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Abstract

This work is concerned with non-linear stability properties of periodic
travelling waves solutions of the Hirota-Satsuma systems

Ut — Ay + Ottt = 2bvv,
Vg + Vg + S0, = 0,

posed in B with @ # 0,—1 and b > 0. We prove that for a # 0, these
systems are globally well-posed in H Ife,,(i(l. L]) x HI{m.{{{). L]) by using
the Bourgain's space framework. It is also showed the existence of a
non-trivial smooth curve of periodic travelling waves solutions depend-
ing of the classical Jacobian elliptic function called cnoidal. Then we
prove the non-linear stability of these waves solutions in the energy space
H,..([0, L]) x H,,.([0,L]) in the case a = 1/20. The Floquet theory is
used to obtain a detailed spectral analysis of the Jacobian form of Lamé’s
equation which is required in our stability theory.

1 Introduction

In 1981, Hirota and Satsuma infroduced the system of coupled Korteweg-de

Vries equation ([9])

{ Uy — O(Uggw + 611) = 200, .teER (1.1)

UVt + Vi + S0, = 0,
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for the real valued functions u = u(r.t),v = v(z,1), a,b € R. Equation (1.1) is
usually referred as the Hirota-Satsuma systems. Equation (1.1) describes an in-
teraction of two long waves with different dispersion relations. A lot of research
on (1.1) has been conducted in the last two decades. For example, in [9] they
showed that for all values of a and b, system (1.1) possess the two conservation
laws given in (1.3a)-(1.3b) below and they also found explicit solitary waves
solutions with the classical secant hyperbolic profile. Moreover, for all values of
b, but only a = 1/2, this system is integrable and two more conserved quantities
of higher order spatial derivative have been found ([7], [9], [10]).

Some previous works on the existence and non-linear stability of solitary
wave solution has been obtained. Namely, existence of solutions of (1.1) of the
form

(u(z,t), v(z, 1) = (ox(r — AL), Ya(x — AL)) (1.2)
such that the profile (¢,,1) has the infinite boundary condition ¢,(&) —
0,1a(E) — 0 as |€] — oo. Here, X represents the wave speed. The case a = —1,
b > 0 and ¢y = k¢3 for some specific constant k. was studied in [12] where an
explicit smooth family of solutions depending of parameter A > 0 was found.

We remember that system (1.1) has two conserved quantities of motion,

Glu.v) = / [1 :')_au-i + bk — (14 a)u® - fm-r.-'z} dx. (1.3a)
and
S - e
F(u,v) = 5/ [u. + 5t ] dz. (1.3)

Now, since the solutions found in [12] are eritical points of the functional
B(u,v) = G(u,v) + cF(u,v), (1.3¢)

namely, B'(¢y. ¢ ) = 0, then it is possible to apply the abstract stability theory
development by Grillakis&Shatah&:Strauss in [11] (see also Weinstein [20]) and
obtain the non-linear stability of these solutions in L*(R) x H'(R) by the flow
generated by system (1.1},

We remember that the Grillakis ef.al. theory establishes that a solitary wave

solution or traveling wave solution (¢, 1) is stable by the flow generated by
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equation (1.1) if it is a minimum of & for a specific value of F. In fact, by
supposing that ¢ — (¢, ¥n) is a differentiable curve then we have that for

every ¢, (Oa), ¥ae) will be a local minimizer provided that
d(c) = G(daie), ¥ne) + F(age): Uniy)

is a strictly convex function of the parameter ¢, and the spectrum of the self-
adjoint operator B”(¢y.), ¥a) has exactly one negative eigenvalue which is
simple, zero is a simple eigenvalue with eigenfunction (:}‘53{{_:), Vyy) and the re-
mainder of the spectrum is bounded away from zero.

Recently, Lopes in [16], has considered the problem of the existence and
stability of solitary wave solutions in the case 1+a > 0 and b > 0 in (1.1).
Via the Grillakis, et. al. theory and by using a spectral theory for self-adjoint
ordinary differential operators given by 2x2 system, he shows that critical points
of (1.3¢) of the form (¢, 0) with A(e¢) = ac/(1 + a) are stable if a > —1/4
and critical points of (1.3¢) of the form (knt-!'.!i{c)., ) exists for a < —1/4,
Me) = ¢/3 > 0, and they are stable if —1 < a < —2/3.

In a general form for nonlinear evolution equations under periodic boundary
conditions, the problem of orbital stability has received little attention (see, by
example, the recent works [1], [2] and [4]). Also, similar situation has occurred
with the well-posedness issues. So, we intend to cast additional light on these
issues, well-posedness and stability theory, in the particular case of the Hirota-
Satsuma systems (1.1) with 1+a > 0 and a # 0. As our general experience with
evolution equations indicates that travelling waves when they exist. are often
of fundamental importance in the development of a broad range of disturbance,
we expect the issue for periodic waves solutions found by us will be interesting
and important. Moreover, the existence and stability of travelling waves in the
periodic case presents new points not encountered in case of the solitary waves.

We start by considering travelling wave solutions of (1.1) of the general form

(1.2) with periodic conditions. So, (¢, 1) satisfy the system

—rrlh LAY N A a2
{ a(¢” +3¢%) — A =by* + D (1.4)

Y+ 300 — M =0



192 J. ANGULO

where D is an integration constant. In the case a+1 > 0, a # 0 and D = 0, we
find solutions of the form (¢, 0) with A = A(e) = —ac/(1 + a). More precisely,

we obtain a smooth curve ¢ € (4r%(1 +a)/L?, +o0) — (¢, 0) where

8:6) = B+ (8 — en? [\ [ 2P ], (15)

where cn(-; k) is the Jacobian elliptic function with modulus & = E(¢), 5;'s

satisfying 3; < 0 < 3 < 35 and k% = H

Next, since every solution (¢,.,0) is a critical point for B defined in (1.3c),
by using Grillakis, ef.al. theory, we show that these solutions are orbitally
stable in H,,,([0, L]) x H,,,([0, L]) with regard to the periodic flow of equation
(1.1) provided that a = 1/20. To show the spectral conditions required on the
self-adjoint operator B (¢.,0),
—(1+a)L —6(1+a)p. +c 0

0 2b(—L — 6. + %)

56.0) -

we need a = 1/20 and the Floguet theory associated to the Jacobian form of

Lamé’s equation

2
dd?\ll + [p = n(n+ Dk*sn*(z; k)| ¥ = 0, (1.7)

with boundary conditions ¥(0) = W(2K), U/(0) = ¥'(2K) and with specific
values of n. Here sn(; k) is the Jacobian elliptic function and K = K(k) is
the complete elliptic integral of the first kind. Now, the convexity condition of
d(e) is reduced to verify that the mapping ¢ — F(¢,.,0) is a strictly increasing
function. In this part of the analysis, the use of non-trivial relationship between
the complete elliptic integrals of the first kind K and the second kind E are
used (see Appendix for an explanation of the basic theory of elliptic integrals).

To complete our stability theory we require a theory of well-posedness for
the initial value problem associated to (1.1) with 1 +a > 0 and a # 0. So,
by using the spaces of functions of space-time, X,;. introduced by Bourgain
([5]) (see (2.8) below), we will show that system (1.1) is locally well-posed

in H' ([0,L]) x HL, ([0,L]) for any a # 0. We obtain this result via the

er per



STABILITY OF CNOIDAL WAVES TO HIROTA-SATSUMA SYSTEMS 193

contraction principle plus two basic nonlinear estimates. The first one is the
bilinear estimate, |[n(t)d.(uv)l|x , = Cllullx ,[|vllx ,, s =0, and the second
| ! e

one is the novel estimate

|1n2(£)uaj_.?,!||x1:_% <O|lu

1%, 4 [|?"||X,‘,5

for 1 being a cut-off function. Finally, we obtain global well-posedness of (1.1)
with initial data in H,([0,L]) x H,([0,L]) for 1 +a > 0 and using the
conservation laws defined in (1.3a) and (1.3b).

We note that our stability result associated to solutions (1.5), are given for
initial disturbances of the same period L. We conjecture that by disturbances

of the type nL, n = 2. these periodic travelling waves will be unstable.

