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THRESHOLD RESONANCE IN GEOMETRIC
SCATTERING

Xue Ping Wang *

Abstract

We study the properties of the resonant states at 0 for Schrodinger
operators of the form P = —A, + qi—.f) + Vo(x) on a Riemannian mani-
fold, where x = r0 is some polar coordinates and g is a perturbation of a
Riemannian metric go = dr?+r2h with h independent of r. A characteri-
zation of zero energy resonant states is given in terms of small eigenvalues

of —Ay, + (](0)

1 Introduction

The spectral analysis of two-body Schrodinger-type operators at the threshold
zero has a long history and has been studied in many works (see for example
[1, 4, 14, 15, 19] and the references therein). These works are concerned with
perturbation of a constant elliptic differential operator (in most cases, the per-
turbation of Laplacian on R") by a term decaying like O(|z|7279), ¢ > 0, as
x — o00. The decay condition is needed to introduce the notion of threshold
energy resonance. The spectral analysis of N-body Schrodinger operators at its
first threshold, the bottom of the essential spectrum, is studied in [23] where
some effective potential decays with the same rate in intercluster variables. The
relevant issue in these works is the asymptotic expansions of resolvent near the

threshold. The main difficulty arises from the possible existence of zero energy
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resonant states, which are invisible in the L2-setting. Thresholds are exceptional
points where new physical phenomena appear. The understanding of resonant
states at thresholds plays an important role in the study of complex phenom-
ena ([1, 2, 19, 24]). In this paper, we shall analyze the zero energy resonant
states in a geometric scattering. The result of this paper is to be used in [25] to
establish the low-energy asymptotic expansion of the resolvent, and under an
appropriate non-trapping condition, the long-time expansion of wave functions

for the time-dependent Schrodinger equation.

The analysis of zero energy resonant states is also of interest in Rieman-
nian geometry. In fact, the extended index of a Dirac-type operator, D, on
a non compact Riemannian manifold, M, can be written as sum of the local
contribution from Atiyah-Singer index theorem and the contribution from the
infinity [3, 11, 17]. If D is non parabolic at the infinity, and if £ — M is a
Zy-graded vector bundle, E = E* @& E~, then there exists some Hilbert space
W(E*Y) C HL.(ET) such that DT : W(E') — L?(E™) is Fredholm and the

loc
extended index can be then defined as:
ind, D" = dim(kery D"/ kerp: DT) + ind: DT

The elements u € kery, D/ ker;2 D can be identified as co-closed zero energy

resonant states of some Laplace-type operator.

Our work on this subject is motivated by the paper of G. Carron [11] and
is concerned with the low-energy spectral analysis for perturbation of a class
of metrics. We want to study Schrédinger operator P = —A, + W (z) which is

perturbation of an operator Py of the form

0
Py=—Ay,+ % (1.1)

on a Riemannian manifold M, with dimension n > 2, which is, outside some
compact, isometric to a conical space Ry x 3, 3 being a compact (n — 1)-

dimensional manifold with or without boundary. If 3 is of boundary, the Dirich-
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let condition is used. Here (1,0) € R} x X is the polar coordinates, ¢(6) is a

real continuous function and gq is a metric on R, x 3 of the form
go = dr® + r*h(0, d0)

with A an arbitrary Riemannian metric on ¥ independent of r. The term %
can not be treated by method of perturbation previously used in low-energy
spectral analysis. New phenomenon occurs due to the non trivial metric h.

Assume —A, 4 ¢(0) > —@. Set

(n—2)
O =S V; U= )\—}—T,)\EU(—Ah—l—q) . 0k = 0soN[0, K], ke N.

(1.2)
When h = (df)?, the standard Euclidean metric on the sphere S"~1 with n > 2
and ¢ =0, one has Py = —A and

aw:{"22+mkeN}. (1.3)

In this case, 04 consists of either only half-integers (n odd) or only integers (

n even). In particular, for Laplace operator —A on R™, one has

{071}a n=2,

1 =3
(O TR (I =
0, 2 B

For perturbation of Euclidean Laplacian —A, it is well-known (see, for example,
[4, 15]) that there are at most one s-wave resonant state and two p-wave resonant
states for n = 2, and one s-wave resonant state for n = 3,4 and no zero energy
resonant state for n > 5. In particular, there is no d-wave resonant state for the
perturbation of the Euclidean Laplacian for all n > 2. In terms of the results
of this paper, these properties can be regarded as a consequence of special
spectral properties (1.4) of the Laplacian with the standard metric on S*~*. In
the perturbation of a non-trivial metric h, the multiplicity of zero resonance

can be arbitrarily large. Even in the simple case where h is of the form

h=h2%do)?  h>0
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(d)? being the Euclidean metric on the sphere, there may be resonant states
with any large wave numbers as A — 0. In Section 5, we shall show that the
multiplicity of the zero resonance has a lower bound of the form Ch~"~1, C >
0, for the Hodge-de Rham Laplacian associated with a family of A-dependent
metrics on 3.

In [11], G. Carron studied the operator P, with P = P, outside some
compact K in a Riemannian manifold (M, g) with conical end. He obtained an
interesting formula on the jump at 0 for the spectral shift function {(X; P, Py k):

£(04; P, Pani) — £(0-; P, Py i) = Z vm, + dimkeryz P (1.5)
vea

where m, is the dimension of resonant states of P with energy 0 behaving like
p(0)

=2
Py

(14 o0(1)), T — 00, for some ¢ # 0, v € 0. (1.6)

(1.5) is proved in [11] by the method of Dirichlet-to-Neumann operator and
shows that each resonant state of the behavior (1.6) gives a contribution v to
the jump of the spectral shift function at 0. This is to compare with the well-
known phenomenon for Schrodinger operators on R? where the resonant state
at 0 gives a contribution of 1/2 to this jump. The goal of this work is to analyze
the zero energy resonant states in more general situation. The main difference
from the previous works [1, 4, 14, 19] on perturbation of constant elliptic oper-

ators is the presence of a non-trivial metric h.

