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ON THE CAUCHY PROBLEM ASSOCIATED TO
THE BRINKMAN FLOW: THE ONE DIMENSIONAL
THEORY

Eduardo Arbieto Alarcon* Rafael José lorio Jr.

1 Introduction.

In this article we are interested in the properties of the real valued solutions of
the Cauchy Problem associated to the Brinkman Flow ([2]; see also [3] and[12]),

namely
0L+ V- (pv) =F(t.p),
(—tessA + £)v = —VP(p), (1)
(p(0),1(0)) = (po, o),

which models fluid flow in certain types of porous media. Here p . £, and pi.ps
denote the fluid viscosity, the porous media permeability and the pure fluid
viscosity, respectively, while p is the fluid’s density, v its velocity, P is the
pressure, F'is an external mass flow rate, and ¢ is the porosity of the medium.

In what follows, we will consider the case n = 1. Moreover, to simplify the
notation, we will choose all the coefficients in (1) to be equal to 1. At the
moment we want to consider only the mathematical structure of the system.
At a later stage, the constants should be put back in, and various limiting cases

should be studied. Thus our problem becomes:

8—'(; + du(pv) = F (1, p), (
(82 + )1' ——3,P(p), 2)
((0),v(0)) = (po. vo),

where x € R and ¢ > (.

*This work was written while the author was visiting IMPA during a sabattical leave
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To handle (2), we compute v (t, z) using the second equation, (usually re-

ferred to as Brinkman's condition) to get
v=—(1-03)"0.P(p), (3)

and substitute into the first one (which describes the variation of mass) to
obtain the Cauchy Problem
o =0, (p(1 =37 0P () + F(t.p) ”
p(0) = po.
Then we solve (4), and compute v using (3). Of course, the following compati-

bility condition must be satisfied:
vwo=—(1-8)"3,P(po)- (5)

In what follows we will use the following notation. If X and Y are Banach
spaces, B (Y. X) denotes the set of all bounded linear operators from Y into
X. In case X = Y, we write simply B(Y). If s € R, we denote (L? type)
Sobolev spaces by H®(R). Any of its usual norms will be denoted by |[-]|..
The corresponding inner products will be written (- |-)_. Finally, whenever it is
convenient we will use the notation J = (1 — 82)"/%.

This paper is organized as follows. In Section 2 we use Kato’s theory of
quasilinear equations to prove that (4) is locally well-posed! in H* (R), s > 3/2.
This means that there exists a T > 0 and a unique p € C([0,7], H*(R)) N
C*([0.T], H"' (R)) such that p(0) = po, and p(t) satisfies the differential
equation in the sense that

plt+h)—pt) _ 3

lim =10.
h—s0) h *

(p() (1 =82 2P (p(1))) + F (L0 (1)

Ha-1

Moreover, p depends continuously on the initial data in the following sense.
Assume that p((,j} € H*(R),j = 1,2,3,...,00, let pi) be the corresponding
solutions. Suppose that

tim [} ~ 5§
Jj—oo

= 0. (7)

t 3

!The notions of local end global well-posedness may be introduced in abstract settings.
See for example ([7]) and ([3]).



ON THE CAUCHY PROBLEM ASSOCTATED TO THE BRINKMAN 3
Then, for all 7" € (0,7") we have

P9 () — ' (t)

lim sup
1=00 4e(0,77]

5= 0 (8)

In Section 3 we discuss the interaction of Kato’s theory and the method of
parabolic regularization, and prove that the problem in question is globally
well-posed in H® (R), s > 3/2, in case P (p) = p*,k = 1,2,3.... This means
that the three conditions defining local well-posedness hold for all intervals
[0,7],T > 0. Finally, in Section 4 we prove that the flow associated to (2), with
F = (.is positivity preserving, that is, if 0 < p, then, 0 < p(t) for all £. In the

appendix we establish some estimates needed in the main body of the article.

