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QUANTITATIVE ANALYSIS OF METASTABILITY
IN REVERSIBLE DIFFUSION PROCESSES VIA A
WITTEN COMPLEX APPROACH

Bernard Helffer Markus Klein Francis Nier

1 Introduction

We are interested in the exponentially small eigenvalues of the semiclassical

Witten Laplacian on 0-forms
AD) = —RA + |Vf(2)* - hAf(z).

We shall consider this operator on €2 which is either a connected compact Rie-
mannian manifold or R”. The function f will be a Morse function and when 2
is a compact manifold for example it is known (see [Wit], [CFKS] and [HelSj3])
that there are exactly myg eigenvalues in some interval [0, e~%/"] for h > 0 small
enough, where my is the number of local minima. Moreover the same result
holds for Witten Laplacians on p-forms if m, denotes the number of critical

points of index p.

Our purpose is to derive accurate asymptotic formulas for the my first eigen-
values of A}?,)L. A similar problem was considered by many authors via a prob-
abilistic approach in [HolKusStr], [Mi], [Ko], and more recently in [BEGK] and
[BGKI], where A. Bovier, V. Gayrard and M. Klein obtained accurate asymp-
totic forms of the exponentially small eigenvalues. The Witten Laplacian being

associated to the Dirichlet form

u»—>/|hVu(x)\2 e 2@k gy,
Q
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they considered this problem via a probabilistic approach. They obtained the
following asymptotic behaviour for the first nonzero eigenvalues Ay(h), k €
{2,...,mo}, with A (h) =01, of AY) :

'det(Hess f(U,gO)))’

h ~ 1)
Me(h) = =AU
a " ’det(Hess f(UJ((lg)))‘

x exp— (F(USY) = FUL)) x (1+ O(ht[mA)) , (11)

where the U,EO) denote the local minima of f ordered in some specific way, the
Uj%z) are “saddle points” attached in a specific way to the U,go) (which appear
to be critical points of index 1) and Xl(U;(IIZ)) is the negative eigenvalue of
Hess f(Uj%g)).

Beside the fact that one would like to relate this result to the previous semiclas-
sical analysis by Helffer-Sjostrand of the Witten complex in [HelSj3], our aim

is twofold :

1) Improve the remainder and replace the O(h'/?Inh)-term by O(h) with a

possible higher order expansion.

2) Extend the results of Bovier-Gayrard-Klein to the cases when (2 is an ori-
ented Riemannian manifold or when Q = R* and e~/(®)/* does not belong

to L2, which cannot be handled easily via the probabilistic approach.

Although the present approach leads to more accurate and general results, the

probabilistic point of view presents other interests :

a) First of all, the probabilistic interpretation and its link with potential the-
ory gave to these authors the right intuition for the geometrical quantities
involved in the asymptotic behaviour of the exponentially small eigenval-
ues. Indeed the numbering of local minima and the choice of the critical

point of index 1, U](.(llz), associated with U,SO), is given by ordering the exit

10ur analysis will permit to consider cases when e~# ¢ L1(£). For such cases (1.1) also
holds for k = 1.
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times from a valley for the stochastic process associated with the Dirichlet
form. Moreover the quantities involved in (1.1) can be expressed in terms

of capacities.

b) Their method requires only f € C3(£2), while our analysis, although it could
be carried out with low regularity assumptions, is more efficiently pre-
sented with f € C*®(Q).

Although it will require some estimates and constructions present in the WKB
analysis of Helffer-Sj6strand in [HelSj3], our approach will follow a slightly dif-
ferent strategy. We will use more extensively the complex structure of the

Witten Laplacian and the fact that we are looking at A}O,)L We recall that
App = dppdyy + dppdpn s

where dj, is the distorted differential e=/@)/* (hd,) e/®/" and d3 , its adjoint
for the Riemannian structure. The restriction of dyj to p-forms is denoted by
d;’j ,)1 and we have

AR = dpyrdg).
In the Witten-complex spirit, we will consider the singular values of the re-
stricted differential dse?,)l : FO — PO which will be more shortly denoted by

0
Bl
0 0
B = () /5o » (1.2)

where F(®) is the m,-dimensional spectral subspace of A(f?l, ¢e{0,1},

F© = Ran 15 gpe2(A%)) (1.3)
with the property
1 0 0 0
Locnray (AEN AL = d) g cnormy (AT - (1.4)

Because the value of C' > 0 does not play any role (for A small enough), we will

choose from now on C' = 1. More generally one could define a complex ﬁﬂ by
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restriction of dﬁ to the F® but one will mainly concentrate on the cases £ = 0
and £ = 1.

Working with singular values of 5}?/1 happens to be more efficient than con-
sidering their squares as the eigenvalues of Agg,)l, in order to exploit all the

information which can be extracted from well chosen quasimodes.

Finally we mention that this problem was presented and treated in a partic-
ular case in [HelNi]. Application of quantitative accurate estimates for the first
non zero eigenvalue of the Witten Laplacian in connection with the return to
the equilibrium for the Fokker-Planck equation of kinetic theory can be found
in [HerNi] and [HelNi].

This article (introduction excluded) is now divided in five sections. In Sec-
tion 2, we specify our conditions on the function f in order to have self-adjoint
Witten Laplacians with good spectral properties. In Section 3, we first specify
the notion of “(strict) saddle point” in the different cases. After this we are in
a position to write the main assumption which excludes degenerate eigenvalues.
In Section 4, we introduce some specific cut-off functions and the corresponding
quasimodes for A;?,)l and Ag},)L This is only in Section 5 (Theorem 5.1) that
we state accurately our result by making use of the precise notions introduced
before. Section 6 is devoted to the core of the proof of Theorem 5.1. It involves
an induction process which makes an efficient use of the previous estimates on

quasimodes.

2 Morse functions and Witten Laplacians.

2.1 Witten complexes and associated Laplacians

Let Q be an n-dimensional connected compact oriented Riemannian manifold
or R". Depending on the cases Q will be Q or R* U {oo}. The cotangent
(resp. tangent) bundle is denoted 7% (resp. T?) and the exterior fiber bun-
dle AT*Q = &5 _(APT*Q (resp. ATQ = @©p_oAPTQ). The space of C*, C§°,
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L? .. .sections in any of these fiber bundles, E, will be denoted respectively
C®(L E), C(Q2 E), L*( E).... When no confusion is possible we will sim-
ply use the short notations APC*®, APCS° and APL? for E = AP. The differential
on C§°(2; AT*Q) will be denoted by d and more precisely

d® : CP(; APT*Q) — C(; AP7IT*Q).

Its formal adjoint with respect the L?-scalar product inherited from the riema-

nian structure is denoted by d* with
d®) - CR (0 APHLT*) — C°(Q; APTQ).
For a Morse function f € C*(2;R) we set
dip = e T@/ (hd) e/ @/ and &= e @/ (nd)* e/ @/h,
The Witten Laplacian is defined as
App = dypdpp +dppdyy,
which means
A = dPrg®) 4 dEDdED L CR (05 APTH) — CP(Q APT™Q).

Note that dyndyn = 0 and d},d}, = 0 respectively imply, that for all u in
C§° (4 APT*Q)),

AL = df A (2.1)
and
AE Gy = N R (2.2)

The next assumption leads to a good self-adjoint realization of A, with similar

basic properties in all cases.