The plan of this work is as follows. In Section 2, we give the asymptotic
expansions of the resolvent Ry(z) = (P, — 2)7!. As a consequence, we obtain
in Section 3 the asymptotic expansion of wave functions associated to Py. Note
that the study of the model operator F is already non trivial, although the
kernel of the resolvent Ry(z) can be expressed in terms of Bessel functions.
Section 4 is devoted to the characterization for resonant states at zero for P.
We show that the behavior of resonant states with zero energy is governed by
small eigenvalues of —A, + ¢(6). This result is important to the proof of the

existence of asymptotic expansions of the resolvent (P — z)~% at 0 ([25]). We
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give in Section 5 a semi-classical estimate for the multiplicity of the zero reso-
nance. Finally, asymptotic expansions for some oscillatory integrals needed in

this work are given in an appendix.

Notation. The scalar product on L*(R;r"'dr) and L?(M;dv,) is denoted by
< +,- > and that on L?(X;duv,) by (-,-). H»*(M), r € Z, s € R, denotes the
weighted Sobolev space of order r with volume element (z)*dv. Hy* denote
the subspace of HM* with trace zero on the boundary. The duality between
HY* and H~17* is identified with L?-product. Denote H** = L?*. L(r, s;1’, ')
stands for the space of continuous linear operators from H”* to H”*'. In this
work, P and P, are considered as self-adjoint operators in L? with form domain
H'. The complex plane C is slit along positive real axis so that z¥ = e”"# and

Inz = log |z| + iarg z with 0 < arg z < 27 are holomorphic there.

2 Resolvent of the unperturbed operator

Consider the operator
q(9)

Po = —Ago-f—? (21)

on My =R, x X, where X is an (n — 1)-dimensional compact manifold, n > 2.
Here (r,0) € Ry x X, ¢(0) is a real continuous function and gy a metric of the

form

go = dr* + r*h

with ~ a Riemannian metric on ¥ independent of r. If 3 is of boundary, the
Dirichlet condition is used for Py. Let A, denote Laplace-Beltrami operator on

3. Assume
(n—2)°

4 b
Then, Py > 0 in L*(Mo; dv) (see [11]). One has

—Ay +q(0) > — on [*(Z). (2.2)

# n—-190 1
P=—gn =5 Tt af)
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Put

am:{y; v = A+(n;2)27)\60(—Ah+q)}. (2.3)

Denote
0L = 00 N [0, K], keN.

For v € 04, let n,, denote the multiplicity of )\, = v? — ("—fﬁ as eigenvalue
of —A;, 4 ¢q(0). Let {(pu V€ 0py, 1 < j <mn,} denote an orthonormal basis of
L*(X) consisting of eigenfunctions of —A,, + ¢(6):

(=2n+a0)p? = XD, (90, ¢D) = 8.

Let 7, denote the orthogonal projection in L?(M,) onto the subspace spanned

by the eigenfunction of —A, + ¢ associated with the eigenvalue A,

mf = Z 09 @9, f e LA(Mp).

Set o
@2 n-1d v-I5 - il
Q, = “r T @ = ,in L*(Ry;r"~dr). (2.4)
Then, we have the orthogonal decomposition for the resolvent Ry(z) = (Py—z)~*
Ro(z) = Z (Q,—2)"'m,, z¢&R. (2.5)
V€O

To establish the asymptotic expansion of the resolvent Ry(z) for z near

I and

0, we look for the asymptotic expansion as z — 0 for each (Q, — 2)~
estimate the remainders w.r.t. v. Remark that ), can be diagonalized by the
Hankel transform of order v ([26]). The Schwartz kernel of (Q, — 2)~! is given

by:

n—z [ 242 rT. dt
Kl/ ’ - _ = +izt—i T J ikl WG
(nrid) = ~r)7F [T 5 o
= _ =2 00 L +zzr‘rt*1—(] 1 dt 2 6
7 F [ et 5) 5 (2.6)

for (r,7) € R? and z with 3z > 0 (see [11] and [21]). Here J, is the Bessel
function of the first kind of order v and
r? 472

drr

p=p(rT)=
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J, can be represented as
Jy(A) = ;(5)“ /1 EM(1 -2 12dt, Ru>-—1/2,  (2.7)
Vil(v+1/2)°27 J_,
and has the asymptotic behavior: J,(\) = O(\*) as A — 0, J,(\) = O(A"1/?)
as A — oo. See [20, 26].

We first give formal expansion for resolvent (Q, —z)™!, v € 0w, in the sense
of pointwise convergence of their Schwartz kernels. By an abuse of notation, we
use the same letter K to denote the operator defined by the Schwartz kernel
K(r,7) in L*(Ry,r""'dr). Let v € 0o and l € Nwith I <v <[+ 1. If [ > 1,
K, (z) can be first expanded in the form

-1

K,(r,7;2) = > 2*F,u(r,7) + Rioa(r, 73 2) with  (2.8)
k=0
n=2 o 88 % e im 1
F(r,7) = —(7«7)—7”’4%/0 ez?_thkJ,,(z—t);l—i (2.9)
_n2 % e im irrzt 1, dt
Ro1((r,m;2) = —(rr)" 2 et 204" (=) —. (2.10)
: A 2’ 2t

Here and in the following, On(g(s)) denotes the remainder in Taylor expansion
of g up to the N-th order:

N (k) 1
On(g(s) = g(s) =Y g k!(o) 5 = %/O (1— NN+ gD (s0) d. (2.11)

