y,..) and o € Iy,.

Clearly by taking §, smaller if necessary we have Nj,(S) € UK, C(yx).

The underlying theorem used in our approach will depend on a suitable
disjoint covering of Ns, which, for the sake of brevity we rather define at this
point and work with it from now on.

So let us define a new mutually disjoint family of sets by putting C), =
Cly) (k=1,... .K) and

Wi = Crand Wi = Ci\ {UzlCs} (k=2,...,K).

It follows that W; N W; is empty for i # j and N (S) = U W
Let
Wi € 27N (W) = My x I,

where M. C f‘s(yk) is such that 9M,, is HY? -a.e. smooth.
Unless otherwise said, we use “tilde” to denote a function, a set, a measure,

ete., in the new coordinates.
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If ky,... . k- denote the principal curvatures of S at (y/, (y/)) and Z(yr, §) =

r, then the Jacobian matrix of Z is given by
(DE)(yr,6) = diag [l — k1d,... . 1 — Ky_16, 1]

and its determinant by
_ N—1
J=(yr,0) = ] (1 = syt o(yr))d) (2.1)

=1

for (yt,d) € Wi, k=1,... K. For &, sufficiently small there holds that Jz > 0.

For v € BV(Q). we set from now on

v o on R I o
d{j] VR (I',]y;\r 1 By = a5 -

p=Dv, fu=

The next lemma plays an important role in the proof of the main result and

the reader is referred to [2] for the proof.

Lemma 2.4 With this notation let v € BV (W), (k = 1,... . K). Then, for
any Borel set B C Wy, we have

N
I;f-I(B)Z(Z |:l(B))*)"2.

3 Main Result

For the sake of simplicity we first state our main result for just one hypersurface
and afterwards treat the general case.

Let S € £ be a compact smooth hypersurface without boundary that par-
tition € in two open sets 2, and Q5. We may suppose that 99, = S. Thus
Q=0Q,US5UQ,.

For future reference we consider the following function
Vo = axo, + Axa, (3.1)

where x4 stands for the characteristic function of the set A.
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Once S is fixed we take a disjoint covering Wy (k = 1.... . K) of N;,(S5) as
above and recall that Wy, = Z-1(W},) = My x I,.

As mentioned before any function ¢ defined on W, is denoted in the new
variable by § = go =.

Note that for y € S, y = (g, p(yr)) = Z(y,0), J=(y,0) =1 and g(y/,0) =

9()-
Recall that Nj,(S)=U[_, W, is the tubular neighborhood of S.

Theorem 3.1 Regarding (1.1), set
; 3 ?
h(z) & a'?(x) f FY2(g.6)de, z€Q (3.2)

and consider the hypersurface S with the notation as above. Let

N-1

AW 8) = T(y,) TT (1 - xly)d)

j=1

and suppose that for each fized y', § = 0 is a strict local minimum of A(y', ),

i.e.. for &g sufficiently small
Ay, 8) > Ay, 0) = h(y',0) = h(y), § € 5,0 #£ 0 (3.3)

Then foreq small enough, there is a family {v:}o .., of stationary solutions
of (1.1) such that for any e € (0,£p) :

(3.1i) 0. €C*(Q),0<o <1 and a<v.(zx)<B3, V€.
(3.1.ii) [Jve — vollLr(ey =20, where vy is given by (3.1).

(3.1iil) Fori € {a, 3} and for any compact set C' C € it holds that v. — i

uniformly on C' as £ — 0.
(3.1.1v) v. is a stable stationary solution of (1.1).

Remark 3.2 As mentioned in the Introduction if (1.2) and (1.3) are assumed
then (3.3) holds.
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4 Proof of Theorem 3.1

We start by setting up a suitable scenario in which the proof of Theorem 3.1
will be naturally cast into.
A stationary solution of (1.1) is a solution which satisfies the following
boundary value problem:

{ 2 div [a(x)Vuv] + flz, ) =0, 2€Q

Vu(z)-A(x)=0, for z€ . 1)

Next we define a family of functionals E° : L'(Q) — R U {oc} by:

g (_{I‘):{L (E ‘12(“’"':) Vol + ' Fa, 1.-)) dx, ifve H'(Q) )

o0, otherwise.

It is easy to see that any local minimiser v. of E* will be a weak solution to
(4.1) and, by regularity, v. € C**(Q), 0 < v < 1.

At this point we truncate the functions f in the following manner

flz,v), for a<v< g (4.3)

folz,a)(v—a), for —0<v<a
fe(z,v) = {
folz, B)(v—03), for B <v <00

We need this in order to conclude that the solutions been sought lie between
a and 3. By replacing f with f. in F we define F, and replacing F' with F, in
E* we accordingly define E7.