Assumption 2.1. The function f belongs to C*°(Q2) and is a Morse function.
Moreover, in the case when QQ = R", there is a compact set K C R* and a

constant C > 0 such that

Vi e R\ K, |Vf(z)|> é (2.3)
Vr € R*\ K, |Hess f(z)| < C|Vf(z)|*. (2.4)
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With inequality (2.3), the Morse function f has only a finite number of
critical points in €. The set of all critical points of index p will be called Y®
and we set

my = #U® (2.5)

and
U=UpU? . (2.6)

The additional inequality (2.4), together with (2.3), will give a localization of

the essential spectrum in the semi-classical limit.

2.2 Spectral properties of Ay .

We consider the case when §2 is a connected compact oriented Riemannian
manifold or Q2 = R". Note that in the first case C§°(; E) = C*(; E).

Proposition 2.2. Under Assumption 2.1, there exist hg > 0 and ¢y > 0 such
that the following properties are satisfied for any h € (0, ho].

1) The Witten Laplacians Ay, as an unbounded operator on L*(S; AT*Q) is
essentially self-adjoint on C§°(Q; AT*Q).

41) The essential spectrum UCSS(A(;:})J is contained in [y, +00).

148) The range of the spectral projection 1[0,h3/2)(A%) has the dimension my, for
all h € (0, he.

iv) For any Borel subset Ej, of [0, h*/?)

L, (AT )dPyu = df) s, (Af)u (2.7)

holds for any u € L*(Q; APT*Q) such that dsf,’,)Lu € L2(Q; APHIT*Q).

v) In the case Q =R", we have
(0€ Ker AR)) & (/" € L2®))
vi) In the case 2 = R", we have

(e7!/h e L*(R")) = ( lim f(z) = +oo) )

|z| =00
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Proof. The statements i), ii) and iii) are known in the case of a compact mani-

fold (see [CFKS], [HelSj3]). In this case, we have of course no essential spectrum.

Let us check these three properties in the case = R™.

i) The operator
App=—hA+9(z) = dppdy), + djpdyn

is non-negative on C3°(R"; AT*R"™) while the matrix-valued function ¥(z) is
C*. By Simader’s result (see [Sima], [Hel]), Ay, is essentially self-adjoint on
C°(R*; AT*R™).

ii) The localization of the essential spectrum is a consequence of (2.3) and (2.4)

which imply the existence of C' > 0 and K such that, for all u € APC$°(CK),
1
(u| Afu) 2 (u | ADw) + Fllul* ~ COhljul?

When h < hg, with kg = 557, we get

1 o
(] AQw) 2 lull, Yu € APCE(CK)

and ii) by using Persson’s Lemma.
iii) The previous inequality combined with a simple partition of unity argument
shows that any normalized eigenvector v, associated with an eigenvalue A in
[0, h3/2) of A% has to be localized in a neighborhood of K. Indeed take a
C®°-partition of unity (xi1,x2) such that x; € C§°(€2) such that xy; = 1in a
neighborhood of K, x? + x% = 1, and write

MllEnl 2 = Oaten | AL xan) + (xaton | AL xown) — B2 VX0l -

J

With the previous inequality and ||4,]| = 1, we obtain
2wl < 2C (M, + MB2) < C' B2,

with M = maxgeq =12 |Vxi(2)|*. This implies limy_,q ||x1%|| = 1 while we also
have

(x1¢n | A(J?I,J;)LXWh) 2 Mo MR <2
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Like in [CFKS], the introduction of a partition of unity subordinated to a cov-
ering of K by balls with radius A%, combined with the min-max principle,
implies that X1, lies within a distance of order O(h*?=%/%) = O(h%/'%) from
an m, dimensional space. This m, dimensional space is spanned by truncated
eigenvectors associated with the harmonic approximations at each critical points

with index p. Since limy, g || — x19n|| = 0, this leads to
dim Ran 1[07,13/2)(A(;:,)1) =m,. (2.8)

iv) If o, € L2(; APT*Q) is an eigenvector of A% with eigenvalue )\, in [0, h%/2),
then we have d(]:”,)l Y, € L2Q; APTIT*Q) and d%:l)’* v € L*Q; APIT*Q).
Moreover according to (2.2), dg,’: 1)1 1y, satisfies

AP gy, = 2d) gy, in D'(Q APTQ).

Since Agfj,jl) is essentially self-adjoint on C°(€%; APT1T*Q), dgfj,)Lwh belongs to
the domain of AS«’? ;1). There are two possibilities : either d}’j ,)lzﬁh equals 0 or
dgf,' })Lwh is an eigenvector of A;{’ - Y with eigenvalue \,. In any case we have
dgfj,)l = 1{,\h}(A§c’:,Tl))d§f”,)L1/)h. The same can be done with d}’j,:l)’*wh.

Let Ej, be a Borel subset of [0, h%/2). We set Féi) = Ran 1g, (AS{J,)Z) If v belongs

to F,S;’; )| we write

N
v = Z Qg p,  with A}I:;)ﬂﬂk,h = MenPhps M € By C [0,h¥?).
=1

We get

N
dflo = > adDen € F, )(E‘i+1)'
k=1
If v € FP* and d%)v € L2(Q; APF1T*Q), we have for all 6 € FP+

(01dfv) = (dF)"0]v) =0

because dgf” 1)[*9 belongs to ng ) with the same argument. Hence dej 2;” belongs to
F(PJFI)J—
B, -

v) The equivalence is a consequence of the essential self-adjointness of Agff;z
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on C°(R™) and of the fact that, when  is connected, the only distribution

solutions of d f(,),)zu = 0 are the functions cexp—{ (c € R).

vi) If e=//* belongs to L?(R"), the Agmon estimates lead to

e~ @/h < Cpewolal/h

which gives? the existence of ¢; > 0 such that

)= e, for o] = cl—l . 2.9)

3 Strict saddle points and main assumption

One part of the analysis relies on a good labelling of local minima. This follows
essentially the approach of Bovier-Gayrard-Klein in [BGKI], which is based
on the notion of strict saddle point defined below. The labelling of the local
minima was proposed by these authors and is one of the key points of their
probabilistic approach. Their intuition was based on the notion of exit times
for the stochastic dynamics and their idea was to enumerate the local minima

according to the decreasing order of exit times.

3.1 Strict saddle points.

We consider the case when 2 is a compact connected oriented manifold or
Q=R".

When Q = R", Q denotes the one-point-compactification € L {oo}.

For a closed set ' C Q, F will denote its closure in Q. For the sake of coherence,
we keep Assumption 2.1 for the function f although some definitions could be

extended to a more general case.

Definition 3.1.
a) For any E C Q, the set of connected components of E is denoted by Conn(E).

2Note that we only use the existence, for fixed h > 0, of a gap. This gives actually a
necessary condition for f for having a Poincaré inequality.
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We remind that the connected components are non empty closed subsets relative
to the induced topology on E and therefore compact if E is a closed subset of Q.
b) For any A, B C Q, H(A, B) denotes the quantity

H(A,B) =inf {c €] — 00, +o0], 3C € Conn (f—l(] — 00, c])) ,

(3.1)
CNA#Dand CNB #0}.

We first start with a simple result about H (A, B).

Proposition 3.2. When A and B are closed nonempty subsets of 0, H(A, B)

S @ minimum :

3C € Comn (f*l(]—oo,H(A,B)])), CNA%D and CNB#0.

Proof. It is done in several steps :
a) For any c € RU{+o00} the number of connected component of f~(] — oo, c])

is finite. More precisely it satisfies
#f7H —oo,d) S1+#U, (3.2)

where U is the set of critical points of f. This implies in particular a uniform

bound of this number.