J=0

Ifl=0and 0 <v <1, we just set R,;_1(2) = K,(z). Split R,,_1(2) into two
pieces
R, 1(2) = R,y-11(2) + Ryy-12(2)

with R,;—11(2) defined by the integral for ¢ €]0,1] in (2.10). It is clear that
R,;-11(2) has the following asymptotic expansion for any N
N
Ryi1a(r,m32) = Z P K05, T) + Byna(r, 75 2), (2.12)
=l
where ,
o (i) 1 dt

1
=2 g il Tx
KV‘,LJ'(T’,T):_(TT) 3 +J/O elt T2 j! ‘]”(2_15)2_15
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and

1
X Bl 1 ’
R, ni(r,T;2) = —(rT)’TQ/ el§’17J,,(—) On(e™™) ﬂ (2.13)
bt A 2t 9%
The asymptotic expansion of R,;_;2(2) can be deduced from Lemma A.1.
Let us begin with the case | = 0 and v € [0,1]. Then, K, »(z) = R,,;—_12(2) can

be written in the form

K, o(r,7;2) :/ e’z"tt’l"’f(g;r, T,v) dt (2.14)
1
where
1 &
f(s;r,7,v) = D,(r, T)/ gleH2a(1 — @y—12dg, v >0, (2.15)
g
with
. —imv/2
D, (i) = al,(rT)“Tz, ay, = ¢

_221/+17T-1/2I‘(V+ 1/2)°
Write f(s;r,7,v) =322, 8 f;(r,7,v), s € R, where

n—2

fj(rv 7, V) = (TT)7 ? Pja'/(p)v (2'16)
with P;,(p) a polynomial in p of degree j:
Va, ! ;
Piulp) = 5 / (p+6/2)(1— 62)~V2 . (2.17)
Ja
In particular,
p e p 6—1'71'1//2
f()('f‘7 T V) = V(T'T) Z v = —m (218)
AlrTv) = id(rr) T p. (2.19)

If v € [0,1], Lemma A.1 can be applied to obtain an asymptotic expansion for
K,2(z). When 0 < v < 1, (a) of Lemma A.1 gives

N N
K,2(2) = Z K, i(r,m)27 + 2" Z #G,;(r,T) + R, na(r, T, 2) (2.20)

7=0 7=0
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where

Fa5nT) = (rmYCyy (2.21)
Gytj(’f}’r) = (TT)j+yb,,7jfj (222)
Ryna(r,m,2) = Ryna(rT2) (2.23)

When v = 0, we derive from (b) of Lemma A.1 that

Koa(z) = XN: Kopi(r,7)2" +Inz ZN: 221G (r,T) + Ron (T, 7, 2) (2.24)
=0 =0
where
Koo i(r,7) = (r7)?(Co; — % In(r7)),0<j <N, (2.25)
Goj(r,7) = —(irT) % 0<j<N, (2.26)
Ronao(r,7,2) = (izrm)¥ T fyiabnis + Rona(rr). (2.27)

Here all quantities are defined as in Lemma A.1 with f(s) = f(s;r,7,v) and

fj = fj(r’ T, V)'

In the case [ > 1, inserting the integral remainder formula of O;_;(e™™)
into (2.10), we can then apply Lemma A.1 to obtain the expansion of R, ;_12(z).

Summing up, we have proved the following

Proposition 2.1 Letv € 0, andl e Nwithl <v <l+1. Setv =v—1¢€
[0,1].

(a). Ifl <v <141, one has

N N-1
(B, —2" = Z PF, i +2 Z G, + Ron(2) (2.28)
=0 =1
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with F,; given by (2.9) for0<j<land forl+1<j <N,

(5 =) .
E; = (jj! >(7‘T)70u"j—l+

(irT)?
1

1
. 1
/ tﬂf"*lf(g;r, 7,v) dt, (2.29)
0
Gy = (Y™ bugfi, 1<G<N, (2.30)

/ irrz)t [t .
Ronte) = 2 Guy + 3 [0 =0 e atoer)
(=D Jo
1
: 1
+/ ON_l(eWZ”)tl"l"”f(;;r,T,I/)dt)d9 (2.31)
0

When | = 0, the integral in 0 is absent.
(b). If v =1 €N, then,

N N
= Z 2F,;+Inz Z 2Gy;+ Ron(2) (2.32)
=0

i=l

with F,; given by (2.9) for 0 < j <1—1 and

=D
Fyﬁj = (T'T)]{Z(’]T)ngj,l—l ( ) f] Clgf] l} (233)
. 5 1 ‘ 1
+(Z;—T)/ tj’l’lf(g;r,T,u) dt, 1<j <N, (2.34)
P Jo
Gy = —(irr) fj l, I<j<N, (2.35)
Ron(z) = (izrT) + fN+1bN+1 + Rona(2rr)
1
. 1
4 / ON(e™ M f( )t and (2.36)
0
irrz) NN — [+ 1)! L N
Rin(2) (irmz) (N(+ ] ) IN—ig1bn i1 +/ (1—60)""(Ron_1,2(02rT)
! 0
I
4 / On e f (37,7, v)it) o (2.37)
0

forv=12>1. Here co; =0 for all j and

ij /1 oy |
R —— 1-0 o’ 1H9d67 1217 Zl
e j
Cyj = Cuj(r,7) and b, ; € C are defined in Lemma A.1 for 0 < v/ < 1 with
f(3) replaced by f(%;r,7,v).

Cj =
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Let L** denote the weighted L?-space L*(R., (1+7)*r"~1dr) and £(0, s; 0, s')
the space of bounded linear operators from L% to L>*'. In the later, we use the

same notation for weighted L2-spaces over R™.