In the case @ = —1 the author have established in [3] a theory of stability
in L;,.([0,L]) x HJ,([0,L]) for the curve of dnoidal waves, ¢ € (EEF; +00) —

(e, ), of (L.4) with A = Ale) = ¢/3,

. 4 I . e c 0
¢ = b2 /c, i;"‘c(f)Z'\HE—?.’Q\/;ffn[vg—%f;k’]f

where £ and 1, are depending smoothly on c.

The scheme of the paper is as follows: In Section 2 we present the estimates
needed to establish our theory of local well-posedness for the system (1.1) in the
case a # 0. In Section 3 we present how to construct the family of periodic trav-
elling wave solutions defined in (1.5) with a fixed but arbitrary period L > (.
In Section 4 we establish briefly the basic tools of the Floquet theory that we
will use. Also, here we present a complete study of the spectrum associated to
the Lamé’s equation (1.7). Section 5 is devoted to establish the nonlinear sta-
bility theory associated to solutions (1.5) in the norm H, ([0, L]) x H}, ([0, L]).
Finally, in the Appendix we briefly review the basic definitions and properties

of the complete elliptic integrals of first kind and Jacobi elliptic functions.

Notation.
The norm of a function f € LP(Q) (equivalence class), for Q an open subset

of R, is written |f

To = Jo |fIPdz, p 2 1. The inner product in L*(Q) of two
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functions f, g is written as (f, g) = [;, fgdz. To define the Sobolev spaces (of L?
type) of periodic functions, we use the definitions and notions in Iorio&Iorio [14].
Let P = CX([0,L]) = {f : R — C|f € C™(R) and periodic with period L >
0}. P (The topological dual of P) is the collection of all continuous linear
functionals from P into ©. P is called a set of periodic distributions. If ¥ e P’
we denote the value of W at @ by ¥(p) =< ¥, >. Define the functions O,(x) =
exp(2mikz/L), k € Z, x € R. The Fourier transform of ¥ € P’ is the function
¥ : Z — C defined by the formula E'(k) = % < 0. 0_, >, ke Z. So, if ¥
is a periodic function with period L, for example ¥ € L*(0, L), we have ‘f’(!.:) =
%]“1 W(x) exp(—2mika/L)dz. For s € R, the Sobolev space H? ([0, L]) is the

per
set of all f € P’ such that [|f[2 = L Y5 (14 |k[2)7| F(k)[2 < 0. Hy,, ([0, L])
is a Hilbert space with respect to the inner product (flg). = LY = (1 +
|k|2)sf(k}ﬁ. Let us remark that. since any function f € L*([0.L]) can be
extended periodically, with period L. to all the real line, then we can identify
isometrically L*([0, L]) = HJ,,([0, L]). So we have (flg)o = (f.9) = ﬂ fgda
and || - [lo = || - [|. Since for every s = 0 H, ([0, L]) C L2..([0,L]), we have
via Plancherel’s identity that for every n € N, || f[|2 = 37_ [| /||, where )

represents the j-th derivative of f taken in the sense of P’

2  Global well-posedness theory in H! ([0, L]) x

per
1
Hper([o.ﬂ L])
This section presents a result about the periodic global well-posedness problem
([0.L]) x HL ([0, L]). The idea is to

per

to equation (1.1), with 1 4+a > 0. in Hrl,‘_.,.
use the space-time spaces introduced by Bourgain ([5]) to obtain a local-well
posedness theory in H'([0, L]) x H,,([0, L]) with a # 0. So from (1.3a)-(1.3b)
we deduce our global result. Here we are not interested in the best Sobolev’s
exponent for which we obtain well-posedness but we are interested in a result
which is sufficient to obtain our stability theory.

We start by introducing for a function f = f(x,¢) which is L-periodic with

respect to the x variable and { € R, the space-time Fourier transform f = f (k,7)
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for k€ Z and T € R by

o pL
f(k, 1) = c/ ] [z, t)e2mikelbe=irt gt (2.1)
—oa J 0
So, we have that f(k,7) = [ﬁ”)(ﬁf)]("J (7). This transform is inverted by
flz,t) = r.'z [/ fk, T}ffmd'r} g Pl (2.2)
kg -0
So, it follows that ff;)(m}(k) = [, f(k,7)e™dr. The Fourier transform of the

function fg where f = f(x,t) and g = g(z,1) are L-periodic with respect to

is obtained via convolution as

fo(k,7) = f % gk, 7) = "Z]_ flk —m, 7 —7)4(m,y)dy. (2.3)

meL
Next, by using the Fourier inversion formula (2.2) we can write the solution

of
Ve C(]R- L‘ier([o: L]))‘

Ve + Vg = 01
?"(:E? 0) = Q(.T}

denoted by v(x, t) = W(t)o(x), in the form
v(z,t) = Z G")('n-)e*'“a“'ezm'"“"f‘!i (2.4)
neL
We next find a Fourier transform notation for the solution of the linear inho-
mogeneous L-periodic initial value problem
v = Vg = W, T € [U‘ L]
v(x,0) =0,
with w = w(x,t) a given L-periodic function in the variable @ and + € R. It is

well-known via Duhamel’s principle that
i
v(x,t) = f W(t — 1)w(zx, 7)dr.
0

h(¥)dt' = [~ f%-ifl{)\)d)\ and (2.1), we have

So, from (2.4), relation ‘["‘ [

4]

Al cmﬁf

(g £) =) gPmen® f k f(n, A)f'—x_—-md/\. (2.5)

3
neR ®
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To study the L-periodic initial value problem for the Hirota-Satsuma systems

(1.1) with initial data (¢, '), we make the change of scale
w(z,t) = u(fx,t), with § = —a'/®,

Then we obtain the system de equations
Wy + Wapw + 6623 w,w = —2baY3V,0,V,, z€[0,07'L]
Vg + U + 3Wov, = 0, x € [0, L] (2.6)
w(x,0) = ¢(0z) = du(z), v(z,0) = (x),
where V,(z,t) = v(0x,t) and W,(x, ) = w(f 1z, t). So, we reduced our problem
([0, L]). Here
we will suppose without loqs of generality that @ < 0. Then, for @ = (w,v),
Ga = (¢, ), and W(t)ga = (W (t)da, W (t)1), we need to find a continuous

to prove well-posedness for system (2.6) in H,([0,07'L]) x H},,(

solution for the mtegral equation
it
w(t) = Wt o, + j Wi(t—7)F(r)dr (2.6a)
0

where F = (f,g) = (=36%0,(w?) + b§~8,(V2), —3W,v,). Hence, from (2.4)
and (2.5)

it intt
 aaeeet <!
EU Z(pa H)(f (n3t+2mina/ L) + CZ Zrlf}mr/.[./ f n, /\ dA
nes nek eiM _ emdr.
v(t) = Z P(n)eiw t+3maiL) +CZ€2’"“”L / g(n,\) __."ﬁ_d/\‘
nEd ned - T
2.7)

Equation (2.6a) will be solved using the contraction principle in the spaces
Xep Here X, for s, € R, v > 0, is the closure of the Schwartz functions
8([0,vL] x R), with respect to the norm

lullx..,, = (320 + 1)) / 1+l - )i Pdr) . (28)

ned
So, if we denote < ¢ >= 1+ |o| then [julx,,, = | < n >*< 7—n® >°
i(n, 7)|lez(z2). Also we define the space Y; ., s € R, as the closure of the Schwartz
functions 8([0,vL] x R), with respect to the norm

I, =, + [+ 0> [~ famniar) ] 29

nel
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So, ||ully,, = [lullx i, | < n >*u(n, 7)oy Similarly, we introduce the
spaces Z, -, defined via the norm
_ e T JE(n, 7)) )?. 1/2
Iz, =Hull,_y, + [+ ([t a) ] e
Theorem 2.1. Let (¢,,9) € H,,,([0,07"L]) x H)_.([0, L]) with 6(0) = 9(0)
0. Then there exist T = T(||(da, ¥)|| iy, xrr3.,.) > 0 and a unique solution (w,v)
of (2.6) with (w(0),v(0)) = (¢a, ) such that

(w,v) € C([-T,T]; H,,,([0,6 7' L]) x H,, ([0, L])) N (Y19 x Y34),

p(-'r
Do(w?®) € Xy 391, 0u(v?) € Xy1y, and, n(t)W.0,v € Xy 14,

forn being a suitable cut-off function and W,(x, 1) = w(0 'z, 1).