First there is the possible connected component of {oco}. The limiting case
¢ = 400 gives f~1(] — 0o, +00]) = Q2 which is connected.
It suffices to consider the case ¢ < +oco. Let us consider C in
Conn (m) such that co ¢ C. It is a closed subset of Q which
does not contain oo and therefore a compact connected subset of €. If every
point z € C is critical, then C is reduced to a single point which belongs to
U. If there exists zo € C such that Vf(zy) # 0, then C contains a bounded
connected component in  of f7!(] — oo, ¢[), denoted by Cy. In this last case
C, C C is a compact subset of 2 such that f ‘600 = ¢. Then Cj and therefore C
contains a local minimum of f. So we have shown that any connected compo-
nent of f~1(] — oo, ¢]) which does not contain oo contains a critical point of f.
b) For ¢ > ¢ > H(A, B), for any C' in Conn (m) there exists C
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in Conn (f—l(] — 00, c])) such that C' C C.
We first observe that f=1(] — 0o, ¢]) C f~1(] — 00, ¢|) are not empty.

Now take zy € C' and observe that the connected component of m
containing z, contains C'.
c) For any decreasing sequence (¢y)nen Such that lim, . c, = H(A, B), there
exists a decreasing sequence of closed connected subsets K, D K, in Q such
that

K, € Conn (m) K.NA#0, K.,NB#0.

Since # Conn (f*l(—oo, co])) is finite, there exists K, € Conn (f*l(—oo7 co]))
such that the set

{k € N,3C € Conn (f—l(] —oo,ck])) L, CNA#0, CNB#0, CC KO}
is infinite.
Assume that K, € Conn (f—l(—oo, cn])) satisfies the above condition with Ky
replaced by K. The set K11 = {C € Conn (f—l(] — oo,cn_H]) ;s OC Kn} is
finite. For any C € Conn (f*l(] — 00, ck])7 k > n+1, such that C C K, there

exists C' € K41 such that C C C'. Hence we can choose K, 1 € K,,1 such
that

{keN,k >n+1,3C € Comn (f*l(]—oo,ck]),
CNA#0, CNB#0, CC Kpi}

is infinite with K, C K,,. It satisfies K41 N A # () and K,.1 N B # 0.

d) End of the proof.

The sequence (K, )nen is a decreasing sequence of non empty compact connected
subsets of . Hence the intersection K = Nyeyn K, is a non empty connected
subset of 2. Similarly the sequences (K,NA),en and (K,NB),en are decreasing
sequences of non empty compact subsets of Q. Hence K N A and K N B are not

empty. Finally K \ {oo} C f71(] — o0, ¢,]) for any n € N and we get

K C f~1(] — o0, H(4, B))).
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Definition 3.3. Under assumption 2.1, let A and B be two closed subsets of
Q. We say that Z is a set of strict saddle points for (A, B) if it is not empty

and satisfies the following three conditions :

(ssp1)  ZC (UD N FH{HA B)D) U{oo}

(ssp2) ZNA=0 and ZNB=10,

(ssp3)  {C € Comn (FTT =00, H(A B\ Z), CNA#£D,CNB£0)
=0.

The word “strict” refers to the condition (ssp2).

Examples 3.4. Here are simple examples which show why it is convenient to
introduce the point co.

a) If f is a C* function such that f(—1) <0, f(+1) < 0 and f(0) = 0. Only
with this information, one can say that the pair A = {—1}, B = {+1}, admits
a set of saddle points without discussing the behaviour of f at infinity or the
number of critical points. Indeed [ admits a mazimum on | — 1,1[, f(zo) >0
and H(A,B) € [max{f(-1),f(+1)}, f(z0)]. We can take Z = {+oo} if
H(A, B) < f(z0) or Z = {xo,+00} if H(A, B) = f(xo).

This argument can be extended in arbitrary dimension. By setting M = max f(AU
B) for two compact subsets A, B of Q. If A, B do not intersect a common con-
nected component of f~*((—oo, M]), then (A, B) admits a set of strict saddle
points (adapt the proof of Proposition 8.5 below).

b) Consider a function on f on R which has three local mazima o x = 0,+2,
with f(0) = 3, f(—=2) = +1 and f(+2) = +2, two local minima at © = +1,
f(£1) =0, and equals —z? for |z| > 5. We take first A= {—1} and B = {+1}.
Then we have H(A, B) = 42 and one can take Z(A, B) = {+2} or Z(A,B) =
{+2, +00}. Indeed in our analysis the interesting saddle points are at x = +2
and © = —2. The simplest way to introduce these points without entering into
questions about the geometry of f near infinity which can be complicated in

dimension n > 1 is by considering in this case Z(A,B) = {+2,00} and by
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working with other pairs of sets Ay = {+1}, By = {+o0} (or By = {-1, +o0})
for which Z(Ay, By) = {+2} and Ay = {—1}, By = {+00} (or By = {+1,00})
for which Z(Aq, By) = {—2}. This situation occurs only in the case = R”
with e~/ ¢ L2(R™).

The previous definition (more precisely (ssp3)) says that, if Z is a set of

strict saddle points for (A, B), then any connected component of the subset

f71(] — o0, H(A, B)]) joining A and B meets Z. In particular any continuous
path 7 from [0,1] into Q such that f(v(t)) < H(A, B) when 7(t) # oo and
v(0) € A and v(1) € B, meets Z. The proof is by contradiction. Suppose
sup,eou f(1() < H(A, B). Then 7(t) € T = o0, HAB)]) \ Z and the
connected component of f~1(] — co, H(A4, B)]) \ Z containing « has non empty

intersection with A and B in contradiction with (ssp3). In order to compare
this rather abstract definition with the more usual Morse theory, it is useful to

recall a few remarks coming from the local analysis of a Morse function.

Local structure of the level sets of a Morse function
First we observe that, near a non critical point z, of f, one can find a ball B,

around zy and a set of local coordinates such that
AF (w0) = {f(z) < f(0)} N Byy = {y1 < 0} N By .

Secondly, if z; is a critical point of index p, then there exists a ball By,

around zg and a set of local coordinates centered at xo such that
y4 n
s ={-3 i+ 3 st <o,
=1 {=p+1

and
A3 (z0) = {f(x) < f(20)} N By,

= {0 @+ T, <0} N By,

We now observe that

1. When p = 0 (local minimum), A% (zo) is empty and A?(azo) is reduced to

T
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2. When p = 1, A? (o) has two connected components and zy belongs to
the closure of each of the two components. This property is crucial in the

discussion of (ssp3).
3. When p > 2, A5 (o) is (arcwise) connected.
So we can now prove the

Proposition 3.5. If A and B are disjoint non empty subsets of local minima
of f, then the pair (A, B) admits a set of strict saddle points.

Proof. First note that H(A, B) < +o00. We have to prove that a set C, belong-
ing to

Conn (f—l(] — oo,H(A,B)])) and satisfying CNA # 0, CNB # § and
oo ¢ C, contains a critical point z of index 1in f~'(H (A, B)) (i.e. z € U and
f(2) = H(A, B)). After this, we just take for Z the collection of such critical

points by adding the point oo for possible connected component C' such that
oo €C.

If co ¢ C, then C is a compact connected component of f~1(] — oo, H(A, B)])
in Q. Since f is a Morse function, there are two possibilities, resulting from the
previous local analysis of f and of the connectedness of C' : Either it is reduced
to one point which is a local minimum of f, or it is the closure of a finite union
of bounded connected components €; of f~! (] — oo, H(A, B)[).