Lemma 2.2 Let v > 0. Let [v] denote the integral part of v and V' = v — [v].
Let F, ;, G, ;, R, n(2) be defined as before for different values of v and j.

F,; € L£(0,50,—s), s>j+1, forj<v, s>2j—[v]+1, forj>v
G,; € L(0,80,—5), s>2j—[V]+1+V,j>[V]
R.n(2) = O(|z]N*) € £(0,5,0,—5), s>2N—-v+1,

for some € > 0.

Proof. Let v ¢ N. When j < v, F,; given by (2.9) can be bounded by

a2yl [ 1, di
Bl ] 2 (5 ]ﬁ/o Pl () o (2.38)

By the asymptotic behavior of Bessel functions, the above integral is convergent.
One can show that the convergence is uniform in v € o, for each j. In fact,

from the properties of Bessel functions (see [20, 26]), it follows that

1
2(— (v +1)
T(v/2—j/2+6/2)
P (/2 +j/2+1—6/2)

1
/ 797 J,(7)| dr
0
/ 97 YJ,(7)| dr
1

Cs

Here 0 < § < v — j is small. It follows that
|Fy(r )| < (rm) ™54, j<u,

¢; is independent of v € 0. If s > j+ 1, (1 + r)==(rr)""T (1 + 7)~* defines
a Hilbert-Schmidt operator on L*(R ;7" 1dr). It follows that

1Fojllz,s0-5) < €(4,8), YV>J, VE O, (2.39)

where ¢(j, s) is a constant independent of v.
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For j > v, F,; and G,; depend on fo,---, fj_p with fp(r,7,v) =
(T’T)*%Pky,,(p) where P, is a polynomial of degree k in p. Since for j > k

(P (rr) ™" F b = (rr) TR 4 1) /4)"
it is easy to see that if s > k+ 7+ 1, (1 +a)~*(r7)! fe(r,7,v)(1 + y)~* defines
a Hilbert-Schmidt operator on L*(R;r"~!dr), so it belongs to £(0,s; 0, —s).
Since O;(f(3;r,7,v)) can be bounded by

cg(rT)‘"sz(g)j“, Veelo,1],

this shows that (r7)7C,/ ;_; defines an operator in £(0, s; 0, —s) for s > 2j —I+1.
Therefore, F,,; € £(0, s;0,—s) for s > 2j—I41. The continuity of G, ; is evident.
To estimate the remainder, remark that if v € N, one has R, y(2) =
O(|zIN*1) in £(0, 5;0, —s) for s > 2N —v+3. Note that R, x(z) can be expressed
in terms of R, n_1(2), F, v and G, n. It follows that R, n(z) = O(]z|V|Inz|)
in £(0,s;0,—s) for s > 2N — v+ 1. A complex interpolation gives the desired
estimate in the case v € N.
If v ¢ N, On_i(f(L;7,7,v)) can be bounded by c(rr)~"2" (£)N="+ for any
€ [0,1]. We derive that for s > 2N — [V] + v/ + 1, R, n(2) = O(|2|"*") in
L(1,—s;—1,s). In terms of R, ny-1(z), F,n and G, y_1, we can also estimate
that R, n(2) = O(|2/N ") in £(1,—s;—1,8) for s > 2N =[] + V' — 1. A
complex interpolation gives that R, n(z) = O(]z|V*9) in £(1,—s; —1,s), if
§>2N+1—-[v]—V =2N+1—v.

Define for v € o4

zlnz, ifreN

ZV:{ 27, ifregN

Let oy = 0 N0, N]. For v > 0, let [v]_ be the largest integer strictly less than
v. When v = 0, set [v]- = 0. Define 4, by 6, = 1, if v € 0, NN; 0, otherwise.
One has [v] = [V]- +6,.
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Theorem 2.3 The following asymptotic expansion holds for z near 0 with Sz >

0.
N N-1
Ro(z) = dolnz G0,0+Z P F+ Z 2 Z PGy j1s,m+ RV (2),(2.40)
=0 veoy  j=[]_
in £L(—1,s;1,—s), s > 2N + 1. Here
Fj = Y FEym€L(-1,51,-s), s>2j+1 (2.41)

VEO

RV = 02V e £(—1,5;1,—s), s>2N+1, e>0. (242)

Proof. Note that for fixed j and N, apart from a finite number of v, F,, ; and
R, n(2) are given by (2.9) and (2.10), respectively. So we can use the prop-
erties of Bessel functions to prove as in Lemma 2.2 that they are bounded
in £(0,s;0,—s) for appropriate s, uniformly w.rt. v € 0s. The result in
L(—1,s;1,—s) follows from the ellipticity of F.

O

Remark 2.4 (a). It is proved in [11] that under the assumption 0 € 0o, Ro(2)
is uniformly bounded in L(—1,s;1,—s), s > 1, and under the assumption [0, 1]N
Ooo =0, it is C* up to the real axis in L(—1,8;1,—5), s > 2.

(b). Assume that 0 € 0. If s > 1, Theorem 2.3 gives

in L(—1,s;1,—s) for some e > 0. If s > 3, then,

Ro(z) = Fo + zFy + Z 2, Gys,m, + O(|2|*1) (2.44)

vET]

in £L(—1,s;1,—s). Here

F, € L(-1,s1,—-s), s>1,
F e L(-1,81,-s5), s$>3, (s>2, ifo,N[0,1]=0),
G, = (1) TH, 0<v<l,
e™T(1—v) 1
y = e, 0<v <, =
. 22+ (v 4 1) v a 8
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(c). The remainder estimates can be improved with the help of information
on ay. Making use of the kernel of the remainder R,o(z), we can show that if

v>1,
(@ —2)7" = Fuo+0(l2),
in L(—=1,81,—s), s>140,0<d<1, and if0 <v <1,
(Q,— 2" = F,0+2G,; +0(2°,

in £L(—1,81,—s5), s>14+2—v, v <§<1. Let vp = min{v € 01} > 0 and
vy =max{v € g1} < 1. Then,
Ro(z) = Fo+ Y 2,Gusm +0(2) (2.45)
0<v<1

forvyy <6< 1lands>1+20— 1.