Remark that | f.(z,v)| € a|v|+b, hence F.(z. ) has quadratic growth and as
such EZ is well defined and in fact it is a C'" functional on H'(€2). Any critical
point of EZ is a weak solution (in the H'-sense) of the following boundary value

problem

2 div [a(z)Ve.] + folz,v.) =0, 2€Q
Vue(z) ni(x) =0, for xedf

It is our aim now to find a family of local minimisers of £ .
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Theorem 4.1
I(L}Q)") ~ lim BE(v) = EY(v)
where

F9(0) — { [ﬂ W) [Dxpep it ve BV(Q,{a,8}) )

oo, otherwise.
Proof: In view of (f,) and (fy) and setting o F, . then

F.(z,0) = F.(z,8) =0, F.(z,v)eC?

F.z,v) >0 forany veR, v#a, v#£0 (4.6)
Foloa) =F. 8 =0 '
Foo(z, @) > 0, F (z,5) >0

Now with these hypotheses, the proof of Theorem 2 [8], applies ipsis litteris.
O
Owr goal now is to apply Theorem 2.3 to ES and E”. This will be accom-
plished by generalizing the argument given in [9] where the case N = 2, a = 1
and f(x,v) =v — v? was considered.
Since our next result is local in nature, given S C Q a C'%-hypersurface we
will use the same notation set forth in Section 3 with 2 replaced with N, (S)
so that N5, (5) =Q.USUQs.

Theorem 4.2 Suppose that (3.3) holds. Then with the nolation above,
vol®) “a Xa.(®) + B xa,(r), x € N5l(S)
is an L'-local isolated minimiser of EY defined by (4.5).

Proof: Since the argument and the coordinates are local, a proof will be ren-
dered first for any Wi, i € {1,...,K}, then for Ny (S) = UK, W;. Hence
throughout the proof we restrict vy to W; and keep the same notation.

It suffices to prove that, if v € BV (Wi {a,3}) fori € {1,...,K} and
0 < [|[v —wollLrow,) < pi, for a suitable p; > 0, then [y, h|Dv| > [y h|Dwy|.
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We will say that v is an admissible function in W; if v € BV (W;; {«, 3})
and ||v — vollpiw,y > 0 with 0 < |[{v = 8} < |W;|. Therefore for an ad-
missible function v we will often make use of the fact that |Dv| = H¥"! L
(W;n{6,v=a}n{dw=7}).

For future use. for any 4 € /5, we further denote a slice of W, with height 4§
by

Wi M, x {5} and W < Z(W).
Using the coarea formula, and the fact that W; N a.{v, > &} = WP, for € €

(e, 3), we compute EP(vg) as follows:

e N-1{.,
/lt" L “)TJUI - /—oo ./':‘L",-ﬁa.{m>£} his (.’1)(1{

A N-1y, R . Tl N-1
/ /;{__?z,. dHY Y (2)dE = (B — ) ﬂ Bl 0)aH~ .

Ef (vo)

Il

The trace of ¥(-, d) is well defined on lx'"f._ for a.e. din Is,. In order to accomplish
our goal we will separate the admissible functions in four distinet classes of
functions in W;. First we suppose that
(i) ¥ = @i on W UW,® in the sense of traces, for some 4 € (/2, o).

Thus for any admissible function v we have:

N

f h |Du| > /,U R (Y 15;1%)Y%) (by Lemma (2.4))
W, A
[ Bliin]
JW
o
/ﬁ‘ Ah9) ‘%‘
/' A 0) |22 by (3.3) and (i)
Jig AT | gg| ARYRRS) B

(8 —a) ﬁ Ry 0)aH¥ " by (i)
Bw).

E¢(v)

Y

v

(by the definition of jiy)

W

[V

[l

Notice that the above strict inequality is possible not only by virtue of (3.3) but

also because (i) implies that the total variation measure g—g is not identically

Zero.
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Now if (i) does not hold then at least one of the following cases must occur
in the sense of traces of BV-functions:
(ii) T is not constant H¥'-a.e. on W} , for a.e. & € (80/2, bo).
(iiii) ¥ is not constant H¥-a.e. on W, ° | for ae. d € (6/2, &o).
(iv) 7= a, ¥ -ae. on W and = 3, HV""-a.e. on W, Next, for p; > 0

(to be specified later), we define a set A C (0,4q) by
6 € (0,00) :

( ﬂ |5 — TolJz dHN 1 + [H__ 15— TolJe dHV™Y) > (4p:/0)
Jwg Jw#

Hence |A| < (6/4) if p; > [|v — V|| w;) > 0. Also we define the following

A def

positive number,

JE,ﬁn = {]d%f) ]Df {JE(:U"F' o) 1 Js(y"f _6}} e

00 |.{,r:5

If (iv) holds then by choosing
0 < %{50 (8 — ) HY= (M) J=z0}
we obtain
ﬁ{? 15— B0 J= dHY ! + A_{_o_ & — B J= dHN ! =

208 —a) HYN Y M;) J=g, > (4p:/).