The first case cannot occur indeed because CN A # () and C N B # () forbids C

to be reduced to one point. Hence we are reduced to the case
C =1,

where Qi,...Qy are bounded connected components of f~1(] — co, H(A, B)])
(note that N is smaller than the number of local minima my).

Every £ € ANC (resp. z € BN C) belongs to some ;. The €; are labelled
such that for all s € {1,..., M}, ANS; #0and foralli e {M+1,...,N},
ANQ; =0. We have

AnCcufQ and BNC CUY 1.
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Since C is connected, we have
M N
cn (igl Q)N (j_}d“ Qj) # 0.

Therefore, there exists i < M and j > M +1 such that Cﬂﬁiﬂﬂ_j # (). Assume
T € CNQ;NEQ; and note that i # j implies f(xy) = H(A, B). Then we observe
that, if 2o was not a critical point, then the local analysis shows that €; = ;
and 7 = j, in contradiction with the assumption.

Similarly the analysis of the connectedness of the set A} (o) at critical points
excludes all critical points except the case p = 1.

Therefore a point o € C N N Q_J with ¢ < M and 5 > M + 1 is a critical
point of index 1.

|

On the uniqueness of the set of strict saddle points

It is not possible to give a satisfactory definition of a unique set of strict saddle
points even in the case of Proposition 3.5. When there is a set of strict saddle
points, the maximal (with respect to the inclusion) set Z which satisfies the
three conditions of Definition 3.3 is well defined but may contain many irrelevant
points. This is not accurate enough and it is more natural for our purpose to
consider the minimal sets Z. But even in the framework of Proposition 3.5
the minimal sets of strict saddle points with respect to the inclusion are not
unique : Simply consider the case when a path going from one local minimum
71, A = {21} to a local minimum z5, B = {z2}, x1 # 2, has to meet two
distinct critical points of index 1, y; and yo with f(y1) = f(y2) = H(A, B);
then one can take Z = {y1}; Z = {y2} or Z = {y1, y2} but their intersection is
empty.

However it is possible to define the property that the pair (A, B) admits a

unique strict saddle point.

Definition 3.6. Let A, B be closed nonempty disjoint subsets of Q. The point
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2z € UD U {oo} is said to be a unique strict saddle point for the pair (A, B) if

N C) NCgAnCaBn [(UY N f~H(H(A, B))) U{oc}] = {z}

CEC(A,B)

where C(A, B) denotes the set of closed connected sets C C f~1(] — oo, H(A, B)])
such that CNA#0 and CN B # (.

We conclude this paragraph with the following remark :

Remark 3.7. In the case 2 =R", assume A = {zo} and B = {z1,...,xy,00}
where zg, 2y ... zyN are local minima of f. We set B' = {z1,...,zn}. There are
two cases.

1) H({zo}, {oo}) > H({ao}, BY) -

Then H(A,B) = H({zo}, B') and the problem is reduced to the analysis of
(A, B"). By Proposition 3.5 (A, B) admits a set Z of strict saddle points. More-

over, the connected component of f~(] — oo, H(A, B)]) \ Z which contains x
is relatively compact in Q (i.e. bounded). This case occurs in particular when
limyz| 00 f(2) = +o00.

2) H({zo}, {o}) < H({zo}, B) :

Then saying that (A, B) admits a set Z of strict saddle points is an assumption

on the behaviour of f in a neighborhood of co. In this case also, the connected

component of f~1(] — oo, H(A, B)]) \ Z which contains x, is relatively compact
in Q (i.e. bounded).
So we have shown that, if it is stated that (A, B) admits o unique strict saddle

point z, the connected component of f~1(] — oo, H(A, B)])\ {z} which contains

xo 1s relatively compact in Q (i.e. bounded) in both cases.

3.2 Main assumption, notations and first consequences.

The next assumption is essentially the one introduced by Bovier-Gayrard-Klein
in [BGK]]. It will imply that each exponentially small eigenvalue of A;?,)l is
simple, with a different asymptotic behavior. We introduce the set Cy defined
by
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a) Co = 0 if Q is a compact connected oriented Riemannian manifold.
b) Co = 0 if Q = R* with e~ /@/* ¢ L2(R*).
c) Co = {oo} if @ =R® and e /@/h ¢ [2(R).

Assumption 3.8.
The function f satisfies Assumption 2.1. Moreover there exists a labelling of
the local minima U© = {Ul(o), R U,(r?g} such that, by setting

C, = {U,§°>,...,U§°>} uc,
we have :
i) Fork > 2, U,go) is the unique minimizer of

HU,C.\{U}) = f(U), UeCcC\C.
ii) For any k € {1,...mo} (k > 2 in the case Cy = () the pair ({U,SO)},Ck_1>
admits a unique strict saddle point zj.

By its definition, the point z}, with k& > 2 if Cy = ) and k > 1 if Cy # 0, has to

be a critical point of index 1.

Definition 3.9. (The map j)
If these critical points of index 1 are numbered U;l), j=1,...,mq, we define
the application k — j(k) on {1,...,mo} if Co £ 0 and {2,...,me} if Co = 0 by

U, =4 (3.3)

In the case when Co = 0, we set j(1) = 0, with the convention that US" & Q
and f(Uél)) = +o0.

The cases Cy = @ and Cy # () will be distinguished by j(1) = 0 or j(1) # 0.

Definition 3.10. Under Assumption 3.8, consider for k € {1,...,my} the set
E,, defined by:
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a) For j(k) # 0, Ey, is the connected component of U,SO) in

£ = o0, FUD N\ U} -
b) B, =Qifj(1) =0.

Proposition 3.11. Under Assumption 8.8 and with Definition 3.10, the fol-
lowing properties are satisfied :

a) The sequence (f(U((lk)) f(U,SO))) . is strictly decreasing (with the
convention f(USY) = +o0).

b) For j(k) # 0, Ey is a relatively compact subset of Q and Ey = Ej U {Uj((lg }

In any case, Ey is included in f~1(] — oo, f(U]((l,c D-
¢) For any (k,j7) € {1,...,mo} x {1,...,my}, the relation U](l) € Ey, implies

either (j = j(k') for some k' > k) or j&ji({1,...,mo}).
d) For any k # k' € {1,...,mo}, the relation U,S)) € Ey implies
(k’ >k and FUD)> f(U,g°>))

e) The application j : {1,...,mo} — {0,1,...,m1} is injective.

Proof. a) The condition i) of Assumption 3.8 gives

FUG) - FU) = HUD, e\ U - FU)
B0\ (U2 — H O
HUL,, ¢ \{U)) - FU)

£ FUl o= FE)

A

IN

where the last inequality is an equality if j(k — 1) # 0.

b) It is a rewriting of Remark 3.7.

c) Assume Ujqy € Ey.

In the case j(k) = 0, then Ey = E; = Q and Ujq) € Q implies &' > 1.

Consider now the case j(k) # 0. Since U]((l,C ¢ Ey, one has k # k'. Moreover
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the inequality f ( ]((1,2,)) < f( ](k)) implies that the connected component of

F1( = oo, F(U J(k, ))]), which contains Uj(k,) is contained in Fy. Hence Ej con-
tains U( ) and U,g,) Finally F} is modified into a closed connected set E, lying
in f-1(] — oo, f( J(k))]) \{ J(;)} in the following way. Take Morse coordinates
around U} i) and consider, for p > 0 small enough, E,, := Ej N {|z| < p} and

its radial projection on E[% := Ej N {|z| = p}. Then By, = (B \ Byz) U Eped

is closed and can be considered as the image of Ej by a continuous applica-
tion. Hence it is connected We have found a closed connected set E, » lying
in By, C f7Y(] — oo, f( ](k )]) which contains Uko), U,S]) k' # k and does not

contain UJ(.(;). Therefore one cannot have k < k' because this would contradict

the assumption that U;(llz) is the unique saddle point between U,go) and Cy_4
(Assumption 3.8-ii) and Definition 3.6). Indeed the existence of another saddle
point is obtained by using Proposition 3.5 by slightly increasing the value of
f(UJ%z)). Hence, the only possibility is &' > k.

d) Assume U,S]) € Ej with £ # k'. By the same argument as for c), one

then takes a closed connected set Cy C Ep C f~1(] — o0, f(U]((llg))]) such that
UISO)7 U,S)) € Ck,k’ and U]((llz) ¢ Ck,k:’- This implies k' > k.