Moreover, for any T" € (0,T) the map (¢,,¢) — (w(t),v(t)) is Lipschitz
continuous from H). ([0,07'L]) x H) ([0, L]) to C([-T,T]; H,,,([0,07"L]) x
H,y, ([0, L])) N (Y191 X Y1)

per

Remark 2.2. The mean-zero assumption on the initial data (¢,, ) is crucial
for obtaining the main nonlinear estimates in subsection 2.2. For initial data
with arbitrary mean value, we can use the arguments given by Bourgain in [5]
(see also Staffilani [19]), therefore it will be omitted.

Remark 2.3. We note that the basic Bourgain-space /\'S_‘%__T unfortunately
does not give the properties of persistence and continuity of the solutions in

the classical Soholev spaces H®_ , which is required in the classical definition of

pert

well-posedness and in our stability theory. We recall that for b > 1/2, X,, C
C(Ry; H?

per
condition for obtaining these two basic properties of our solutions found in Y, ..

). So, the additional norm in the R.H.S. of (2.9) appears as a sufficient

In fact, inequality

Iz

i;‘é’””’( s, < [Z(l + [n[)zs(j: [@(n, )| dq—)g]l,g

neR
shows the persistence property. Next, since [_|i(n,7)| dr < oo for n € Z, we

can ensure the continuity of the time flow of the solutions. Indeed, let u € Y, ,
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and define g.(7) = @k, 7). Then we have that the inverse Fourier transform of
gi in time exists. So,
{s.v] ) 2
lu(t + ) = u(®)ll,, €3 <k >* [ / g (7)][e™ — l|dT] ,
kEE —a
Therefore, since

<k>» [/m lon(Dlle™ —jdr]* S 2 < k> [/m (] = ax

and {a;} € (*(Z). it follows from the dominated convergence theorem that the

flow t — u(t) € H,,, is continuous.

The result of continuous dependence in Theorem 2.1 permits regularization
considerations, and so we can deduce formally that the quantities G and F in
(1.3a) and (1.3b) respectively are conservations laws for equation (2.6). Simi-

larly, we can show that the quantity
H(z(t)) = / z(x, t)dx

is other conservation law for (2.6). Therefore, using G, ¥, 1 +a > 0, and
standard interpolations inequalities we deduce easily an a priori estimate for

| (w, )

per

H},.([0,67'L]) x H}, ([0, L]), that is,

per

xay, and so we have the global well-posedness result for data in

Theorem 2.4. The solution obtained in Theorem 2.1 can be extended for any

T =0 provided 1 + a > 0.

The strategy for showing Theorem 2.1 is to find a solution of (2.6a) local in
time in the space Y) g-1 x Y7 1. So, we consider a cut-off function p € C5*(R) with
v =1on [~1,1] and supp ¢ C [-2,2], then by using a fixed point argument

we will construet a function @ = (w,v) € Yy 41 x Y1, satisfying
t
W(t) = @(t)W (). + cp(t)/ W(t —7)G(7)dr, (2.11)
0

where G(7) = (¢(7) f, 9*(7)g) with (f,9) = (~360°0, (w?)+b0 7', (V.2), =3W,v..).
Hence, for every T' € (0, 1] we find a solution w(t) of (2.6a) for t € [-T,7].
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2.1 Linear estimates.

In this subsection we obtain some basic estimates that are necessary in

performing the contraction principle.

Lemma 2.5. For any s € R,

le@W @)y, , < ClI¢a-. @12)

Proof. Since [eW (t)¢]™™) = ¢ ™ (n)@ P (r — n?), we have

le@W e, = Il <n>*< =03 Y2 (T —n*)lez = ¢l galiclae,
and
| <n > [e@)W )] n,7)|lews) = 18] 2lIC]l -

This finishes the Lemma.

Lemma 2.6. For any s € R and é(r) = (@(7)f, ¢*(1)g)

t
) [ Wt =rCr Iy, e S OlGllznzse (213)
1]

Proof. The estimate for the norm in X1 x X 1, has been already made
in Bourgain [5], so we only establish this here. In fact, by using (2.5)-(2.7) we

have the following

t
“;‘;){t}[ Wt —m)G(ndrllx, , xx, ,,
S0 -~ .

é Cl” <n><T— n3 >_1 é(T}HfZ(LHXFZ{LH
+C}2|| SR >R Tls >_U2 é(T)”E?(Lg}xf?(Lg) g C||C;:||Z.",')’XZ.5.].'

Next, we obtain the contribution of the second norm in the R.H.S. of (2.9)

for the nonlinear part associated to w in (2.7). In fact, for n a smooth ent-off
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function in the time variable supported in [—1, 1] we have for fy = @(7)f

t -
; 74 = ke Ji(2mfina/ L4ntt)
\p(t)jo. W(t —7)folr)dr = MT w(t) [Z( 2 4ndt

k>] nek

| 0=t = i ir]

o0

+ Coplt) e oinel / (A =)7L = n)(A — n®) fo(n, A)e™dA
nel wi—ae
+ Cyp t)Ze findig Est o) / —(A=n*)"H1 = ) (A —n®) foln, \)dA
el J=oa
=1+1I+111.

(2.14)

Next, for hg(n) = [ 5“1 (A=n®)k"Ly(A—n?) fo(n, A)d\ it follows immediately

that |he(n)| < [[x-11(A — n®) fo(n, Mllze. So, for ¢ (t) = t*4(t) we have that
=Yz ﬁh;,(n)a(,\ —n?), and

1 — s 3
l<n > T Mgy £ <n >?~(ZFH%HL;||x;_1.1|u— n®)fo(n, /\)n;,;)

nef k=1 ~
SC| <n><A—n’>"" fy(n, /\}||§3”__§}.
(2.15)
Now, by denoting ((n) = — oA =n®)t 1 —m)(x - n®) fo(n, A)dA we have
that ITT = @(t)W(1)¢ and so from Lemma 2.5 we have that

|| <n>* HI (n, /\}||€2{L, = Cl¢II%:
=C| <n > xalr - ns)ff —n®| " fom, T2y
<C|l<n><7-n*>" fo(n, 7 M
(2.16)

where y 4 is the characteristic function of the set A = {7 :|7| 2 1}.

A) = (A=n®)7(1 =)A= n?)fo(n, ). So

Now we estimate /1. Let I(n,
from (2.2) it follows that 11(k,7) = [0 (2, t)]%™) = G« I(k,7). Then, by
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Young's inequality for convolutions we have

| <n>*TI(n,7)|% (L) =3 <n>"||gx1n,7)|}

neL

£ <n>* 1@l i, 77
nEd
=C| <n > xalr —n? ["—-n f{)nTHﬁw)

<Ol <n><T—n®>" fi(n, Teaes)-

3[[

(2.17)
Therefore, from (2.14)-(2.17) we have

I <> [t [ wie=r)foohar] " e

SC| <n>'<T—n® > foln,m)leqy

s |l follz, .-
Since a similar analysis is made for the nonlinear part of the function v in
(2.7), we obtain (2.13). This finishes the Lemma.
O
The following estimate established by Bourgain in [5] will be main tool in

showing our nonlinear estimates .

Lemma 2.7. For functions on T? we have

1 llzs2) S C( Cmmea(L + In = m)*2| Flm, m)12)
- 1/2
(Zomneal+ In = m¥) 3 Fm,m)) £ €l fllgserey

1/2

2.2 Nonlinear estimates.

In the next theorems n = n(t) will represent a cut-off function supported
in [—1, 1] say, such that 7j is positive even Schwartz function. The proof of the
following bilinear estimative was given by Bourgain in [5]. We denote X, _
by X, _1.

1
P Y

(~!

Theorem 2.8. Fors = 0, u = u(x,t) and v = v(x,l) periodic funections of x,

and having zero x-mean for all t, we have

In(®)2e(uv)llx, , < Cllullx,, llvlix, ;- (2.18)
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Remark 2.9. Extensions of inequality (2.18) for s € [~3,0] can be found in
Kenig, ef. al. ([15]) and Colliander, et. al. ([8]).