2 Local Well Posedness in (L>-type) Sobolev
Spaces.

In this section we will use Kato’s quasilinear theory to prove that (4) is locally
well-posed in H* (R) for all s > 3/2. Before proceeding, it is convenient to make
a few remarks about Kato’s theory. Its aim is to establish sufficient conditions
to ensure the local well-posedness for problems of the form

{ S+ Alt,u)u = f(tu) € X, )

u(0)=9¢eY,

where X and Y are Banach spaces, with Y continuously and densely embedded
in X and A (¢, u) is bounded from Y into X and is the (negative) generator of
a C° semigroup for each (t,u) € [0.7] x W, W open in Y. In its most general
formulation, X and ¥ may be non-reflexive® Since we will deal exclusively with
reflexive spaces, we will employ a simpler version, which can be found in [8].
(See also [9] and [4].) The essential assumption of the theory is the existence of

an isomorphism S from Y onto X such that

SA(t,u)S™' = A(t,u) + B (tu), (10)

*This is rather important, since it allows one to show that continuous dependence can be
reduced to a question of existence and uniqueness in non-reflexive Banach spaces. See 7] and
the references therein.
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where B (t,u) € B(X). This is, in fact, a condition on the commutator [S, A (t, u)]

because (10) can be rewritten as
[S,A(t,u)] S = B (t,u). (11)

There are also lesser requirements, involving Lipschitz conditions on the oper-

ators in question. For example, A (¢, u) must satisfy
A (¢ w) = At W)l gy, xy < pellw — | -, (12)

for all pairs (t,w), (t,@) in [0.T] x W. Both B (t,u) and f (t,u) must satisfy
similar conditions. We are now in position to state the main result of this

section.
Theorem 1 Let
Ap) [ ==0.(F(1-8) " 0P (p) =0, (FI20.P (),  (13)
so that the PDE in (4) can be written as
dp+Ap)p=F(Lp). (14)

Let pp € H*(R), s > 3/2 and assume that P and F satisfy the following
assumptions.

(a) P maps H® (R) into itself, P(0) =0 and is Lipchitz in the following sense:

1P (p) = P (D), < Ls (el - 1A1) Nlo = Al (15)

where Ly : [0,00) % [0, 00) — [0,00) @5 continuous and monotone non-decreasing
with respect to each of its arguments.
(b) F: [0,T] x H (R) — H*(R), F(t,0) = 0 and satisfies the following

Lipschtz condition:

IF (£, p) = F (£, ), < M. (lpll, . 121,) lo — 21, - (16)

Then (4) is locally well-posed in the sense described in Section 1.
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Proof. Since this proof already appeared in [4], we present only a brief sketch.
We take X = L2(R), Y = H*(R) and § = (1 — d2)2 = J=. The first step is
to prove begin that A (p), p € H* (R) is quasi-m-accretive in L? (R) (see [10]).
Since we are dealing with Hilbert spaces, it is enough to show that there exists
afd=>0
(a) (A(p) £1f)o = ~BIIII3 for all f € D(A(p)) = H' (R):
(b) (A(p) + ) is onto L2 (R) for some (equivalently all) A > 3. (For details see
4.
This implies that A (p) generates a C'-semigroup, U (s) = exp (—sA (p)),s €
[0, 00) , such that

1T () sremy) < exp (8s). (17)
Next we must show that

SA(p)S~'=A(p)+ B(p).
B(s) € B(I*(R)), (18)
1B (P)Hs[LZ({R)) <q(p),

where ¢ (-) is a nondecreasing function. It suffices to show that

(S, A(p)] = SA(p) — A(p) S € B(H* (R), L? (R)),
1S, A (D) saremy 22wy <4 (P) -

for some nondecreasing function ¢ (-). Let f € H* (R) .Let f € H*(R) and

(19)