Assume now by contradiction that
(¥ >k UD€ Beand (UF) < 10O} #9,

and let ko be its smallest element.
We deduce from the existence of Cjr, as a closed connected subset of Ej C

f=1(] — oo, f(U]((llz))]) containing U}go) and U,gg), the inequality

FUS ) = HUD, Coa) < FUS)-

Since the connected component C' of U]((,ZO in f~1(] - oo,f(U;(l,ZO))]) contains
U,Sg) and a point in Cy,_1, it is contained in E), and E}, contains a point of Cy,_; .
This point cannot belong to Cp : In the case j(k) = 0, Co = @ and in the case
j(k) # 0 it is a consequence of b).

Hence there exists k1 < ko such that U,g?) € C C E;. Finally, the condition i)
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of Assumption 3.8 for ky gives

FUSL) = FUS) = HUS, Com) — FUS)
< HUL, o \ {USD = FUL)

< i) - 1)
For the last inequality we used the existence of a connected set C' containing
UL and the point U € Cy, \ {Uf,)} such that f(C) €] — oo, f(U}))), with the
definition of H(U,S?),Cko \ {U,E?)}).
Hence we obtain

FUD) < FU) < £ U,
with k; < ko and Ué?) € FE}, in contradiction with the definition of ky. Hence

we have proved
VE' >k, (U® € B) = ( FUO > f(U,ﬁ“’)) .

e) First of all the value 0 is attained at most once, that is for ¥ = 1 , when
= . Assume j(k) = j(k') # 0. The point U(llz) = U(l)) € UWY is the unique
strict saddle point for (U,E0 ,Ci—1) and for (U} A5 . Ce 1)

Then we have

either Ek = Ek’ 3
or  Fk<k,UYeE and 3k, <k, UD€ Ey.

According to d), the first case implies
kE<k and kK <k,
while the second case gives
k<k <Kk and kK <ky<k.

Hence only the first case is possible with k' = k.
O

Remark 3.12. In the case j(1) = 0, since we have by definition Ey = Q, the
property d) in Proposition 3.11 says that Ul(o) s a global minimum for f.
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3.3 A generic case.

We check here that Assumption 3.8 is generically ® verified when Cy = () (that
is j(1) = 0), that is when € is a connected oriented compact Riemannian
manifold or when Q = R” and e~/@®/* ¢ L?(R*). Remind that in this last case
limyz| o0 f(2) = +00. A Morse function f € C*°(Q), with lim|g_,o f(z) = 00
if @ = R", generically has #U distinct singular values. Moreover one can also

assume that generically :

Assumption 3.13. All the quantities f(U](l)) — F(UD, forj e {1,...,mi}

and o € {1,...,my} are distinct.

Proposition 3.14. Assumption 3.18 implies Assumption 3.8.

Proof. We start with mq = #U©® unlabelled local minima :
UO = {UD o€ A}, with #A=my.

For any subset A’ C A, #A" > 2, and any a« € A, the pair
(U} AU,
ing to Proposition 3.5. Since the set f~'({H(x, A’ \ {a})}) is bounded and
contains at most one element of U, it has to be a critical point of index 1 and
the pair ({U}, {UC(:,)), o € A o # a}) admits a unique strict saddle point
7

The labelling of the local minima and the verification of Assumption 3.8 can

o € Ao # a}) admits a set of strict saddle points accord-

now be done by reverse induction from k = mg to k = 2.

Once UT(,% . U,E(:L)l, k > 2, are known, we set
0 0
= {UP, ae APNUR, ..U} = Can \ (R, ..., UL
The point U, ,50) is then chosen as the point in C; which minimizes the quantity

f(U(l)

a,Cp,

)= f(UP), a€l

It is uniquely defined according to Assumption 3.13.

3By assuming that we are considering functions with no critical points outside a given
regular compact domain D of Q, a generic function is a function such that f | p belongs to
some fixed G set of C*(D).
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4 Cut-off functions and quasimodes.

4.1 Labelling of local minima and cut-off functions.

Let us first recall some notations and definitions. The Riemannian metric is

denoted by dz® and the corresponding geodesic distance between two points

The Agmon metric associated with the Witten Laplacian Ay is the degenerate

metric |V f(z)|? dz? and the corresponding distance between two points z,y €

by dag(z, y)-

For z € Q and € > 0, B(z,¢) denotes the open ball for the geodesic distance
B(‘Ta 8) = {y € Q7 dg(y7$) = 8} i

Having in mind the Definition 3.10 of the set Ej, it is then easy to show

Lemma 4.1. There ezists €1 > 0 such that the following properties are verified :

i) For any critical point U € U, with index p, there exist Morse coordinates

z = (z1,...,%,) such that
Vz € B(U,4¢1), f(z)—f(U)=—a} - —a)+ao + - +25.
ii) We have the lower bound : min {do(U,U’), U,U" €U, U # U'} > 10¢;.
iii) For any U € U and any k € {1,...,mo}
(U & Ey) = (do(U, Ex) > 10¢,).

If E} denotes the interior of E} and OF} its boundary, the open set €2 is
then defined as

O = By U ( U B(U,351)) . (4.1)

(1)
UeUNIE, U£U\(),

Its closure O equals © when j(k) = 0 and equals the compact arcwise connected

set

)
UEUNdEy, U#US ),

O =B U{U{}U ( U B(T, 351))
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when j(k) # 0.

The cut-off function x4 ., k € {1,...,mg}, will be supported in a neighborhood
of €, with some specific behaviour near Uj%z), when j(k) # 0.

Fore >0and § > 0,0 < <& < g, we introduce the set (e, d) defined by

O(e,0) = {z € O, dqg (2,9 \ BUY),¢)) <8t uBU),,e).
i(k) (k)

J
Then there exists C' > 0 and ¢y € (0,¢&;] such that, for any fixed ¢ € (0, &¢], one
can associate 0. € (0,¢) and C. > 0 so that the estimates

¥z € Qu(e,0) \ (e, 0/2) . FUQ) + & < fl2) < FURY) +Ce, (42)

J(

Vz € BU).€) , f(z) = FUY)| < Ce, (4.3)
(k) (k)

hold for any ¢ € (0, &.].

The cut-off x4 . is now chosen such that

Il
—

supp ch,s € Qk (51 65) and ch,E

(e8¢ /2\B(U 3, )

In the case j(k) = 0, our definition simply says x4 = 1 on .
Around UJ%Z), the cut-off function x4 . is chosen?* so that U;(llz) & supp Xk, and

vz € BU),e), (Xee(o) # 0 and f(z) < FUL)) = (o € Ep C Q). (4.4)

Before we summarize the properties of the cut-off functions x4, k € {1,...,mo},
we invite the reader to look at the three pictures which illustrate the various
possibilities of the local shape of Qk(s, 9) and of supp Vxy,. in a neighborhood
of zo € OF;. Asymptotically, that is for £; and & going to 0, geodesic balls
are equivalent to ellipsoids in Morse coordinates (We simplified the picture by

drawing circles instead).