Theorem 2.10. For v = u(x,t) and v = v(x,t) periodic functions of x, and

having zero x-mean for all t, we have

In*(Dudllx, y < Cllullx,  lIvllx, ;- (2.19)

Proof. By hypotheses we have that (0. 7) = (0, 7) = 0 for all 7 € R. Initially,

) < [ @ = VP (2.20)
Next,
@i < Y [ fam )l = mion - m.p -l

mln

Define ¢(n, A) =< A —n® >2 |i(n,\)| and d(n, \) =< n >< A —n® >1/2
[5(n, \)|. So,

|nl[wvs (n, p)|
< —nd =12
< Z 2 [nle(m, y)d(n —m.p —7) b
= L <T—-m>Vlcy—mB > 2<p—y— (n—m)3 >/

mAlnR ¥ T
(2.21)

Next, since m # 0, m # n (n # 0), we obtain the well-known relation
[(T=n®*) = [(v=m®) + (T =7 = (n—m)®)]| = [3m(n —m)n| > 2n®. (2.22)

So, we have one of the following cases: (i) |[r —n®| > gn?, (ii) |y —m?| > in?

and (i74) |7 — v — (n —m)? > +n?. Next, we consider each case separately:

Case (i). Define,

F(.’l’.‘.l. t} = m [ f_ %(>Tﬂl‘dﬂj| PJ‘—va‘/L

00 <u—md>1/2

d(mn. ) ; (229)
J‘ f) - zm [ f_x —= ;’::;Uzemtdﬂ} E‘E'Jruu.r,-'L_
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Then, since 7 is a positive even Schwartz function. we have from (2.21) and

(2.23)

o

|r} v (n, 7)) 3 d(’n —m,T—7) .
| | nd >l"2 - Z [F *A n ] 1, ‘) } ( n _?n') )—1."’.2 d’}

= [Fran?] «G(n, 1) = FG?;'Z(-n._ 7).

Pa\

S0, by using Plancherel and Cauchy-Schwarz

In(tyudolx, g[Z/ FGPm, D] = ClIFCT 2w
n#i
C”F”L‘l[d-rmft(lfac)} ||G||L"{d:rxrff.(lat:})'

1A

Therefore, from Lemma 2.7 and (2.23) we have
1/2
It < O( 3 ] clm NP ax) " = Cllulx,,-

Similarly we show that ||G/| 1a(dex (o)) = C”'L-‘Hxi_,}, This shows (2.19).

Case (ii). Let H be such that H(m, y) = ¢(m, u). Then from (2.21) and (2.23)

c(m i
Z / 'nJI>“3 G %a 1) (n —m, T — 7)dy

m#E0.n

== WH*[G*AF? ]( )

s T2
= oo HGn?(n. 7).

|m(n 7)]|
—nd >1/2

A

So, by using Plancherel, basic properties of convolutions and Lemma 2.7, we

obtain

I tpudilx, , < [Z/ | < —n>2 HGP(n, 7)dr]
n#l

\ L2
B (Z <n—m*>" [HG(m, 'ﬂ)|2) < C|HG| Lars(aaxatitoe))

LT

< |Gl paxationy) H || c2aexasorry S Cllvllx, g l1ullx,,1-

Case (iii) Let J be such that .?{'na.., i) = d(m, p). Then from (2.21), (2.23
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and Lemma 2.7 we obtain
; 5 " 1/2
In*(t)udvl|x, e Z/ T—nd >71/2 FJ?F(n,r)i‘dr]
n#0
S\ 12
= (Z =N _?nL >" |1C“‘;‘I i, ﬂ” ) g C||F'}||L‘f’3{d.rxdt(50c}]

T,

S O||F || paqaexatitoo) || c2(dexdttoeyy < Cllullx, 2 A vl x,,L- e

This finishes Theorem 2.10.
0

Remark 2.11. Inequality (2.19) can be extended in the following form. For
s2l,rzgs+n—1land p—m 2 s— 1, with m 2 1, we have
I orellx, , < Clullx, el -
The proof of the following estimate can be found in Bourgain [5].
Theorem 2.12. For s 20, u = u(z,t) and v = v(z,t) periodic functions of x
and having zero x-mean for all t, we have

< k‘ >s '-'?('“'T")w(k- T)

= : ) : 2.
RS < Cllul,y lollx,, (224

(L)

Remark 2.13. Inequality (2.24) for s = —1/2 has been shown in Colliander
et.al. [8].

Theorem 2.14. For uw = u(x,t) and v = v(x,t) periodic functions of x and
having zero x-mean for all t, we have

Puvy(k,7)

< k>
<T—k3>

< Cllullx, , lvllx, - (2.25)
2(LL)

Proof. By using the same notation in the proof of Theorem 2.10 and the

relation
|nl[uwvz(n, p)| < Z f [n|c(m, v)d(n —m,p—7) "
<T-nt> <T-mM><y-mF ><p—y—(n—m)pF>12"

mzl.n
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we have that the proof of the Theorem follows the same lines of proof of Lemma

7.42 in Bourgain [5] and so it will be omitted.

2.3 Proof of Theorem 2.1.

Initially we show that system (2.6) is well-posed with small initial data in the
H}..([0,67 L)) x H].,.([0, L])-norm. We denote by V,, = {h € Y., : [ h(z,t)dz =
0, forall t }. For ¥ = (r,s) € Vg-1 x V;, we consider f = —3620,(r?) +
b010,(S2%), g = —3R.Ss, with S,(z,t) = s(0x,t), Ru(x,t) = r(071x,t), and
G(r) = (p(r)f, #*(r)g). Then, for ¢, = (6a,v) € HL,([0.67L]) x HL, ([0, L))

we define the operator
t
& - [7(1)] = e()W (H)F + () f W(t - 7)G(r)dr, (2.26)
[i]

and the ball B = {7 € Yig-1 X Yi1: [|flly; , 100 S Ix||c;),1||H1 x},, } N Vg-1 X
Vi. Next we show that @ is a contraction on B provided ||¢a||H}mx Hi,,. 18
sufficiently small. We first prove that ©; sends bounded subset of Y; g1 X Y3,
in bounded subset of Y} g1 x ¥} ;. We estimate each scalar part of (2.26). For
@ [F(t)] = (p(t), q(t)) we have from Lemma 2.5, Lemma, 2.6, Theorem 2.8, and
Theorem 2.12
Iplly, ,-1 = Cilldalls + Calle(t) fll 2, -
< Cilealh + Calllr i, + 1Sl )
< Cilldalls + Callirll3, ., + lIslIF; ,)-

Yyt

where we have used that [|S, Hx g™ =a"23|s||% | .+ Similarly, from Lemma
1 -2-_
2.5, Lemma 2.6, Theorem 2.10, and Theorem 2.14
lglly, £ Cillell + Collg*(O)gll 21, = Crllellh + Col|| Ra Ix, g 1 lslx, y ,)
< CillYlh + Co(lIrlls, , -, + ISy, )

1.8-1

where ||.ﬁ',,||‘§(1 Gy a¥ 3||-r||§(1‘ Jamt’ Therefore, we have

125, FEN Iy, 2 sns S CollGallig, xrmg,, + Calll v (2.27)

and the claim is proved.
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Now we prove that there is a @ € (0.1) such that
1 7] = 5 [Fllly: , v  BIF = Blly,, s

for all 7, h € B provided that Hgg [l 2., x my,, is sufficiently small. Let h= (7, h).
Then since j2—r? = (j—r)(j+r), S2—H? = (S,—H,)(S.+ H,), Ru$p— J h, =
(Ra— Jo)8z + Ju(s—h). we have from Lemma 2.6, Theorems 2.8-2.10-2.12 that

&z, [ — @5 [(Allly,

16—

< QC?I{H({’H“H]

i XL ||'F"' h‘||?'].9_1 *¥11-

(2.28)
Now, define €' = max {C;,Cy,Cs} and consider & > 2C. So, by choosing

||c,3,1||;;;mx my,, sufficiently small such that
20K | Gullmy ey, < 1 (2.29)

it follows from (2.27) and (2.28) that ®; (B) C B and ®; is a contraction on
B. So, from (2.11) it follows that for 7" = 1 there exists a curve t € [0,7] —
-u"."(f) = (w,v) satisfying (2.6a). By Remark 2.3, «f € C([0,T]; H,..([0,67'T7]) x

([0, 7)) and satisfies (2.6) for any initial data satisfying (2.29). The prop-

pL\r
pr— T

erty that this solution is unique requires a little more work. Since the proof
of this follows the arguments in Staffilani [19] it will be omitted. The proof
of the continuous dependence of the solution upon the data follows standard
arguments (see [15]). Therefore, we obtain the Theorem 2.1 with the condition
small on the initial data.