O(p) = S~V P(p). (20)
Then,

S, A(p)] = J*0.(fO(p)) — Bu((J* F)O(p)) (21)
= [J*%,8.0(p)|f + [J%, ©(p)|o.f-

Combining the fact that J=2 9, € B(H*(R), H*T}(R)) with the assumptions on
p , we conclude that 8(p) € H*"'(R) and

1©(P) |1 < (|72 O

La(llpll, 0) llpll, - (22)

The desired estimate then follows from Lemma (A4) of [11]. Finally, the as-

sumptions on P and F' imply the Lipehtz conditions required by Kato’s theory.
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This finishes the proof.
O

Remark 2 [t should be noted that the previous result holds in H* (R™), with
§ > 5+ 1 and the obvious changes needed to accommodate the general case. I
is also true in H§ (), Q C R™ is a domain with a smooth boundary, and in
H*(S'). This is due to the fact that all the crucial estimates used here hold in
theses cases. (See Lemma A4 of [11] and Appendiz B of [6].

3 Parabolic regularization and Global Existence.

Theorem 1 holds if we regularize the equation. More precisely. the same result
holds for the Cauchy Problem
{ Bp™ = 8, (pw 1-)ta,P (p[“})) HF (,09) + 00309 g
P (0) = po.
for each 1 > 0. However, due to the smoothing properties os the C' semigroup
U, (t) = exp (utd?), p > 0, one is able to solve the problem applying Banach'’s

Fixed Point Theorem and Gronwall’s inequality to the integral equation
g3
P () = U, (t) po + / U (t = 1) [A (0™ (#)) o (¢') + F (¢, p" (8))] dt'.
S0
(24)

In fact we have a better result in this case.

Theorem 3 Assume that i > 0 and that P and F' satisfy (15) and (16) for
some fized s > 1/2. Then (23) is locally well-posed in H*(R). Moreover,
if (0,T,) is an interval of existence, then p € C((0,T,|; H* (R)), where
H>(R) = \DRH *(R) provided with its natural Frechet space topology.

Proof. Local well-posedness is a routine application of Banach s Fixed Point

Theorem and Gronwall “s inequality, combined with the estimate (with A = 1),
1/2

A
; ” 1 . 7
U (@) 8ll,1n < K {1 s (m) ] loll, , (25)
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where K, > 0 depends only on A and holds for all p € H"(R) , r e R, A = 0,
and g, t > 0. (See [5] and [6] for example.) An easy bootstrapping argument
combining (24) and (25) (with A fixed in (1, 2)), implies the last statement.

[l

In order to take the limit as y tends to zero, one must show that it is possible

to choose intervals of existence independent of p. We have:

Lemma 4 Assume that p, P and F are as in Theorem 3. Then there exisis
T =T (), independent of jt > 0 such that all solutions p*) can be extended, if

necessary, to [0,T].

Proof. Since p" € C((0, T, H>(R)), the following computations are en-
tirely rigorous:
a, ||p(”) ? —9 (p(m |8tp“)_q - (26)
=2 (pue} |3§.p[") )8 +92 (p(#J |_4 (pua}) p(it})a L (p(u} |F (l, ,O(“)) )8 )

Integrating by parts and using the assumptions on P and F we obtain

2 (o™ |3§p{") ), =—2u ”f)wp(")Hf <0, (27)
(0% |F (,0%)) | < M, (109, . 0) [l6“]1, (28)
and
|(p(u} A (p{.trl) p(.u) )ql = (29)
= |7 122572p (0)) | < Lo (1) 161
It follows that
a]p" |2 < (30)

< M, (1], 0) 1% 2+ Lo (Io®1) 11617 = & (11o]7) -
Let h (1) be the maximal solution of the problem

Bk (t) = G (h (1) (
{ 1(0) = [l (3
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Then
0% @)||” < nt), (32)

whenever both sides are defined. This finishes the proof since i does not depend
on [i.
|

Arguing as in the proof of Theorem 2.1 of [6], we are able to show existence
and uniqueness of solutions in AC ([0, 77]; H*~' (R)) N L ([0,7]; H*). Due to
technical reasons lack of invariance under certain changes of variables), so far we
were unable to prove that the solution we obtain in this way actually belongs to
C([0,7); H: (R))NC ([0, T]; H* 1 (R)), s > 1/2. We do believe this to be true.
However, combining this remark with the results of the previous section we see
that the solution constructed using parabolic regularization must coincide with
the obtained using Kato ‘s theorem in case s > 3/2.