3 Long-time expansion of wave functions of F

Consider the Schrodinger equation

(=l 2w o1

with ug € L?(My). Let
Up(t) = e, teR.

Then,
1

~ 2ir

The long-time expansion of solutions to the Schrodinger equation associated

Us(t) /e‘“ARO(A+ i0) dX\, t>0. (3.2)
R

with Py can be easily deduced from Theorem 2.3.

Theorem 3.1 One has in £(0,s;0,—s) with s > 2N + 1

N—-1+6,

Do)=Y > 77 a,;G,m, + 0t N1 (3.3)

veon j=[v]
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Here
b, ,(TT)HV’f;M(r T;V) véEN,
G, T = .’ijm'] g y » ’ >
3(r,T) { _%fj,[,,](r,T;O% veN. (34)
o, = { =0 sin(um)e™?*T(v+j+1), v¢EN, (3.5)
. o= + Y, ver

fi—p(r, 73 V") is given by (2.16) and b, ; by Lemma A.1.

Proof. Let A denote the generator of the dilation group: A = i~1(rd, + 9,r).

Since My =R, x X, one has

i[Py, Al = 2Py, i[---i[Py, A],-+- , Al =2FPy, k>2,

k times

in the sense of forms. The Mourre’s method with multiple commutator estimates
can be applied. It follows that for k+1/2 <s<k+1, k € N,
dk
||<x)_SWR0()\ +10){z)~°|| < C’kﬁ)\_(k“)/z, A>e>0. (3.6)
Let x € C3°(R) with support in a small neighborhood of 0 and equal to 1 near

0. By the Fourier transform, one obtains from (3.6) that
Uo(t)(1 — x(B)) = O0(t™N), ¢ — +o0,

in £(0,s;0,—s) for s > 2N + 1. It remains to apply Theorem 2.3 and Lemma
A2 to Up(t)x(Py) in order to obtain (3.3).

O
Example. Let M, =R, x 3, where ¥ is the unit circle deprived of one point:
¥ =S"\ {(1,0)} C R2. Let h, = a?(df)?, a > 0, on ¥ and —A,, the Dirichlet
realization of —A,, on My with go = dr? + a*(df)?. Then,

¢tho ~ Ot 271t — o0.

In particular, if @ = 27 (so that the length of the unit circle is equal to one in
the metric hs, ), then

et ~ O™ — 0.

Here C' is some operator of finite rank.
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Remark 3.2 In [7], global Strichartz estimates are proved for Schridinger and
wave equations associated to —A + &, where —A s the Laplacian on R™ and
a is a constant with a > —(n — 2)2/4. More precisely, they proved for u(t) =
AR F f e 12 that

lullzpzgy < Cpsns @)l £z,

where % +i=%p22and (n,p) # (2,2). We believe that similar estimates

hold for Py = —A4, + @ on Ry x X under the condition 0 & oy.

4 Eigenfunctions and resonant states at zero

Let M be a Riemannian manifold which outside some compact is isometric to

R, x X. Consider the perturbation of Py in the form

P=-A + @ + Vo () (4.1)

on M, where x = rf is polar coordinates around some point zo € M, g is a

Riemannian metric on M and Vj is real function such that
g—90=0(z]™),  Vo(x)=O(z|"") (42)

for some py > 2 as || = d(z, o) — oo. g is assumed to be C? and V{, bounded.
We also assume that P is self-adjoint as form defined on H}. A sufficient con-
dition is that

1) 5 _a(-a,)—b (4.3)

r2 =
forsome 0 < a < 1andb € R,. Let K be a compact of M such that My = M\ K

is isometric to R} x 3. On My, P can be written as
P=P+4+V, V==-A+A,+ V@)

Remark that the extension by 0 of v € Hi (M) is in H (M), and the restriction
of we H'(M) to My belongs to H™'(M).
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Definition Set N = {u; Pu = 0,u € Hy *,¥s > 1}. A function v € N\ L? is

called a resonant state of P at zero.

The asymptotic expansion of solutions to elliptic equations on manifold
with conical singularities is studied in [16, 17]. To establish the existence of an
asymptotic expansion of the resolvent R(z) = (P—z)~! ([25]), it is crucial for us

to characterize the resonant states and to distinguish them from eigenfunctions.

Theorem 4.1 Assume py > 3 and that 0 € oy. Let w € N. Then,

oo e o o9(0)
u(rd) = Y Z—E < Vu, |y~ 7 oY) > +v (4.4)

n—2
n=2.,
0<v<1 j=1

where v € L? | and < -,- > is the scalar product in LQ(MO; dvg,). In particular,
e L? =< Vu, \y\‘nT4+”¢£j) >=0, VYveo,1<j<n,. (4.5)
Let C denote the linear span of all vectors of the form

1 .
c(u) = (g, <Vu, —ly|" 0D > veay, 1<j <n,) €CF,

withu e N, k=Y __n,. Then,

veol

dim(N/(kerzz P)) = dimC. (4.6)

Proof. We only need to work with r large. Foru € NV, set u = 3, D72, Ui+
o, where v’ = 7'u with 7’ = 3~ _ 7, and u,; = (u, go,(,j)));. Then in M,, one
has

P’ = —7'(Vu).