4For further calculations, we will be more specific in Subsection 4.2 about the shape of

this cut-off around U]((1 ,3>.
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Figure 1: Case zg € 0, V f(z) # 0. The support of Vxy, is localized around

the dashed curve,
al 4(0,0/2)

Figure 2: Case zo = U € 0%, Vf(U) =0and U # U;(l,z). The support of V.

is localized around the dashed curve.
a0 ((0,0/2)

Figure 3: Case zo = U;(llz). The support of Vxy,. is localized around the dashed
curve.
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Proposition 4.2. By taking § = 6, with € € (0,0, 0 < g9 < &1 small enough,
the cut-off functions xke, k € {1,...,mo} satisfy the following properties :

a) If z belongs to supp xxe and f(z) < f(U;(llz)), then x € Eo‘k.

b) There exist C > 0 and for any € € (0,&0] a constant C; > 0 such that for
Z € supp VXk,e :

either z ¢ B(U;(l,g),s) and f(U;(l,Z)) +C1 < () < f(U;(l,z)) +Ce
or T€ B(U;(l,g),s) and | f(z) — f(UJ%Z)) < Ce.

c) ForanyU e U, U # U;(IIZ), the distance dqo(U,supp Vxi,) is bounded from

below by 31 > 0. If further U € supp Xk, then U € Ej,.
d) If U,S)), for some k' € {1,...,mq}, belongs to supp Xk, then k' > k and

FOD) > FUP),  fUGL) < FUkw), ik #K.
e) Foranyj € {1,...,m1} such that U](I) € SUpp Xk, -

either  j&7({1,...,mo})

or  j=j(k") with ¥ >k and U,S]) € SUPD Xk c-

Proof. a) is an immediate consequence of the local description of Qx(e, §) in
a neighborhood of zy € 0F}.

b) is a consequence of the inequalities (4.2) and (4.3).

In c) the first statement is a consequence of the choice of £; in Lemma 4.1. The
second statement comes from the local description of Qk(s, d) for § > 0 small
enough.

d) is a consequence c) and Proposition 3.11-d).

e) is a consequence of ¢) and Proposition 3.11-c).
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4.2 Cut-off functions near saddle points.

We specify here the behaviour of the cut-off xj. in the ball B(U;(llz),s) with

j(k) # 0 and € € (0,e0], €0 > 0 small enough. We introduce like in ([HelSj3]-
Section 2), the coordinates (y,z) which are adapted to the WKB-analysis of
AS}? ,)L near a critical point U = U®) with index p (Actually we simply need the
case p = 1 here). We associate with this critical point U the stable (or incoming)
manifold V_ and the unstable (or outgoing) manifold V. for Vf, dim V_ =p
and dim V; =n —p. We set

O(z) = dag(z,U) ,

where dag is the Agmon distance introduced in Subsection 4.1. In a neighbor-
hood of V of U we have :

|f(z) = fF(U)| < @(z), VzeV, (4.5)

and

(If@) — FU)| = (2)) & (¢ € V_U VL) . (4.6)
More precisely we have
VzeViny, () == (f(z)— fU)) .
We now set for all z € V
9:(2) = ®(@) = f(@) + f(U) and g_(z) = B(a) + f(z) — F(U).

The relation (due to the fact that ® is locally a solution of the eikonal equation)

in the neighborhood of U
Ve(@)]® = V()] , (47)

gives

Vg+.Vg_=0.
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Moreover g, (resp. g¢_) vanishes at order 2 on V, (resp. V_) with a non

degenerate transverse Hessian by taking V small enough. We also have

Vg, =0 and Vg_=2Vf=2V® onV,,
Vg_=0 and Vg, =-2Vf=2V®d onV_,

and Vg_ (resp. Vg, ) is tangent to V. (resp. V_).

One first determines the coordinates y1, ..., yp, on V_ centered at U ( y;(U) = 0)
such that the 1-forms dy;, . . . dy, define at U an orthonormal system of eigenvec-
tors of Hess f(U) corresponding to its negative eigenvalues. Since g_ vanishes at
order 2 on V_ with nondegenerate transverse Hessian which has a fixed sign,

the coordinates y; can be extended to a neighborhood of V_ as C*°-solutions of

Since Vg_ is tangent to V.., we have

Vi

Moreover, any C*-function which solves V,_u = 0 can be written as a function

of (y1,-..,Yp). In particular we can write

9+ =9+(y1, .., 4p) -

Similarly the coordinates zp41, . .., 2, are first defined on V4 such that z;(U) = 0
and (dzp+1(U), . . . dz,(U)) is an orthonormal system of eigenvectors of Hess f(U)

corresponding to positive eigenvalues. They are extended as solutions of

9+

and satisfy : z;| =0, p+1<j<nandg. = g_(2+1,.-.,2,). Since
v
g+ vanishes at order 2 and has a non degenerate transverse Hessian on V.., the
coordinates (y1, ..., Yp) and (2p+1, - - -, 2n) can be replaced by Morse coordinates.

It XI(U) < XQ(U) . < Xn(U) denote the eigenvalues of Hess f(U), we obtain
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coordinates (y, z) such that

F=TO) = 50t + 9 priso 7))

| 2N [y

AU) o A U) o

=) S+ >, 5%
gt j=p+1

and such that (dy;(U),...,dz,(U)) is an orthonormal system of eigenvectors
for Hess f(U).

We will use such a set of coordinates in a neighborhood V of U = UJ((I,Z),
j(k) # 0. Note that in thiscase p=1, V. NV ={z=...=2,=0} NV and
ViNnVY = {y; =0} NV. The orientation of the y;-axis V_ is chosen such that

NV C{y <0}nV.
The parameter ¢¢ > 0 and for € € (0, &) the cut-off x. are chosen such that :
i) The ball B(U\()), &) is contained in V.

ii) The support X . does not meet V, :

SUPP Xk,e N B(U](,(l,z),a) C{m<o0}n B(U]((l,z),a).

iii) In a neighborhood
3= {x € BUQ).¢), Jmax |z(z)] < ,,E} . >0, (4.8)

.....

of V. N B(U;(llz),e), the function xj . only depends on y :

Xke = Xk,E(yl) .
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 ,

Dk,DEI

Figure 4: The support of Vx; . is localized between the dashed curves which
coincide with ; = Cst near V_.

4.3 Definition of quasimodes

The cut-off function xy. is used in the construction of quasi-modes for Agg,)z.
The construction of quasi-modes for A?,)L will rely on the approximation by
the Dirichlet problem in small balls around U;l), je{l,...,m}. Lete >0
be the positive radius independent of ¢ > 0 chosen in Definition 4.1. For
each j € {1,...m;}, we consider a normalized fundamental state u; of the
Witten Laplacian A?,}L in B(U](l)7 2¢1) with Dirichlet boundary conditions on
all components. The cut-off function 6; € C§° (B(U;l), 2¢1)) is taken such that
0; =1on B(U;l),el).

Note that the function xx. depends on € € (0, €], while 6; is kept fixed like
g1 > 0.

Definition 4.3.
For any k € {1,...,my}, the (¢, h)-dependent function w}(ﬂo) is defined by

@) = [xnelare IO (eI
For any j € {1,...,my}, the h-dependent 1-form w](»l) is defined by

Y (2) = (1005 7) 0 (@)u;(x) -
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Forany k € {1,...,mo} we set

2
= { [ 1400 w020,
0 ] .