Kato's theory is extremely convenient to establish local well-posedness be-
cause contimious dependence follows automatically from the assumptions®. As
far as we know, no such result exists in the parabolic regularization context.,
Although we can obtain existence and uniqueness, in order to prove continuous
dependence (in the case g = 0), one must resort to the Bona-Smith approxi-
mations ([1]; see also [5]). However, parabolic regularization may be extremely
useful in establishing the a priori estimates that imply global well-posedness.
Let’s illustrate the point by deriving a rather amusing inequality.

From now on, we assume, for simplicity’s sake, that F (f,p) = 0. All the
following arguments can be easily modified, under convenient assumptions, for
the case of nonzero F. In view of 3, the following computation is entirely

rigorous if g > 0%, To simplify the notation write p* = p

allo @)l =2(p () [p (1)) = (33)
=20 (p(8) [2(1))y +2 (1) |02 (0 (1)) (1 — ) " 0.P () )

0

JContinuous dependence can be a formidable problem in the case of nonlinear evolution
equations.
4Recall that we are interested in real valued solutions.
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Integration by parts shows that u (p (t) [92p(t)) < —p||d.p (1] < 0, so that

we can discard the first term in the third member of (33). But then,

Aol =2(p(t) |0 (1))

<2 (p(t) |0 (o (1) (1—02) 0P (1), == (2|1 -3 0P (@),
= (p?|a-a)" &P W),

~ (W IP (), + (e 2| (1-22) " P(p (t ) (34)
<= (P 1P )+ @l | (1 -8 Pl

ot ||0+H(1—6; " P,

~ (PP 1P (1)), + :

But ”(1 — &) P (t})HU < |IP (p(£))]l, s that (34) implies

allp (DI < = ||,o —Plp®)|}. (35)

Thus if P (p) = p?, it follows that 8, [|p (t)||2 < 0 which, in turn implies that
o (D] < llpolls. Moreover this argument shows that P (p) = p? is a natural
choice for the function P(p). In fact one can show that all Sobolev norms
remain finite as t — oo. Combining this with the local well posedness result of
the previous section, we see that if P(p) = p® then (25) is globally well-posed

in H* (R) for all s > 3/2. However, one can do better than that.

Theorem 5 Let P(p) = p**, k = 1,2,3.... Then (25) is globally well-posed for
all s > 3/2 and p > 05,

Proof. Consider p > 0, first. Note that the case k = 1 is the subject of 8,
assume that k > 2. Since p € C'((0,T], H* (R)), we have

Ao O =017 @)l (36)
=2u (Jp () |2T°p (1)), +2 (Jp (1) |[T*0up (720 P (p)) ), -

"Recall that we are now assuming that F (t,p) =
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Now, (J*p (1) |82J°p (1)) = — [|0.J°p (t)]|2 < 0 s0 that

Al @I <2(Jp(t) [T 0up (I8P (p) ),
=—2(J'up(t |Js 20'1-P(ﬂ)))n
=—2(J"0p(t) |7 p (S0P (p))), = A+ B,
where
A=-2 (J"_l(?tp (1) HJ’H, (J‘%)_.,,.P(,{)))] p)o j
and
B=-2({JP(pt)} J 0p @) | Pp(D),

Consider B first:

(37)

(38)

(39)

B==2({J?0,P(p(t)} ' 0up(t) | I (p(t) — 0ip(t))), = Bi+Ba, (40)

where
By =-2 ({,}‘QQJ:P(p (t))} J o ()