In the cylindrical coordinates (¢,6) (x = r6, r = ¢'), one has
|z Rz =07 —(n—2-27)8; +T(n —2—7) + A, (4.7)

with A = —Aj, + ¢(6). Taking 7 = 52, we obtain

(n—2)

2T Pola] T =~} + -

+A (4.8)
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Let u,; = (4, 09)g, (Vu),; = (Vu, o9)s. Let v,; = |z|"= u, ;. Then,

(=82 + )0, = —e"F 4 (Vu),, (4.9)
For the equation (—d? + v?)f = g, we have the following Agmon-type energy
estimate

le”Mfll < ClleMgll, vV f, geCP,

where v/ = v —¢€, € > 0 can be arbitrarily small and C. is independent of v, f
and g, and is uniformly bounded if € is away from 0. By a density argument,
we can show that if e@=9l+"5*1(Vy), (¢! is in L2(R; dt), then e®=ly, (et

is in L3(R; dt) and
e =Ml ;]| < Cclle® M4 (Vu), 4], (4.10)
In L*(R,, r™~dr), we have
7wl < Cllr = (Va)l

if vt 1=¢(Vu),; € L2 (R4, "~ 1dr). Since po > 3, (Vu),; € L2~ 1=¢(R, r*~tdr).
Take

1<V <min{py — 2, min{v € o, \ 1} }.

We obtain
Il < Cllr (V) (4.11)

uniformly in v > 1. Summing up the series in (v, j) with v > 1, one sees that
w' € L? and that ||(r)* /| < C||{r)"*' 7' (V)]
For 0 < v < 1, we seek the leading asymptotics of u, ;(r) as r — co. We

want to deduce from (4.9) that

1 [ _a n—
TRV, () T 4l
»J

Uy, (1) = (4.12)

2 v’

with u, ; € L*(Ry;7"~'dr). By (4.9), v,; can be represented as

n+2 -

1
() = Cye’+Ce™ - 5/}}{{6"’“‘5'6 20 (Vu),,;(e®)ds
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Since w,; = —F,0(Vu),;, we see that |u, ;(r)] < Cr="2" for all r > 0. This

shows Cy = C_ = 0. Now set v,;(e') = ’U,E?; + U,Elj) + ’U,EQJ) with

1 o n
wil€) = =g | eI u,(eds
v(l)(et) _ Oo(3_"“_5)6"7”5(Vu) i(e*)ds
g ~ By ) v,j
@ IS Y R : .
b(€) = mgp [ TR Viu(en)ds

vf’? gives the desired leading term. v")(¢') and 1)52]) (€') can be bounded by

2

1 o0 n+2
o ), et e8| (V) ;(e*)|ds
1 e 1/2 12
- {/ e2u(s—t)—2u Sds} ||€(u +HT)5(VU)V.j||L2(R~d5)
2v | J, ’ ’

< Ce I M (V) ugll L @esrm-tan)

with 1 < v/ < pg — 2. Uilj and v,(fj) give rise to the L2-remainder term of u, ;.
(4.12) is proved, hence Theorem 4.1.

u € N/ kerpe P will be called a v-resonant state of P if

u(re) =201 oL

+0
T%+V Tanz+v+e ’

r—oo, €>0,

for some ¢ # 0. A family of v-resonant states is said linearly independent if
their leading parts are linearly independent. A consequence of Theorem 4.1 is

the following

Corollary 4.2 Let m, > 0 denote the maximal number of linearly independent
v-resonant states. Then,

m, <n, (4.13)
where m,, is the multiplicity of the eigenvalue \, = v? — % of =Ay, +q(6).

In particular, 0 is not a resonance of P if o1 = (.

Remark 4.3 Assume that u is a v-resonant state. Assume py > 2. Since Vu €

H=bro=Hv=¢ for any ¢ > 0, V' at the end of the proof of Theorem 4.1 can be
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any number with v < V' < po — 2+ v. This shows for A, = v? — (n —2)?/4 and

Upj = (U’v @'(/j))f
1 ; e i
U (r) = =5 < Vu, oy T > e T (14 0(79), r— oo, (4.14)
for any 0 < e < po— 2.

Assume now 0 € 0. By Theorem 2.3, Ry(z) = Inz Goomo + Fo + O(|2]%)
in £(—1,s;1,—s) for any s > 1. Let ¢o(z) = o (9)r—"2", where ¢ is a
normalized eigenfunction of —A, + ¢(f) with eigenvalue —(n — 2)?/4. Denote
still by ¢p its extension by 0 outside My. Then
1
Goomo = 3 <, ¢0 > o
is defined on M.

Theorem 4.4 Assume py >3 and 0 € 0. Let u € N.

(a). One has
u = <Vu,—Inrgy > ¢o (4.15)
= i a2y, oy 99 (6)
— < Vu, =y~ T ) >
+ Z Z 2V U, ‘y| QOI/ rnT—Z_H/ + v

0<v<1 j=1
where v € L.

(b). Assume M = My. Let uw € N. Then, one has < Vu,do >= 0 and
(u+ FoVu) = Bgo with B =3 < Vu,—Inr ¢ >.

Proof. (a). We keep the notation of Theorem 4.1. By the proof of Theorem
4.1, it remains to study the asymptotics of ug(r) = (u,o)s, v € N, which
satisfies Pyug = —(Vu)o. The argument used in the proof of Theorem 4.1 allows
to show that there exists a constant ¢ such that up = cr= "= +uyp with ug, O.uy =

O(TJTQ*PS), for some € > 0 as r — oo. To determine c, we calculate for R > 1

/ (Vu)(z) Inrdo(x) dz

= —/ (Pow)o(r)r? Inr dr

r<R
(8- (o) (In7 7/2) — ued,(In7 r™?) 4 (n — Vuo(Inr ™2 1))|,_g
—c+ O(R™).
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Here x = 7 € My and dx = r" 'drdv,. Taking the limit R — oo, we obtain
c=<Vu,—1Inre¢y >.