Remark 4.4. For the sake of conciseness, we do not mention the (g, h)- and
h- dependence in the notations w,(co) and wj(l).
5 Main result

Theorem 5.1.
Under Assumptions 2.1 and 3.8, there exist € > 0 and o > 0, such that, for
any € € (0, &),

Vke{1,...,mo}, X(h)=N(e,h) (1+ oE(e—a/h)) )

Moreover, if j(k) # 0, there exists a sequence (Cgm)men+ independent of € €
(0,&0] such that

‘det(Hess f(U,gO)))‘

h o~
app - (1)
A (i) = 7r|)\1(Uj(k))| ‘det(Hess f(U]((IIZ))).
x exp—2 (FUL) ~ FUL)) x axle, )
h (k) k kA& 18
with

ak(s, h) ~ 1+ ch’mhm .

k=1

6 Proof of Theorem 5.1

6.1 Quasimodal estimates.

In the next two sections, the parameter €; > 0 is fixed, while g4 and & € (0, &)
will be adapted in the different steps of the proof. We shall denote by « a

generic positive constant which is independent of ¢ € (0, &).
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Proposition 6.1.
The system of (e, h)-dependent functions (¢;§O))ke{1,...,mo} of Definition 4.3 is

almost orthogonal with

(@ 192)) = Ideno +O.(™/),

kb €{1,...imo}
and there exists « > 0 and, for any € € (0,&], C(g) and ho(g) such that, for
any h € (0, ho()],

(B2 160 = || < el rei-mon.

Proof. The almost orthogonality property is a direct consequence of Proposi-

tion 4.2-d) while the second estimate is given by

Iy [V Xke (@) P e 2I@=1OV/h gy
Iy Xk e (2)]? e 20@-1TON/ iy

(AD D | 4P =

The denominator is seen of order h™? by observing that f (U,ﬁ‘”) is a non de-
and using the Laplace integral method.
SUDD Xk e
The numerator is 0 in the case j(k) = 0. In the case j(k) # 0, the numerator is
2(F W) -1W)~cCé) /h : s .
bounded by C(g)e” itk 5 according to Proposition 4.2-b). This

yields the result by taking o < C/2.

generate global minimum for f|

O

Corollary 6.2.
There exists €9 > 0 and o > 0 such that for any choice of € in (0,&] the
(¢, h)-dependent quasimodes 1/1,(90) satisfy the estimate

(AP | 9) < Cee™/h
forallk e {1,...,mp}.
Proposition 6.3.
The system of h-dependent 1-forms, (1/)](-1)) given in Definition 4.8 is

J€{L,...,m1}
orthonormal and there exists o > 0 independent of € such that

(AR | iy = O(e=o/m)

forallje{l,...,m}.
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Proof. The orthogonality is obvious with our choice of £; > 0 in Lemma
4.1. The estimate is a consequence of Theorem 1.4 and Lemma 1.6 in [HelSjS]
which says that the first eigenvalue of the Dirichlet Witten Laplacian Al N h in
B(U J(l), 2¢1) is exponentially small and provides the Agmon type estimates for

the first eigenvector
luj(z)| = Oy (e_dAS(””’U;U)/”) et > 0. (6.1)
O

Proposition 6.4. There exist sequences (Cgm)men-, for j(k) # 0, such that the
(¢, h)-dependent and h-dependent quasimodes w,(co) and wj(-l) satisfy the identities

7 1) =0 154509

- hi/
@ | D) ~ <n1mmuww

det(Hess f(U(O) )) e

det(Hess f( ]((1,2)))
1+ Z Ck7mhm:|
m=1

for any (k,j) € {1,...,mo} x {1,...,m1} as soon ase € (0,¢co).

x exp — (U = FU)) x

Proof. The first statement is a consequence our choice of 1 > 0 and X,
which gives according to Proposition 4.2-¢) supp 1[)](-1) N supp Vxie = 0. We
conclude with d$) 6" = Cep (dOxe) e /7.

We now need some accurate estimates for w,‘j’) and d)%) when j(k) # 0. Let us
start with 1/’1(:))-

We first need an expansion for the constant factor

2(f@—fwiy f(U(O)))

@)-F W) /h

HXk,Ee (
The Laplace method gives

(ﬂ.h)n/2
172
)det Hess f(U,EO)) '

~(1@-1w™) /1

Xk,e€

(o]
143 ak,mhm}
m=1
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and we set

)det Hess f(U(O)) o
( Ha)— HU© k
(f@-r@M) || _ — [1+0.(h)],

il = \ -

with actually a complete expansion if necessary. Hence, the function w,(co) and

its differential d%w,(co) are equal to

(@-w)

O () = b5 ap(h)xpe(z)e™ 7 (6.2)

and
(@) -f Wiy

dOu0 (@) = hF ap(h) (hdOxp)(@)e . (6.3)

_n @)
<¢J((k) | dias > =& (g /B(Uu) )( S | d%e)(@e 7 do

HOK

1 0
R i e
+0; |e 2 , og.>0.

The three additional conditions i), ii) and iii) given in Subsection 4.2 for the
cutoff function xj,. combined with (4.6) permit to reduce the integration domain
to the neighborhood V_, introduced in (4.8), of the stable manifold V_. We

obtain

§ . _U@-w)
(840 1 4007) = - E ah) [ 040 [ et} @ o
Fi -1 WD) +oe
+ 0. |e” 2 , 0:>0.

Theorem 2.5 in [HelSj3] says that in the coordinate system given in Subsection

4.2 there exists a WKB approximation

oo

n @
w e~ h™1exp % (n;) h™ W)
of w](,b)c) =u; in B(U;(lll),s) such that
’eq’(’)/h(uj - w)(:r)’ = O(h™)

NES
‘dct Hess f(U; (k))‘

and  wp = (—1)" g

*(dze A ... ANdz,) onV_.
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1/4
det He; U:
By setting b;(h) = (—1)"! ' SSW{I(M ) , we obtain
0
CALT
5 @ @) )
= hl_iak(h)bj(h) / (X/k,e(yl) + Oe(h)) dyiNdzoA. . Ndzy, .

and with ®(z) + f(2) = g_() + F(U))

. 1wl -1
(s 1 a0 ) = W% au(m)by()e 7 x

[ / e (' (1) + Oc(h))dys Adza A ... Adzy
By Stokes formula the problem is reduced to the asymptotics of the integral
/ e 9-@dzmA...ANdz, onV,.
|z|<v

The final result

sl -rwl®
< Yjtk) \dfh¢(0)> ax(R)b; () x

(1+0.(h)).
LDy R oy
2(Us) - - Mn(Uih)
is again an application of the Laplace method applied first to the main term
and then to the remainder term. For the asymptotic expansion, one has to solve
recursively the transport equations which determine the w,, and apply the same

trick with each term.
O

Corollary 6.5.
Let 1/),(:)) and 1/15»1) denote the (e, h)-dependent and h-dependent quasimodes of
Definition 4.8. Assume that the 1-form (wj(-l))je{l,...,ml} satisfy

[ = v = o=,
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for some a > 0 independent of € € (0,eo]. Then there exist ey > 0 and o/ > 0
such that, for all € € (0,¢&p], the estimates

(W | A0 < Cue VIO g i), (64)
and
(wlth | ) = Wity | 4 (14 0e™) (0

hold for all (k,7) € {1,...,mo} x {1,...,m}.
It is a straightforward consequence of Propositions 6.1 and 6.4 which give :

Hd;o’)”/”(“m H < 0.e~ (WA 1) are)

6.2 Finite dimensional reduction

Our main tool here is the following consequence of the spectral theorem : For

a non negative operator A and for u € D(A), we have
a
((Au u) < @) = ([ Lpron (]| < ) (6.6)

for any a,b > 0.
This remark with Proposition 2.2 and the results of the previous Subsection 6.1

lead to the

Proposition 6.6.