T p(t)) s

and

=2 ({J20.P (p ()} T 0up (1) |7 20 (1),
==2({J2EP(p (1)} I Dup (t) | T Dup (1)),

=—2({-P®)+(1-3) " P} I 0] 00 ®)

Since J7%0, € B(L' (R), L> (R)) we have

(41)

(42)

|Bi| < [|P(p(t) )IIu/US Dup ()] |7 p ()] dx < [P (o)l o (DI (43)

Next, in view of Lemmas 7 and 8,

1Bal < 2 ((llooll; exp (€ 1P (po)l1 £)™ + 1P (o)1) o ()2

It follows that
B < K (po.t) o @®)II2,

where K (po,t) is defined and finite for all £ € [0, 0¢) .

(44)

(45)
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Nest we turn to A. We have

[Al < 2]lp@)Il, [|[7*, 0] (1) (46)

o
where v = —J 729, (p). To estimate the commutator, we note that
177 6] p(O)]ly < C {lvellge 172000 + |77 0 |y Nll e } - (47)

In view of the results in the Appendix, we have,
leall = = ||P () - (1 =) P < (48)
2k
<P @)l + 1P )l < (leollt exp (C 1P (po)l 2 )™ + 1P (po)ll o -

Next,
| e )|, = |7 T 20.P (p (D) ||, < 1P (2 (), - (49)
Since p € C ((0,T], H* (R)), and P (p) = p**, it follows that

1P (p)II2 = (20 (t) | J°p* i)) P (t) | T2t (L)), <
S Hp%—EHLX ,0 |er‘ep.2k . U _ ”pzr\-—‘z (‘t)HL'x (J23p2 (f) |p2k (t))o (50)
< |22 )3« (20* @) |20% (1)) 4 < I @I ||e* 1),

4k—4
<le@IFE* e ®I2 < (lpolliexp (C 1P (o)l 1) o @I
Therefore, if g > 0 we have
a: |lp D2 < K (po,t) o (8)]12, ¥ € [0,7] . (51)

Gronwall’s inequality implies that the problem is globally well-posed if p > 0.
Now, the limiting argument employed in Theorem 5 can be used in any interval
[0,T], T > 0, so that we get global well-posedness for y = 0. This finishes the
proof.

a

4 Preservation of Positivity.

Let p(t,z) be the global solution constructed in the previous section, with
P(p) = p*. In this section we prove that the How associated to (2) is positivity

preserving. We have
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Theorem 6 Let po € H* (R), s = 3/2, be such that po (x) = 0 for all x € R.

Then the corresponding solution salisfics
pt,z) >0, vVt >0,z e R. (52)

Proof. Let ¢ (f,y) be the solution of the following initial value problem

o

¢0,y)=y.
where
v (fﬁ?(f.y)) = -0, (‘1 - d;z-)_1 P(f.ﬂ(f. O(f, y)}) {54)
Define S (t,y) = p(t, ¢ (L, y)). Then,
ds do P -
—==h + Pargr = (pv), + pav = —pr, = 1.5 (1) (55)
Moreover
S(0,y)=p(0.y) =po(y)- (56)

It follows that

S (t,y) = po (y) exp (— ] “wa o)) dfr) .. (57)

so that S (t.y) = p(t.e@(t.y)) = 0 if py (y) = 0. To finish the proof it remains

to show that y € R — ¢ (t,y) is onto. But this follows from the inequality®

|6 (ty) —yl < /0 IU(T‘ﬁi’(T-y))IdT*E[J 1P (o (o (my)llpsdr,  (58)

and Lemma 7.