To remove the condition small on the initial data, we consider the following
L, (10,67 o)) x

([0, Lg]). This initial value problem is well-posed on a small time interval

cngumeut We consider (2.6) with L = Lg fixed and (¢,,v) € H

p??‘

[0, 6] if and only if the A-rescaled problem

Oy, + Fwy + 66%wy0,wy = 20071V, 1, Vo r, x € [0, A0~ Ly
Aoy + 3’:1‘..’,\ + 3‘-1",,__)‘0_-,:1,’)\ = (), rE [0, /\L()] (25{])
wi(z,0) = A2@u(x/A) = Pan(z), va(z,0) = AU(x/\) =1Un(x)

is well-posed on [0, A*3]. Next, for I(3Lo) = H,,,([0, 30~ Lo]) x H,,,([0, 8Lo])

per

1XY1 E C: (”F” lg 1xviy F HH”}’M_x XYI_J)”F_ H”H_g—l X1,
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we have for A 2 1 that
| (@an: ©) T z0) S )\_3”5'?”?(.’}:1)‘
Therefore by choosing A = A( Ly, ||r§a||‘j{ Ly) sufliciently large, we have
2CK (s ¥0) l1aza) S 20KA2[Gall 2y < L.

This verifies (2.29) for the problem (2.30) and so we have well-posedness of

(2.30) on the time interval. for example [0.1]. Therefore, (2.6) is locally well-
posed for t € [0, \*]. This finishes the proof.

O

Therefore, from Theorem 2.1, Theorem 2.4 and u(x,t) = w0t 1), we

obtain

Theorem 2.14. Fora # 0 and 1 + o > 0, system (1.1) is globally well-posed
in HL, ([0, L)) x H_ ([0, L]).

PB?' ?JC!'
3. Existence of cnoidal waves solutions.

This section is devoted to establish the existence of a smooth curve of peri-

odic travelling wave solutions to the Hirota-Satsuma systems (1.1) of the form
u(x,t) = d(x — At) ;

{ v(z, t) = ¥(z — At) @)

when b > 0 and 1 +a > 0 ( with a # 0). These solutions will be construct such

that (¢, 1) is a solution of the equation
G'(u,v) + eF'(u,v) = 0. (3.2)

where G and F are defined in (1.3a)-(1.3b) and ¢ € B — {0} will belong to
a specific interval. So, by substituting (3.1) in (1.1) and integrating once we
obtain the non-linear system

(3.3)

—a(¢" +3¢%) — A = b2 + D
" 430 — X' =0
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where D is an integration constant. Next we consider the existence of solutions
for (1.1) of the form (u(x.1),v(zx,t)) = (¢(x — At),0) and (u, ) satisfving (3.2).
S0, we have that A = —ac/(1+a) and D2 =0 in (3.3). Therefore ¢ must satisfy

——¢=0. 3.4
" + 302 1+O (3.4)

Next we show as to construct a smooth curve of solutions for (3.4) with a
fixed fundamental period L > 0 and depending of the parameter ¢. Initially, we

make the change of variable ¢ = 66 and so ¢ must satisfy

1
w”+§wg - @=0. (3.5)

1+a

Hence ¢ satisfies the first-order equation

1 —— -
[P = 5l-¢* +3——¢ +6B,] = 30— B)e - BB —9)  (36)
where f3;, (J, 33 are the real zeros of the polynomial F,(t) = —* 2+6B,.

Then we must to have the relations

3

=h+0+0, 0= Z 3i3;, 6B, = Hle Bi.

i<

3
1+a

We assume without losing generality that 3, < 5y < [5. Now, from the first

- 3233
T B+

=By + 35 — 37 (3.7)
and so 32, 33 belong to the rotated ellipse Z(~),
E(7) : B2+ 324+ Bofs —3v(Fa + F3) = 0. (3.8)

Then, since F; < 33 we have that 0 < 35 < 2v < 33 < 37. Note that
[y £ v £ 3 and so @ is a positive solution.

By defining ¢ = /33, we have that (3.6) becomes

33

KT = FE=m)C—m)1-¢)
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where 7, = 3;/3s, i = 0, L. If we take the crest of the wave to be at £ = 0, (0) =
1. Now, we define a further variable y via the relation ¢ = 1 + (2 — 1)sin®y.

and so we get that

" 3. .
(')’ = 3;(1 —m) [1 = K?sin’x] .
where k* = 1=2. Note that 0 < k* < 1. So, for [ = (1 — ) we obtain that
x(£) dt
———— =Vi¢
j; 1 — k2sin?t ¢

It follows then from the definition of the Jacobian elliptic function y = sn(u; k)

(see Appendix) that siny = sn(VIE k) and hence
C=1+ (g —sn? (VI& k).

Therefore, by nsing sn’u + cnu = 1, we arrive to the so-called cnoidal wave

solution associated to equation (3.5)

(&) = @(& By, B2, Bs) = Ba + (85 — Ba)en? [ it f%k-’:| ; (3.9)

where 3;’s satisfy (3.7) and k? = ':T';af (see [21]).

Next, since cn? has fundamental period 2/ then ¢ has fundamental period

T, given by

43
T, = ——==KI(k). 3.10
Y VB—B (k) B

Now we show that 7, > 27 /,/7. Initially we express T}, as a function of 3,
and 7. In fact, for every J» € (0,27) there is a unique J5 € (27,3v) such
(B2, 33) € E(7) where 203 = 3y — f2 + /9% — 3035 + 673,. So. by defining

31 = 37 — [J2 — [33 we obtain for

g(Fa, ) = /992 — 3 32 + 673 = 3y — $1, and
k23, -l—-———-“
(B 7) = 2 29(3,7)
that /i
4
T, (B2:7) = —==—=K(k(B2.7)).

9(B2,7)
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Then by fixing v > 0, we have T,,(35,7) — 400, as f2 — 0, and T,,(3s,7) —
2m/\/7, as B — 27. So, since the mapping 3, € (0,27) — T,(32,7) is strictly
decreasing (see proof of Theorem 3.4) it follows that T, > 27/,/7.

Now we obtain a cnoidal wave solution with period L. For v, > 472/ L? there
is a unique (oo € (0,27) such that T,.(Fs0,7) = L. So, for ¢co = (1+a)y
and 3¢ such that (3.0, F30) € Z(70), we have that the cnoidal wave p(-) =
@+ 810y Poos Ba0) with 1 = 37 — Fap — Fa0, has fundamental period L and
satisfies (3.5) with ¢ = ¢.

We note that by the analysis above we can see the cnoidal wave ¢(+; 3y, B2, 33)
in (3.9) as a function depending only on y = ¢/(1 + a) and F. So we will denote
this dependence by ¢, (-: 32) or @,

Next we show the existence of a smooth curve of cnoidal waves solutions
for equation (3.4), in other words, we show that at least locally the choice of

G20(70) above depends smoothly of 7.

Theorem 3.1. Let L = 0 be arbitrary but fived. Consider o > 1—;;— and the

unique Jan € (0,27) such that

4v3 K(k(B20,%)) = L+/9(B2,0:70)-

Then,
(1) there exist an interval J(7o) around of vo, an interval B(5sp) around of
G20, and an unique smooth function I' : J(y9) — B(Fa0), such thal I'(79) = Pag

and
4v3
V9(B2,7)
where ¥ € J(Yo), B =T (), and k*(52,7), 9(32,7) are defined in (5.11).
(2) Forc= (1+a)y with vy > 4n*/L?, the cnoidal wave solution ¢.(-) =

K(k(B,7)) = L, (3.12)

§904(+; Ba) has fundamental period L and satisfies equation (3.4). Moreover, the

mapping o
< .
cE€ (?{1 +a), —l—oo) — ¢ € Hp,,([0, L])

is a smooth function.
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Proof. The idea of the proof is to apply the implicit function theorem. We
consider the open set @ = {(32,7) : v > %, B2 € (0,2y) } € R* and define

P:0—R by

B, 7) = % K(k(B,7)) — L (3.13)

gl 02

where g(3s,7) and k*(32, ) are defined in (3.11). By hypotheses ®(320,7) = 0
Now we show that < M’ (dw 70) < 0. In fact, by using the relations, 187% =
P (2 — 2k + 2k%),

dg  3(y—0) Ok 992 2 (1K

- ! oz L. - LT _:rﬁr
3% g @ oA e kk T E—-E°K

we have,

od

dK . .