(b). Assume M = M,. For u € N, one has (P + V)u = 0. Since u € Hy ™
and Pyu = —Vu € H"* for some s > 1, one has: < Pyu, ¢g >=< u, Pydpg >= 0.
It follows that < Vu,¢y >= 0. Let ¢ € H1* with < ¢g,¢5 >= 1. Set

T=<-,05> ¢, 7 =1—mand v = 7'u. Then 7'Goo = Gy’ = 0 and
Py’ +7'(Vu) = 0.

From Theorem 2.3, it follows that ' + For'(Vu) = 0, or (1 + FoV)u = f¢y for
some (3 € C. By (a), up = er~ "% +u) with ¢ as in (a) and u}, € L2 Making use
of the relations ug + Foo(Vu)o = ﬁr‘%z and < Vu, ¢y >= 0, we obtain from
the asymptotic behavior of Fyo(Vu)e as r — oo that § = 3.
0O
Part (b) of Theorem 4.4 shows that (1 + FyV)¢ = 0 if ¢ € N is not a
O-resonant state. If (1 + FoV)u = B¢ and if

Yo =< ¢o, =V o ># 0, (4.16)

then, 8 = —v; ' < FoVu, Vo >.

5 A semi-classical estimate on the multiplicity
of the threshold resonance

To show that the multiplicity of the threshold resonance in geometric scattering
can be arbitrarily large, we give an example in terms of Hodge-de Rham Lapla-
clan with a metric depending on a semi-classical parameter A. This example is
based on Proposition 5.3 of [11] which is proved by Theorem of extended index
([9, 17]). Let us recall the framework in which Proposition 5.3 of [11] can be
applied.

Let (M,g) be a Riemannian manifold of even dimension n, with M =
R, X X, 3 being a compact (n — 1)-dimensional Riemannian manifold without

boundary. Suppose that there exists an h-independent compact outside which
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g = go = dr*+ f(r)*h, where
fry=ntr,  h>0.
Let APT*M denote differential p-forms over M and let
AT*M = @y o APT"M, A*"T"M = EZOAZPT*M.

Every differential form o € A?T*(R, x ¥) can be decomposed as w = dr A
g + o with a; € A?71T*3 and o, € A?T*X. Define

I CP(AT* (R, x 8)) — CP (R AT*S)

by I(a) = fo~m=D/2q) — fe==D/2q, where p = p on C°(APT*X). I extends
to an isometry from L2(A®*"T*(R; x )) onto L?(R4; AT*X):

TR —— / V@) (D) B resy dr

Let D =d+ 6 : A*"T*M — A°¥T*)M denote the Gauss-Bonnet operator on
M. Then, D is isometric to a Dirac-type operator outside a compact ([6]):
0 hA+L
Id+0)'a=0(= «,
(d+a) o =o(o+ 2L
where A is Gauss-Bonnet operator over X, therefore a symmetric first order

elliptic differential operator, ¢ = (—1)?, and L = (—1)*(p — (n — 1)/2). For

a€CRRGAT'S),  (5.1)

each fixed %, D is non-parabolic at infinity on (M, g) (Proposition 5.5, [11]).
The theorem of extended index can be applied (see [9, 17]). Let E., E_ denote
differential forms with even and odd degrees, respectively. Let D be the re-
striction of D to E.. In the decomposition AT*M = E, & E_, the Hodge-de
Rham Laplacian P = D? = §d + d§ has a supersymmetric structure. Let Py be
the restriction of P to Ey. Then,

P = < % ]S_ ) :
Let mE(h) denote the dimension of v-resonant states of Pr. The dimension of
v-resonant states of P is m,(h) = m; (k) + m; (k). According to Proposition
5.3 of [11],
n—2
2

m; (k) +mi_,(h) = dimker(A(h) — ( +v), 0<v<1, (5.2)
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where A(h) = hA+ L can be explicitly calculated by using the Hodge operator
, on 2. See (5.10) in [6]. It follows that
— . n—2
> (mf(h) +mi_,(h)) = dim xjo.(A(R) L (5.3)

0<v<1

where o,1) is the characteristic function for the interval [0, 1].
Proposition 5.1 There exists C, > 0 such that
m(h) > C,im ™ V(1 +0(1)), h—0. (5.4)

Proof. Note that by the asymptotic behavior of resonant states, one sees that
mi_, (k) # 0 only if u =1 — v is an eigenvalue of A(%). Therefore
> om ()< Y mp(h)
0<v<1 0<pu<l
The total multiplicity of zero resonance of P has then a lower bound
; n—2
m(h) = Z(mj(h) +m,, (h)) > dim xp1(A(h)" — 5 ), (5.5)

v

where xp, is the characteristic function for the interval [0,1]. Tt suffices to
apply the result on semi-classical asymptotics of eigenvalues to calculate
rank xp,1y(A(R) — "7’2) In an orthonormal frame of 73, x € 3, the A-principal
symbol of A(h) is given by

9 EN Ly on EBZ;& NI, (5.6)
0 ln—2 f
0 0 -+ 0 &N I,

where I, = (—=1)P(p — %52), €A is the wedge product and ¢ the contraction.
From the semi-classical asymptotics of eigenvalues on compact manifolds with-
out boundary (see [13] with A = A~1 — o0), it follows that m(%) admits a lower
bound of the form (5.4) with

n—2
.. :/ trxo,1 (o (2, &) — 5 ) > 0.
T3
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Here tr denotes the trace of operators on &;_ LAPTHE

O
For M =R? and i = 1, G. Carron gave in § 5.4 of [11] a formula for some

m;, . Proposition 6.1 may be regarded as a more general version of this formula.

A Some oscillatory integrals

In this Appendix, we give some formulae needed to establish asymptotic

expansions for the free resolvent and wave functions.