O

5 Appendix: Some Technical Estimates.

Note that if p € H*(R), s > 1/2, then P(p) = p* = p* 20 € L'(R),
k=1,23.. Indeed, H*(R), s > 1/2 is a Banach algebra continuously and

Note that 8, (1—82) " € B (L' (R), L™ (R)).
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densely embedded in L= (R) and p? € L' (R). In this appendix we will estimate
the L' (R) and L* (R) norms of P (p((l))), where p(t) is a solution of (4) on
some interval [0,T]" (as the one constructed in Section 2). To simplify the
notation we will write sometimes p () = p and, v (p) = —J 28, P (p) as in the

original problem (2).

Lemma 7 Let p(t) be as above. Then for all (t,x) € [0,c) x R.

1P @)l < IP (o)l V€ 0,77, (59)
Proof. We have
0P (oDl =0 [ *(t.2)da (60)
3

= ac[|"lg =2 (0" [0 )y = 2k (0" | *01p), -
It follows that
P (p ()l = —2k (01 0x (pv) ), + 2k (0™ |2p),.  (61)

But
2 (0™ 02p), = -2 f P2 (0:p)" dx < 0, (62)
R
so that we must concentrate on estimating the first term on the RHS of (61).

We integrate by parts several times to obtain
=2k (p**110, (pv)), = 2k (2k = 1) (p™ 2uplpv) = =2k (p* |8,v) . (63)
Now,
dv=—(1-02)" %P (p)=P(p)— (1-32)"" P(p). (64)
It follows that
2k ([0 (p0) ), = =2k (0 [P () = (1=8) " P(0) . (63)
Since P (p) = p** we have
(pz;- ‘(1 _ 35)_L pzaz)

"With F(t,z) = 0.

1/ 112 o 11 o
e <l e
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Therefore,
=2k (p*=10. (pv) ), < 0. (67)

s0 that
QNP (p(E)ll <0, (68)

and we get the following a priori estimate
12 (p ()l < 1P (po)ll s (69)

for all £ where p (t) is defined.
O
To handle the L™norm of P ((p(¢))), we first obtain an estimate for the
H' (R) of p(t).

Lemma 8 Let p(t) be as in Lemma 7 and sy > 1/2. Then,
llo )11, < llpoll} exp (C11P (po)ll . ),V € [0,T7]. (70)
Proof. Note that

) / (P> +p2)de =2 / (pOip + paOip.) dx
JR JR
=2 A [p (=0:(pv) + pdip) + po (02 (pv) + ud;p.)] de (71)
= =2 [ [p0u(pu) + pu2(p0)) di+ 20 [ [0+ 22p].
R I:3

Writing v (p) = —J 28, P (p) . using (64) and integrating by parts several times,

we obtain
5] / (p* +p2) dz +3 [ P (p) pidx +2 /pP’ (p) pidx = (72)
Jr Jr Jn
= 3[;@ (1— %)™ P(p)da + 20 [ [002p + 82p,] de.
R Jr

Since P (p) = p* we have P (p) > 0 and pP’ (p) > 0. Integration by parts shows
that 2u [;, [p92p + 92p.] dr < 0. Combining these facts with (72) we obtain

Bf/m(p“rﬂi)dr < 3/Rpi (182" P(p)da. (73)
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Since

(1= 1) @) = % /R e~ £ (y) dy, (74)

Young’s inequality for the convolution (see [4] or [13]) implies
1
(1= P)||,. <5l 1P (0l - (75)
2

In view of Lemma 7 it follows that

o [ (7 +02) de <GNP [ (0o do < CIP i)l ol (76)
Gronwall's inequality then implies that

e N5 < llpoll} exp (C|P (po)ll t) . ¥t € [0,T). (77)

Corollary 9 Let P (p) = p** as before. Then
1P (p ()l < (IpolZ exp (C 1P (o)l )™, ¥t € [0,7].  (78)

Proof. Since p(t) € H*(R), s > 3/2 and H*(R) — H'(R) are Banach

algebras,

1P (e Ol =[[o®*] . <[lo®*], < lo@li (79)

The corollary follows combining this inequality with the previous lemma.
|
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