— <0e —18y"— < ¢}(2k* — 1)kK < 184%E >

%, Vg <9 , JkK gl
(1812 — k(2% — 1)g2 )k’ K

& (2— 22 + 2K4)E > (2 — 3k + kK.

(3.14)

Next, since F + K is a strictly increasing function we have that (2 — k*)E >
2(1 — k*)K. Moreover, from definition of the complete elliptical integrals E
and K it follows that (k* — 1)K = (2k? — 1)E. So we obtain from (3.14) that

ad
583 < ().

Therefore, there is a unique smooth function, I', defined in a neighbourhood
J(70) of v, such that ®(I'(y),~) = 0 for every v € J(7). So, we obtain (3.12).
Finally, since v, was chosen arbttranlv in the interval J = (3% A—oo)._ it follows
that T' can extend to J. This completes the proof of the Theorem.

O
Corollary 3.2. [t considers the mapping U : J(vy) — B(Bs0) determined by
Theorem 3.1. Then, 32(v) = I'(v) is a strictly decreasing function in J(7).

Moreover, the modulus function

2oy — L, 31— B(1)
k*(y) = 29(82(7).7)

where g is defined by (3.11), it is a strictly increasing function.
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Proof. By Theorem 3.1 we have ®(I'(7),7) = 0 and so % = —% Hence,

we only need to show that 9®/dv < 0. In fact, from (3.11) and from relation

kg® % = 9y, we have
2% K o o .
> <0< 6yF— T < gk(3v+ B K & 6y5hE < [gh*(37 + 3) + 673k K.

(319
Now, since gk?(3v+452)+6752 = ¢°/2+9(37+32)/2 implies 673, < g(37+52)k",
it follows from the inequality £ < K and (3.15) that 3—"’ < 0.
Finally, from definition of £ and g we obtain 4* r:'q(,dz —~3,) > 0. This
completes the proof.

o

4. Spectral analysis.

In this section we study the spectral properties associated to the linear
operator H, . = G"(¢..0) + ¢F"(¢,., 0) determined by the periodic solutions ¢,

found in Theorem 3.1. So, we have the diagonal operator

(L 0
A ( 0 L, ) (4.1)

where L) = —(1 + H)"—g 6(1+a)o. +cand Ly = 2b(—5 — ¢+ ). We shall
show that the spectrum of H, . is discret and has its first two elgeumhles simple,
being the eigenvalue zero the second one with eigenfunction (¢, 0) provided that
a=1/20,

Initially, we have the following result about the periodic eigenvalue problem

(‘nc_ P [-‘Iia)( =’\C
{ ¢(0)=¢ _LTF ¢'(0) = ¢'(L) (4.2)

where ¢ is given by Theorem 3.1.
Theorem 4.1. Letc € ( (1+a) +o0) and ¢ = @, be the cnoidal wave solution

of (3.5) given by Theorem 3.1. Then, the linear operator L., in (4.2) defined

on Hp, ([0, L]) has its first three eigenvalues simple, being the eigenvalue zero
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the second one with eigenfunction @'. Moreover, the remainder of the spectrum

is constituted by a discret set of eigenvalues which are double.

Theorem 4.1 is a consequence of the Floquet theory (Magnus&Winkler
[17]). By convenience of the readers we will give some basic results of this the-
ory. Initially, it follows from the Weyl's essential spectral theorem ([18]) that

Fass(Lien) = Jess(—a’% + 152) = 0. Therefore (4.2) determines a countably infi-
nite set of eigenvalues {\,[n =0,1,2, -} with \g EXM S SN2 S

where double eigenvalue is counted twice and A, — oo as n — oc. We shall de-
note by ¢, the eigenfunction associated to the eigenvalue A,. By the conditions
€(0) = ¢(L), ¢'(0)={'(L), ¢, can be extended to the whole of (—oc,oc) as a
continuously differentiable function with period L. Further, the double eigen-
values (if any) are the values of A for which all solutions of (4.2) have period
L, that means the existence of two linearly independent periodic solutions of
period L.

Now from Floquet theory, we know that the periodic eigenvalue problem

(4.2) is related to the following semi-periodic eigenvalue problem considered on

[0, ]
Lcng = !'J-E '
{ £(0) = —£(L), £(0) = —€/(L), al

which is also a self-adjoint problem and therefore determines a sequence of
eigenvalues {p,[n = 0,1,2,3,-+-}, with pto S i1 S jip = s = g = - - -, where
double eigenvalue is counted twice and g, — oo as n — oo. We shall denote
by &, the eigenfunction associated to the eigenvalue ji,,. So, we have that the
equation

Lenf =2f (4.4)

has a solution of period L if and only if v = A, n = 0,1,2,--+, as well as, it
has a solution of period 2L if and only if v = p,. n=0,1,2,---. If all solutions
of (4.4) are bounded we say that they are stable; otherwise we say that they are

unstable. From the Oscillation Theorem we have that

/\n{_u-ngj_i]</\1§/\241U,g§,{134A3§/\4”" (45)
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and the intervals (Ao, pto), (pt1, A1), - - -, are called intervals of stability. At
the endpoints of these intervals the solutions of (4.4) are, in general unsta-
ble. This is always true for v = Ay (Ag is always simple). The intervals,
(—oc, An)s (fto. 1), (A1, Aa), (ft2, pa), -+ -, are called intervals of instability, omit-
ting however any interval which is absent as a result of having a double eigen-
value. The interval of instability (—oo, Ag) will always be present. We note that
the absence of an instability interval means that there is a value of v for which
all solutions of (4.4) have either period L or semi-period L- in other words,
coexistence of solutions of (4.4) with period L or period 2L occurs for that value
of .
We close this short review by establishing as is determined the number of
zeros of ¢, and &,. Indeed,
(i) ¢o has no zeros in [0, L].

(#1)  Conyr and (oo have exactly 2n+ 2 zeros in [0, L). (4.6)

(iii) &, and &y, 41 have exactly 2n+ 1 zerosin [0, L).
Proof.(Theorem 4.1) It follows from (4.5) that we need to show that 0 = A <
As. In fact, since L.,¢' = 0 and ¢ has 2 zeros in [0, L) then the eigenvalue
0 is either A; or A;. We claim that 0 = A;. In fact, for T,{(z) = {(nz) with
n? =12/(8s — 1) we have for A = T,( that

{ LA+ [p—12k2sn2(@))A =0

A(0) = A(ZK), A(0)=A'(2K), (4.7)

where for v = =,
p=—12[y = B2 — AN/ (B — B).