Lemma A.1 Let { € C with IC > 0. Assume that f is a smooth function in
s € [0,1] and has the convergent expansion f(s) = >272, s’ f;,s € [0,1]. Let

Iy(g):/ eiat‘l“’f(%) dt, v>0. (A1)
i
(a). Let 0 < v < 1. Then,
N N ~
=Y FCu; + ¢ bt + Buna(C)- (A2)
j=0 Jj=0
Here
#ore 1 T~ fe
i = e j—v—1m). — — L
Cuy = 57 | PO+ j!; Py (A.3)
e~ 2T (1 — v) ,
by = — — j>0 A4
g 1) wrg) (A4
. 1
Ruxal€) = / ()™ O ()it

ZC 7+1/ / On—j—1(€°%)(1 — )t "dtdf. (A.5)

(b). When v =0,

N e N N
B(Q) = ~In¢ 3o 4 37 000, + (10 sty + Foald). (A0)
=0 ’ j=0
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Here
N e 1 5 i 3 ,
Co; = i t Oj(f(;))dt+l fibi + ]—Z 7 J = 0(A.7)
1/, P
oo 1
b = / e“ﬂ—k/(e“fl)@ (A.8)
1 t 0 t
b = - /1(1 0)111n9d9+b i>1 (A.9)
R I '
Fowa(¢) = / EIOME)On(F(E— fo [+ Ox(e
1 0

N

ZC // 010y (ltcf))%)de. (A.10)

Proof. (a). Let 0 < v < 1. For ¢ € C with 3¢ > 0 and ¢ # 0, one has

0 0 1
/ St dt = ¢ / etV dt — / i (A1)
1 0 0

For j > 0, we first use the Taylor expansion with integral remainder (2.11) of
order j to €*t, then use (A.11) and finally again apply the Taylor expansion of

the order N — j — 1 to €% By an elementary calculation, it follows that

o0
/ ei(tt—l—v—jdt
1

(i¢)* " ._(Z'C)j+1 1 1 e
m*“l’w 4! /0/001\7—1—1(6 )(1 — 6)’t~vdtdo.

IM-

Here

i+
b; = (1—0]9“ 1d9/ ettvdt.
J' 0

Expanding first f(3) up to the order O(¢t~"~!) and then applying the above
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formula, we obtain

N o o0
L) = ij/ e“tt’j’l’”dt—i—/ e“tt’l’”ON(f(%))dt

1,

= Zof]{z k' k+l/ CJ+Ubu]}+Z 7/4' ],uN

7=0

N / oN(ei@)fl*"oN(f(%)dt

N i)
3% (ZCJ?'H / 1 / ' Ony 1 (€M) (1 — 0)itvdtd  with
= ! o Jo
1 [ 1
Cjun = 7/ t]‘”‘l(QN(f(g))dt.
It follows that
N N f N B
L(¢) = Z(l() (C. JVN-FJ Zm))+€uz(jbu,jf:j“‘Ru,N,Q(C)' (A.12)
j=0 ' J=0

(a) follows by noticing that to obtain the formula for C,, ;, we need only to apply
(A.12) with N = j.

To prove (b), we use the identity

o0 1
/ eit(ﬂ:—lnC+bO+/ (1— ¢yt (A.13)
1 3 0 3

with by defined in Lemma A.1. It follows that

N+1

B = X4 [ eresans [T oy

N+1 0
; 1.
- Zf]/ g1 1<tdt+z iC JC]0N+/ t’l(QN(e’“)(’)NH(f(?))dt
7=0
L 1 1
Cjon = = [ ¥ 0N+1(f(;))dt-
L
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For j > 1, one has

X s di
/ eztc m
1

iQ)k .. In
-y ﬁmoﬂ(—%w)
0<k<Nk7£j ‘U J:
1 1 dt
j 1 74 AN de
ks [ [a-oon @)
where
b~—7;/1(179)j*11n6d6+@
¢ (=1 Jy g
This proves
N ic N N41 g
(O = fol-+b -3 WL m )+ S Con + SV b -=7)
k=1 j=0 j=1 :

+ Z (i¢)* Z ﬁ-FRQNQ(C)

0<k<N 1<G<N+1j#k
with EO,N,2 given in Lemma A.1. The expression for Cp; follows by applying
the above formula with N = j.
O
To obtain long-time expansions, we need the following results on the Fourier

transform of temperate distributions of the form (s + i0)* In* (s + i0).
Lemma A.2 (a). For \€ R, k€N,

1 )

b /(s 4 i0)* In* (s + i0)e~**ds
i g A A2 1-A 7,7

= ; ;Cﬁ <m($ln(ﬂ'/\) e / F()\ + 1))) t— " In't

fort>0.
(b). For A € R, k € N*,
1 ,

S /(s +i0)* In"*(s 4 i0)e~***ds

—k

- T {Z O ld)\l —(sin(m\) ei“/gl“(/\—kl))lnlt—i—O(lnN1t)}
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fort > 0.

(c). Assume that 7(z) is an analytic function for z near 0 with Sz > 0 and
is continuous up to Iz = 0 satisfying |r(z)] < C|z|* Inz[*. Let x be a smooth
function on R with support near 0. Then

1 )
I%/w(s—kio)e’”sx(s)dﬂ € Y Tmg

fort>>1.

See [12] for (a), [20] for (b) and Lemma 10 in [22] for (c). For the long-time
expansions of wave functions, we actually use the asymptotic expansions for the
Fourier transform of x(s)(s +40)* In"(s 4- i0), where x € C§°(R) with x(s) = 1
near 0. It is clear that the asymptotic expansions are the same as in (a) and (b)
of Lemma A.2 for £ > 0 and k£ < 0.
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