Thus if (iv) holds then necessarily 4 € A. Hence for a.e. & € (6o/2, do)\A

either (ii) or (iii) holds. Resorting to Lemma 2.4 we obtain

. N 1/2
E) > | hCIEP) 2

WilUier;, , W)

h |Dv| + /
)

MiXi5a 2

h|Dv| + / g (2

MyxIsy/a 9]

./uz- MUsery, 1y Wiy
where I; and I, denote the first and second integrals respectively in the last
term of the above inequalities .

Next we will be working toward finding a lower bound for [, ;7 = 1,2.
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Actually since v € BV(W;, {«. }) if (ii) holds then for a.e. § € (dy/2, dy)

the set W2 Nd.{v = a} Nd.{v = B} € R¥" is rectifiable and satisfies
Per s @{v=a}nafv=p5}) > 0. (4.7)

A similar remark applies if (iii) holds. This fact will be used to estimate ;.
Further, for the sake of simplification we set in the original variables 927 dof
9.{v = a}nd,{v =8}, and in the new variables 3°:% < 9,{7 = a}nd.{p = 3}.
Also define

7 S min{A(y, ), (yno)eW,,ie{l,... K}}
and J5, o % (60/2, 80)\A.

Therefore

I

v

L h Aok

ieds A [H.:lm_,l].‘;i_d}na‘it])‘f}
= (8-a) (f
UdE'Jé“_&
= (8—a) [ o .
se &{Hri",“ul'r;‘ﬁ)ma:’ i
T(j = O‘) f L B dHN_l
§EJ5,. A {!4"ful-i»'r_—5 ez it

é—a) (/J; & ( /{wauﬁ——%ng« o da)

(by the coarea formula in a rectifiable set)

(8- a) fJ » Per s i-,0% b

h dH" ! (:c,))

(Wiuw; " nag#

A dHN_l)

IV

v

It turns out that the mapping § — Per a7+8 is integrable. See

(WBUIW %)%
[12]. for instance. Setting for simplicity

M(bo, A) fJ Per s iy d8

[N

we then conclude using (4.7) that I} > 7(3 — a)M(dg. A) > 0.

Now in order to obtain a lower estimate for I3, note that since

(0, 80/2)\A| > (do/4)
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and T € BV (W;; {a, }), there is 3 € (0,8,/2)\A such that (y2,8) and (y1,—3)
are points of approximate continuity of © | for a.e. y/ € M,.

It follows from the definition of ¥, that
[5(yr, 0) — B(y!, —6)| = (B — a) — {(|T% — T|(y, 6) + |T — T|(y/. —6)}

for any (y/,d) € W; such that 7 is approximately continuous at (y/,4). In the
sequel we set fiyy = max{h(z). = € Q}.
Therefore using (3.3), the above inequality and results about essential vari-

ation, it follows that

ov
L = ./,-u,-x;éwA a0
> / / i h(yr.0) il (by Fubini’s theorem)
= M; J—dp/2 : 66 N
- [A 1, 0) ess V23L% [y, )| dH " ()
> [ Ty, 0)[5(yt, §) — 5(yr, —8)|dH ()
JM;

IV

(5 - a) ﬂ By, 0)aHN ! (y)

Biag { ﬁw |5 — ToldHN " (1)) + ]ﬁ o — -ﬁ0|rm”—l(y;)}

i

4 pi hy
{Ec: ('UU) M a}’j}fﬁi} 3

Y

where the fact that 0 € A has been used. Altogether these estimates vield

Elv) > h+1D

{T(ﬁ —a)M;(, A) — M

50 JE‘IS[I

I

+ EE('{.JQJ} 5

Now in order to have E?(v) > E°(vo) it suffices to choose p; such that

T vMa(‘Su-. A)

N-1lgars
2}&1\.‘( ' L {‘111}}

ot
pi < 50(;'3’ — a)Jz s, min {

where i € {1,... , K}
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Finally we take v € BV (Ny; {a,3}) with 0 < [lv — vollL1(n,,) < p, where
p=min{p; , i=1,...,K}. Now v is no longer restricted to W;. By repeating
above procedure on each W; (j = 1,... , K) with p; replaced with p and using
the property that the covering W; (j = 1,...,K) of Nj,(S) is disjoint along

with the fact that the measure |Duy| is supported in S, we conclude that

/ h|Du| > f
Ny (8 Ny

h | Duyg|.
(i 5)
This establishes the proof.