The second order differential equation in (4.7) is called the Jacobian form of
Lamé’s equation. Now, from Floquet theory it follows that (4.7) has exactly 4
intervals of instability which are (—oo, po), (6, 111), (p1, p2), (b, p5) (where il
i = 0, are the eigenvalues associated to the semi-periodic problem determined by
Lamé’s equation in (4.7)). Therefore, it follows that the first three eigenvalues
Pas P, P2, associated to (4.7) are simple and the rest of eigenvalues py < py <
s = pe < -+ satisly that ps = pg, ps = pg, - -+, in other words, they are double

eigenvalues.
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For the sake of the exposition we will determine explicitly these eigenvalues.
We start by noting that p; = 4+4&? is an eigenvalue to (4.7) with eigenfunction
Ai(z) = en(z)sn(x)dn(x) = k- T,¢'(x), so A = 0 is a simple eigenvalue to (4.2)
with eigenfunction ¢’. Now from Ince ([13]) we have that the Lamé polynomials,
Ao(z) = dn(z)[1— (142k* — /1T — k% + 4k )sn?(z)] and Ax(z) = dn(z)[1—-(1+
2k? + /1 — k2 + 4k )sn?(x)], with period 2K, are the eigenfunctions associated

to the others two eigenvalues py. ps given by
po =2+ 5k —2v1 — k2 + 4k? and py =2+ 5k> +2v1 — k2 +-4k1.  (4.8)

Now, since Ay has no zeros in [0, 2K] and Ay has exactly 2 zeros in [0, 2K), it
follows then that Ay is the eigenfunction associated to py which will be the first
one eigenvalue to (4.7). Since py < p; for every k* € (0,1), we obtain from the
relation —F; (1 + k2) = (2 — k?)83 — 37, that

12M =

}m2+1,00+]2("}r—d,;]<0

and so Ay is the first negative eigenvalue to L., with eigenfunction (y(z) =

Ag( x). Now, since p; < p, for every k* € (0, 1), we obtain that

9= ‘33

pz =+ 12( = J'f; >0

and so As is the third eigenvalue to L., with eigenfunction G(x) = Ag(#:r).

Next, we can see that ph = 5+ 2k* — 2¢/4 = k2 k% and p} = 5 + 5k2 —
24 —Tk? +4k" are the first two eigenvalues to Lamé’s equation in the semi-
periodic case, with eigenfunctions associated &p () = en(z)[l — (2 4 k? —
VA — k2 + k4 )sn?(z)] and &) o (2) = 3sn(z) —(2-+2k% — /4 — ThZ + 4K )sn(x)
respectively. Since pfy < pf < 4k* +4 it follows from the relation
¥ — o%

=—12
n" in

(4.9)

that the first three instability intervals associated to L., are (—oc, A), (10, f11),
(A1, Az). Finally, since the functions & ., () = en(z)[1—(24+k*+v4 — k2 +k* )
sn?(x)] and & o (2) = 3sn(x) — (2 + 2k + V4 — Tk? 4 4k* )sn®(x) have three
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zeros in [0,2K) and are eigenfunctions of Lamé’s equation in (4.7) with eigen-

values pth = 54 2k + 24— K2+ k' and py = 5+ 5k 4 24 — TR2 + 4k7,

it follows from (4.17) that the last instability interval of L., is (p2, pta). This
finishes the proof of the Theoremn.

O

The following Lemma will be necessary in the study of the spectral structure

of the linear operator L. in (4.1).

Lemma 4.2. The linear operator

2

‘C’UC = [—E

+ 2k*sn*(x)]¢

defined on HZ,.([0,2K]) has k* as its first eigenvalue which is simple with eigen-

function dn(x). The remainder of the spectrum is constituted by a discret set

of eigenvalues which are double.

Proof. We consider the periodic eigenvalue problem on [0, 2K]

;fCJr[ — 2k%sn?(z)]¢
{ ¢(0) = }(21&} é’( X ] (Q}g) (4.10)

Then (4.10) determines a sequence of eigenvalues {n, : n = 0,1,2,---}, with
M =m S = So, from Floquet theory it follows that (4.10) determines
the existence of exactly 2 intervals of instability: (—oo, o), (to, f1) (i;'s are
the eigenvalues associated to the semi-periodic problem determined by Lg).
Moreover, it is easy to verify that ny = k? is an eigenvalue with eigenfunction
dn. This finishes the proof.

=]

Theorem 4.3. Let ¢ € (%’5;(1 + a),+oc) and ¢ = &, be the cnoidal wave
solution of (3.4) given by Theorem 3.1. Then, the linear operator Lo in (4.1)

is a strictly positive operator provided a = 515

Proof. Let A € R and g € D(L,) such that Log = Ag. So, for {(z) = g(px)
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with p = +/12/(3s — /1) and using the explicit form of ¢ we have that ( satisfies
—(" + [p — 2k%en?(a; k)]¢ = 0, with p= w (4.11)
M3 T M

So, from sn*+cn? = 1, it follows from (4.11) that for L, defined in Lemma 4.2,

127 . 4 — 2;{52 P
Lyl = [.'33 B Tg] & with n = Bs— By k

Then., from Lemma 4.2 it follows that

12 "
_ >4
Bs— 53— ¢

So, we have that a = % implies that k* + 7 > 0. In fact, from definition of k*

and (3.7) we have

(da+ 1)e Fafs

— = (3, 33).
1ra Bt B f(Ba, B3)

B+np>0e4dc>f+bhe

Now the function f defined in [0, 29] x [27, 37]. with v = ¢/(1 + a), assumes its
maximum value, 6v/5, in the point (27, 37). Therefore,

1 (dat1)e , 6

T > ;
PUE% T T1ra S5(14a)

Therefore A > 0. This completes the Theorem.

Next we have the spectral structure required for H,, .

Theorem 4.4. Leta = 1/20, c € (i'f;(l—ira)._ +o0) and ¢ given by Theorem 3.1.
Then the linear operator Hy . in (4.1) and defined on H, ([0, L]) x H2,.([0, L])
has exactly its first two eigenvalues simple, being the eigenvalue zero the see-
ond one with eigenfunction (¢',0). Moreover, the remainder of the spectrum is

constituted by a discret set of eigenvalues.

Proof. Let (f.g) € Ker(H,.). Then L;f = 0 and Lyg = 0. So, for p = 6¢
we have L, f = 0 and Theorem 4.1 implies that f = 8¢'. Now, Theorem 4.3

implies that ¢ = 0 and so (f,g) = 6(¢',0).
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Next let (f.g) and A < 0 be such that H,.(f,g)" = A(f,g)". Then L. f =
;»j-};f and Theorem 4.1 implies that A = A¢(1 +a) and f = u¢y where A is
the negative eigenvalue for L., with eigenfunction ¢, associated. Now, since
Lyg = Mg it follows from Theorem 4.3 that ¢ = 0. Therefore, H, . has exactly
a negative eigenvalue simple, A\o(1 + a), with eigenfunction associated ((p,0).
Finally, since L7 and Ly have a discret spectrum then H, . as well. This proof

the Theorem.

5. Non-linear stability of cnoidal waves.

In this section we establish the non-linear stability of the periodic travelling
wave solutions, q;,_ = (¢, 0), found in Theorem 3.1. To accomplish that, we
apply the framework developed by Grillakis&Shatah&Strauss in [11]. Since
Theorem 2.15 gives us the required information on the global-well posedness
of (1.1) and Theorem 4.4 the information on the linear operator H, .. we only

need to verifv the convexity of the function
d(e) = G(@.,0) + cF(o.,0).

This condition is equivalent to show that ¢ — % fUL &?(€) d€ is a strictly increas-
ing function for ¢ € (472(1 +a)/L?, +o00).

Initially, we specific our definition of stability. Let 7, be translation by s,
mf(z) = f(x+ s) for x € R. For ? = (¢, 1.) we define the E—orbit_. as
Q= = {3( + ) : s € R}. For e > 0 the tubular neighbourhood, U., around of
Qg in X = H,..([0,L]) x H,,([0. L]) is defined as

Ue={T € X : inf |7 -73lx e}

So, we have the following definition,

Definition (Orbital Stability). Let ¢ € X be a travelling wave solution to
equation (3.3). We said that the orbit Q- s orbitally stable in X by the flow
of equation (1.1) if for each € > 0 there is a § = d(e) > 0 such that if iy € X
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and igng ity — 70|l x < & then the solution i(t) of (1.1) with @(0) = @, exists
globally and satisfies

sup inf |@(t) — 7,.¢)x < e
tck rER

Otherwise, we said that QTJ 18 X-unstable.

Theorem 5.1 (Stability Theorem). Let ¢ € (‘}f—'._?-(l + ), +oc) and ¢. given
by Theorem 3.1. Then ¢ — ||¢.||* is a strictly increasing function. Therefore,
for . = (¢..0) the orbit Qy is orbitally stable in H,,.([0,L]) x Hp., ([0, L]) by
the flow of the Hirota-Satsuma systems (1.1) provided a 2 1/20.

