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LOCAL ENERGY DECAY OF SOLUTIONS TO THE
WAVE EQUATION FOR NONTRAPPING METRICS

Georgi Vodev ®

We will begin by recalling Vainberg’s results [5], [6] on the local energy decay
of solutions to the wave equation. Let O C R" be a bounded domain with a
C*-smooth boundary and a connected complement Q = R™\ O. Let g be a
Riemannian metric in € of the form
9= gj(x)dridz;, gi;(x) € CZ(Q),
ij=1
such that g;;(x) = d;; outside some big compact, where §;; denotes the Kronecker

symbol. Denote by A, the positive Laplace-Beltrami operator on (€2, g) and let

V, be the corresponding gradient. Consider the wave equation

O+ A)u(t,z)=0 in RxQ,
Bu(t,z) =0 on R x 09, (1)
U(O,ZE) = fl(x)vatu(ov $) = f2(x)7 T €,

where B denotes either Dirichlet or Neumann boundary conditions. Define the

local energy of the solution of (1) as follows
Eioo(t) = /Q (10u(t, 2)|? + |V qu(t,x)[?) xda.

where y € C*(Q), x = 0 outside some compact. Denote by G the selfadjoint
realization of A, on the Hilbert space H = L?(Q, dVol,) with boundary condi-
tions Bf = 0. Then the solution u of the equation (1) can be expressed by the
formula

sin (t\/@)

U = COS (t@) f1+Tf2. (2)
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We will say that the Generalized Huyghens Principle (GHP) for the equation

(1) holds if for every function y € C*(Q) of compact support, there exists

T > 0 such that the distribution kernels of the operators y cos (T\@) x and

Xsm(ja\/a) x are of class C*°(Q x Q). It follows from the results of Melrose-

Sjostrand [3], [4] on propagation of C* singularities that GHP holds for non-
trapping metrics. Recall that the metric g is said nontrapping if every general-
ized geodesics (see [3], [4] for the definition) leaves any compact in a finite time.

Vainberg [5], [6] proved the following

Theorem 1. Assume GHP fulfilled. Then, for t > 1, the following estimates

hold
Ce "E(0), n>3odd, C,v>0,
Ct="E(0), n>2even, C >0,

Eioc(t) < { (3)

provided f1 and fo are of compact support, where

B0) = [ (1RP+I9,A1)dz.

Vainberg’s proof is based on the fact that GHP implies that the cutoff re-
solvent

RN =x(G=X)"'x:H—H, ImA<0,

extends analytically (if n > 3 is odd) to the strip ImA < 7y, 70 > 0, has a
logarithmic singularity at A = 0 if n is even, and satisfies in this region the

estimate

&

Al

Given s > 0, define E,(t) by replacing x by (z)~* in the definition of Ej,.(t).

1By Ml e <

There are several open problems concerning Vainberg’s result stated above. The
first one is to see if one still has estimates like (3) for more general Riemannian
metrics as for example longe-range perturbations of the Euclidien metric, or for
perturbations by long-range potentials. Another intersting question is to ask if
GHP implies estimates analogues to (3) for F4(t) even in the setting described

above. The purpose of this work is to study this kind of problems. We will state
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our main results in the case of the Scrodinger operator Ay + V(x), where the
metric g is as above and V' is a real-valued, non-negative, long-range smooth
potential. Note that the same results still hold for more general Riemannian
metrics on a large class of non-compact complete Riemannian manifolds. The
proofs as well as more details are presented in the article [7].

Denote by G the self-adjoint realization of the operator A, + V(z), where
Ve C®(Q), V(z) >0, Vr € Q. We will be interested in studing the following

mixed problem
02+ A, +V(2))u(t,zr) =0 in RxQ,
Bu(t,z) =0 on R x99, (4)
U(07I) = (}O(G)fl('r)vatu(ov I) = @(G)fZ(x)v x € Qv

where p € C®(R), p(o) =0 for 0 < a, p(c) =1for o0 > a+1, a > 0 being a

large constant to be fixed later on. The potential V' satisfies

Ca% e
W(x)‘ <Clxy 9 k=01, (5)

with some constants C' > 0, 0 < § < 1, where r denotes the radial variable.
Given a real s > 0, we define E,(t) for the solution to (4) as above, and E_,(0)
by replacing in the definition of F(0) above dx by (x)**dx with f; and f, being

as in (4). Our main result is the following

Theorem 2. Assume (5) and GHP fulfilled. Then, if the parameter a above is

taken large enough, we have, fort > 1,
Earp(t) < O (727) E_452)(0), Y0 <e< 1. (6)
In particular, if fi and fo are of compact support, we have
Eoe(t) < O, (£72%) E(0), V0<e<1. (7)

Note that the estimates (6) and (7) hold for more general asymptotically

Euclidean manifolds (see [7]).
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The proof of Theorem 2 is based on the following properties of the resolvent
of G.

Proposition 3. Assume (5) and GHP fulfilled. Then, for every s > 1/2, there
exist constants Cy, C' > 0 such that for z > Cy, 0 < e <1, we have

2) (G — 2 £ ie) @) ~*lleqy < C27V2 (8)
Moreover, we have with s =146/2 and V0 < u < 4§, z > Cy,

() ~*(G — z £ ie2™?) () *|| cary < Czle™HH*, (9)

Note that the parameter a above can be taken a = /Cy. It is worth also
noticing that a better rate of the energy decay can be achieved if one has in-
formation for higher negative powers of the resolvent. More precisely, we have

the following

Proposition 4. Suppose that there exist s > 1/2, an integerm > 0,0 < p <1,
Co >0, C > 0 so that for z > Cy we have

() ™*(G — 2 £ ie) ™*(2) || ey < C272, k=1,..,m+1,  (10)
(@) (6 — 2 £ ie22) ™" (@) o < O (1)
Then, we have (with a = \/Cy), fort > 1,
E,1p5(t) <O (£72m72) E_,(0). (12)
In particular, if fi and fo are of compact support, we have

Eioe(t) < O (8777 E(0), (13)

Remark. If (10) holds for every integer £ > 1 with s = 54 > 1/2 and C =
Ci > 0, then (13) holds with Oy (™), VN > 1, in the RHS.

The proofs of the above results can be found in [7].
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