O

Lemma 4.3 There is a family {v:}oc-<-, of L'-local minimisers of E; such
that v. € C** 0 < v < 1, is a classical solution to (4.1).

=0 .
Ly — 0, where vy is

Moreover a < v.(z) < 3, Yz € Q and |jv- — vo
given by (3.1).

Proof: In order to apply Theorem 2.3, hypotheses (2.3.i) and (2.3.ii) must
be verified. But (2.3.ii) follows from Theorem 4.1 and (2.3.i) can be proved
following the same argument used in [8].

Thus the existence of the minimisers v., 0 < = < g, such that

Ve —
voll gy =0 0 follows from Theorem 2.3.

Each v. is a weak solution to (4.4); thus a classical solution since by a
standard bootstrap argument v, € C** 0 < v < 1.

Now a classical argument using the maximum principle vields a < v.(z) <
3 ,¥x € Q. Hence each v, is also a classical solution to (4.1), by the definition
of f..

O

Note that each v. is a critical point of EZ. However in order to have v. a
stable stationary solution to (1.1) we should have v. a local minimiser of E=.
We state that in the next lemma whose proof is similar to the one rendered in
[1] and is therefore omitted. We remark that here we need the functional £* to

be C' and that is where (f3) is needed.
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Lemma 4.4 The family of local minimisers {v.}oc-<z, of EZ is also a family

of local minimisers of £° .

Proof of Theorem 3.1 As said before we now concatenate the above results to
establish the proof of Theorem 3.1 In fact (3.1.1) and (3.1.ii) have been proved
in Lemma 4.3.
As for (3.1.ii), we refer to [1] where a similar case has been treated.
Thus the proof of Theorem 3.1 is established.
=3
We now consider the case of multiple-layer pattern. Let Sy (£ =1.....m),
be smooth hypersurfaces which lie inside € and are nested, in the sense that if
Oy denotes the open region enclosed by Sy, ie,, S; =00, ({ =1,... ,m), then
it holds that O; C Oy C +++ C Opis = Q and 90; N IO, =0 e
We set throughout
00, B=0\01... . =0,\Op 1y Qnss = N0,
For future reference we consider the following function:
to = aXay + Bxan (4.8)
where y 4 stands for the characteristic function of the set A and
oy 9, 8 U Q (4.9)
1< <m+1, jrodd 1<j<m+l, jieven
For each S; we take a disjoint covering Wy, (k = 1,..., K) of Ns,(S) as
above and change the definitions accordingly. As in the case of just one hyper-
surface, let
Wi = B (Wie) = Mie X Iy
and g, = g o 2y, for any function g defined on Wi, g¢(-,d) will mean that for
any y! € My, Gy is considered as a function of ¢ alone. Note that Jz, (y,0) = 1
and ge(yr,0) = g(y) for y € Se.
Corollary 4.1 Let Sy (£ =1,...,m) be as above and suppose that (3.3) holds
on each hypersurface. Then vy, given by (4.8), is a L;-local isolated minimiser
of EY.
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Proof: Recovering the subindex that has been dropped we find positive num-
bers py (£ =1,...,m) and dos (£ = 1,... ,m) whose definitions are the same
as those of p and &y in the proof of Theorem 4.2.

Define p = min{p;,¢ = 1,... ,m} and dy = min{dp, . £ = 1,... ,m}. Also
let vg, stand for the restriction of vy to Ny, (S).

Then if v € BV (N, (Se); {a, B}) with [[v—vollz1(n;, s,y < P> using Theorem

4.2 and the fact that the measure |Dvy | is suported in Sy, it holds that

f h|Dv| > [ h|Duee £=1,...,m. (4.10)
Ny, (Se) INg (8
Finally take v € BV(Q; {a, 3}) such that 0 < ||v — vollr1y < 7. Also set
QE{zev@)=a} , Q L 17 € Q:v(r) = B} and consider the sets
00 and Qg defined by (4.9). Note that the set (Q,U€Q3) M8 has finite perimeter
and that the measure | Duy| is supported in U2, S;. Thus keeping the notation

of the previous theorem we conclude that

4, ] — 3 N=10—¢g L (1 N=1¢. 4
Ee(v) fn A = (=) Jo.quaro.0,n0 e )
. By i ——
- ('j a) g,/e;,m,ma,n,,mn-'&n(sf) mdﬁ (‘L)
- _ 5t _"\'—I ; N -.
> (-0} / st sy AR @) Oy (49)

(8- a) /U . e dHN = /ﬂ h|Duo| = E2(vo)-

i=17F

Now we remark that since Lemmas 4.3 and 4.4 as well as Theorem 3.1 hold
regardless of vy being a single or multiple-layer minimiser the claimed result

about multiple-layer patterns follows in a analogous manner.
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