Proof. For ¢ € (4 (1 + a), +oo) define ¥(¢) = ¢/1 +a. Then we know that
(o = P(c)/6 With . the cnoidal wave defined by (3.9). Hence, for H(vy) =
'yfg - (€)de with v > 4r?/L?, it follows from (3.5) that d'(c) = H(v(c))/36.
Therefore, d"(c) = m%ﬁ(’-")‘ Hence, we need to see that f;ﬂ'f(",v) = (.
Initially we obtain an expression for §(v) = ﬁf - (&)de. In fact, from (3.9),
(3.12) and using [6] we obtain

L ] 2\/:_}(33 _ 32) 2K
p,(E)dE = Bl + —F——""
fu o (€)dE 2 57
= Bl + 43 B3 — Bi|E — kK] = oL +

en®(x; k)dx

4? [E - kK.

(5.1)
Next, we express (% in function of & and K. Initially we show that 189% =
2¢9%(1 — k* + k'), Indeed, from (3.27) we have g(2k* — 1) = 3(y — 32) and
g° = 97* — 335 + 670s. Therefore, g?(2k* — 1)? + 3¢*> = 367* which shows our

affirmation. So, by using (3.11) and (3.12) we obtain

2k -1 16K2
Fa = (%— 3 )— [V1—K2+k*+1—2k%.
Then, from (5.1) it follows that

5(1) 161\ —VI— R R k=24 IiE 3(k(7))-

Therefore, since § is a strictly increasing function of the parameter & and from
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Corollary 3.2, £'(y) > 0, it follows that

d dd(k) dk
g.{ el N Al
M) =50 +7"g" &

This completes the Theorem.

= (.

Appendix

In this Appendix we establish some basic properties about Jacobian ellip-
tic functions (see Byrd&Friedman [6]). Initially, we define the normal elliptic
integral of the first kind

= F(p, k),

] 1—f2)1—jf¢2f2 0 \II—P sin’

where y = sin g, and the normal elliptic integral of the second kind,

1— k2¢2 G g

W dt = / 1-— k? Sill2 A df = E(; k)

g S

The number k is called the modulus and belongs to the interval (0,1). The
number &' = /1 — k2 is called the complementary modulus. ¢ is called the
argument of the normal elliptic integrals. It is usually understood that 0 < y = 1
or 0 < ¢ = 7/2. When y = 1, the integrals above are said to be eomplete. In

this case, one writes:

f 1 i - / W e = K=K
o VI-2)1—-k81) Jo J/1—k2sin20 ’

and

272
f\? l_kf,: df—-/ V1—k? sin?@df = E(n/2,k) = E(k)=E

So, K(0) = E(0) =x/2, E(1) =1 and K(1) = +o0. For k € (0,1), K'(k) > 0,
K"(k) > 0, E'(k) < 0 and E”(?c} < 0. Moreover, for k € (0,1) we have that
E(k) < K(k), and E(k) + K(k), E(k)K(k) are strictly increasing functions.

The complete elliptic integrals K and FE satisfy the following hypergeometric
differential equations

Kk 4K 4 (1 -3k — kK =0,
kK2GE + K E + kE=0.
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Now, we have some derivatives of the complete elliptical integrals K and E,

e T RRZ 0 dk Tk _
d*E Ldlk _ _ E-kPK (A1)

dK E—)k*K  dE _ E-K
KT T T RdR T T RERE

Next, we will define the Jacobian Elliptic Functions. Initially, we consider

the elliptic integral

Uy R)=u= = S R i
# Jo (1 —12)(1 — k22) 0 1 — k2 sin’@

which is a strictly increasing function of variable y; (real), hence we can define
its inverse function by y = sing = sn(u; k), or briefly 3 = snu, when it is
not necessary to emphasize the modulus. The function snu is a odd function.
Other two basic functions can also be defined by

{ en (u; k) = /1 — 42 = /1 —sn?(y; k)
dn (u; k) = /1 — k2y2 = /1 — k%sn2(u; k),

requiring that sn(0,k) = 0, en(0,k) = 1 and dn(0, k) = 1. The functions cnu
and dnu are therefore even functions. The functions sn(u; k), en(u; k), and
du(u; k) are called Jacobian elliptic functions and are one-valued functions of
the argument u. These functions have a real period, namely, 4K (k) 4K (k)
and 2K (k) respectively. The more important properties of the Jacobian elliptic
functions which have been used in this work are summarized by the following

formulas:
5 . . 5 - _ ,
sn?u+cnu =1, kKsn?u+dnu=1, K“sn*u+ en’u = dn’u.

Also, we have some special values:

sn{u+4K)=snu, en(u+4K)=cnu, dn(u+2K) = dnu,
sn(u+2K) = —snu, en(u+ 2K) = —cnw, sn(u,0) = sin u,

cn (u,0) = cos u,
dn (u,0) =1, sn(u,1) =tanhu, cn(u,1)=sechu, dn(u,1)= sech u.

Finally, we have the following differentiation formmnlas,
F- I T
snu=cnudny, F-cnu=—snudnuy,

a ;
{ sodnu = —k?sn u cn w.
i



222

J. ANGULO

References

1]

2]

3]

(9]

[10]

1]

Alvarez, B.; Angulo, J., Ezistence and stability of perodic travelling-wave
solutions of the Benjamin equation, To appear in Comm. on Pure and Appl.
Analysis (2004).

Angulo, J., Non-linear stability of periodic travelling-wave solutions to the
Serddinger and the modified Korteweg-de Viries, Pre-print (2003).

Angulo, J., Stability of dnoidal waves to Hirota-Satsuma system, Pre-print
(2004).

Angulo, J.; Bona, J., Stability of Cnoidal waves, Pre-print (2003).

Bourgain, J., Fourier restriction phenomena for certain lattice subsels and
applications to nonlinear evolution equations, Geometric and Functional
Anal., 3 (1993), 107-156, 209262

Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers
and Scientists, Sec. ed., Springer-Verlag, New York (1971).

Chowdhury, Q. R.; Mukherjee, R., On the complete integrability of the
Hirota-Satsuma system, J. Phys. A: Math. Gen., 17 (1977), 231-234.

Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Sharp global
well-posedness for KdV and modified KdV on R and T, J. Amer. Math.
Soe., 16 (2003), 705-749.

Hirota, R.; Satsuma. J., Soliton solution of a coupled KdV equations, Phys.
Lett. A, 85 (1981), 407-409.

Hirota, R.; Satsuma, J., A coupled KdV equation is one case of the four-
reduction of the KP hierarchy, J. Phys. Soc. Jpn., 51 (1982}, 3390-3397.

Grillakis, M.; Shatah, J.; Strauss, H., Stability theory of solitary waves in
the presence of symmetry L, J. Funct. Anal., 74 (1987), 160-197.



STABILITY OF CNOIDAL WAVES TO HIROTA-SATSUMA SYSTEMS 223

[12]

[13]

[14]

[19]

[20]

[21]

Gon, B.; Chen, L., Orbital stability of solitary waves of coupled KDV equa-
tions, Diff. Int. Equations, 3 (1999), 295-308.

Ince, E. L., The periodic Lamé functions, Proc. Roy. Soc. Edin., 60 (1940),
47-63.

lorio Jr., R. J.; lorio de Magalhaes, V., Fourier Analysis and Partial Dif-
ferential Equations, Cambridge Stud. in Advan. Math., 70 (2001).

Kenig, C.; Ponce, G.; Vega, L., A bilinear estimate with applications to the
KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.

Lopes, O., Stability of solitary waves of coupled systems, Pre-print (2003).

Magnus, W., Winkler, S.. Hill’s Equation, Interscience, Tracts in Pure and
Appl. Math. Wiley, NY., 20 (1976).

Reed, S.; Simon, B., Methods of Modern Mathematical Physics: Analysis
of Operator, Academic Press, V. iv (1978).

Staffilani, G., On solutions for periodic generalized KdV equations, IMRN,
18 (1997), 899-917.

Weinstein, M. L., Liapunov stability of ground states of nonlinear dispersive

evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-68.

Whitam, G. B., Linear and Nonlinear waves, John Wiley, New York (1974).

Department of Mathematics
IMECC-UNICAMP

C.P. 6065

CEP 13083-970, Campinas, SP, Brazil

e-mail: angulo@ime. unicamp.br