There ezist a, o/ > 0 such that
¢ ‘
Lo psr2y(AS%) = L eamy (D)) for £=0,1.
Moreover if one sets

Vie{l,...,me}, v =1pum A0, (6.7)
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where the w,?’“’) are the (¢, h)- and h- dependent quasimodes introduced in Defi-
nition 4.8, the system (Ufl))‘ 7 ; is a basis of FO such that
1€ 7

1) V’iE{l,...,mg},

_ wi(e)H <e@lh

2) VO.= (( W))) = Idgm + O(e=*/).

i €{1,ime}
Remark 6.7. Note that here agam we forget the (5 h)-dependence (resp. h-

dependence) of the functions vk (resp. 1-forms U ) in the notation. depen-

dence

Proof. Let £ € {0,1} and ¢ € {1,. mg} According to (6.6), Corollary
6.2 and Proposition 6.3, is estimated by e~®/h. The

2, m)(A‘ NG

second estimate then comes from the almost orthonormality of (w & ) 9 .
1€{1,...,my
Since we know by Proposition 2.2-iii) that F® has dimension my, the system

(Uy))ie{l,___,m[} is a basis of F(¥), We conclude with
(A5010 150) < (A0 |40 < .
|

Definition 6.8. The basis (e(@)ie{l,...,ml} of FO is the orthonormal basis derived

i
from (vy))ie{l,m,m[} by the Gram-Schmidt orthonormalization procedure
¢ . (¢
0 = 3 (0 7]
il
The my X mo matriz M is the matriz of° ﬁ(o) in the bases (6230))k€{1,...,m0} and

.....

According to (2.7), the my first eigenvalues of the Witten Laplacian A® fh=
d(O d(oh are the eigenvalues of the interaction matrix M*M. Hence it is theo-
retically possible to determine the low lying eigenvalues of AQ i by analyzing the

matrix M. The problem is that the coefficients of the matrix M are not known

5We recall from (1.2) that ,8;0) is defined from F(© into F!) by the restriction of d' ) ih tO
FO,
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at this level accurately enough in order to split the different exponentially small
scales. One possibility would be to analyze the structure of resonant and weakly
resonant wells in the spirit of [HelSj2]. Some indications are given in [HelNi].

We will see that here it is more convenient to work with the matrix

7= (" | 8™ (6.8)

(k)€ L yerymi} X {1,e.cimo}

of the map ﬂj(f?,)l, written in the bases (U;io))keu _____ mo} in F© and <U§1),*)j6{1 i

dual to (v](-l))je{ly___yml} in FM. This permits to use directly all the accurate

information that we have on the quasimodes wi(l). The fact that these bases are
not orthonormal does not make any problem if one notices that the eigenvalues

of M*M are indeed the squares of the singular values of 5}?1)1

6.3 Singular values and induction.

The first eigenvalues Ay(h), 1 < k < my, of ASP;L are the squares of the singular
values® i, 11-1(M) of M. In other words,

A (h) = [Mmoﬂ—k (,3;02)]2 .
We will use the simple consequence of the Fan inequalities (see [Sim1], [GoKr]) :
Proposition 6.9. For any matrices A and B such that,

max {||BIl, |B7|} <1+,

the singular values of A and AB satisfy
p(A)
(1+0)
and the same holds with AB replaced by BA.

< uk(AB) < (1+ p)ux(A)

Hence a little change of bases, induces a relative little change of the singu-

lar values and it is not necessary to work with orthonormal bases in order to

6The singular values p1;(A4) are numbered here as usual in the decreasing order with
pa(A) = [JA]l-
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estimate the singular values.

For example, we have for any k € {1,...,mo},
k(B30 = (M) = (@) (1 + O(e™))
where 7 is the matrix of the map ﬁj(c?})l introduced in (6.8).

We will construct by reverse induction on K, from mo down to K =1 or

..........

next properties hold for € € (0,&0] and some o > 0 1ndependent of e :
1) The systems (v,i?}()K<k§m0 and (v](b)c) KK <k<mo are orthonormal.

We then set
Ff(o) = Span{v,ﬁO}(,K <k< mo} and Fg) = Span {UJ(%;)’K,K <k< mo} .

L
2) For 1 <k <K, ’U(O) belongs to (FI((O)) and for j & {j(k), K <k <myp},

(1) # belongs to (F(l))
3) The estimates

Vie{l,...,mg}, ’Ui(,él)( — wzge) ' = O.(e7*/")
hold for £ =0, 1.
4) For K < k < my, the equality
0)_(0) 0) (0 0
ﬁ} })LU K ((,)c) x and A},)Zv,(c;( = z/,fv,(c’}(

hold with
Ve = WJ((k) | d(O) ) (1 + Os(e_a/h)) :

They imply, observing also that vy # 0,

AOFO cFP,  1e{o1}.

5) For all j & {j(k), K <k <mp}andall k € {1,..., K}, we have

1 1 0) , (0
W 1 8960y = w8 | d0u®).
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Remind that the 1/11(0 and the v\ depend on h € (0, ho] and € € (0, 2] while

a > 0 enters in the exponential estimates. The parameters g > 0 and o > 0
belong to intervals which have to be reduced each time that one refers Corollary

6.5. This is done a finite number of times at each step of the induction.

Initialization: the case K = my.

We take v,(cozno = v,(co) and v, 7310 = ’l)J(»l) according to the definition of the previous

section. The conditions 1), 2) and 4) are empty. The conditions 2) and 3) are

given in Proposition 6.6. For the condition 5), we write

©) (0
(0 | Ban”) = (Lo (A5 | dpiliossrny(AT)Y)
1, (1
= (Lo (AT [dol”) = (7 [ dpu”).
The recursion argument.
Assume that the result is true for K > 0 (or K > 1if j(1) = 0). The condi-

tions 1) and 4) say that the quantities |vgx|, K < k < mg are singular values of

ﬂ}?,)L (v} is an eigenvalue of A;O“ r@©)- Moreover the estimate
v = (Wich | i) (1 -+ Oce™™) (69)
and Proposition 6.4 imply
|vg| > CohV/2e T Wiasn)=fURD/E > O e=UWiaa)=fUR)=2a0)/h - (6.10)
with o independent of € > 0.

Let us consider the dual basis (v](,ll)(’*) in FO. For j = j(k), K < k < my, USI)(’*

equals Uj(ll){ and consequently

i -] -

The matrix of ,6’(0) (FI((O))L — (F;(l))L in the bases (v,ﬁ?}()lngK and

(Uj,K )je{j(k),K<kgm0} equals

{ (o 1 8 (6.11)

)j¢{j<k),K<k5mo},15k5K '
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The conditions 3) and 5) and Corollary 6.5 lead to

= O, (e~ Wia0)=fWU)=e1)/hy

Hﬁf,h’(F(O))J.
Hence the quantity |vx|, K < k < my are the first largest singular values of ﬁf b
Ve e {K +1,...,mo}, vkl = tmer1—k(B5) = v/ Ak(B),

and we have

(6.12)

VA = Hmo+1— K(/Bf, . HB Sl (F L

Let us now consider more carefully th|(F(°))i and its matrix (6.11) in the bases
? K

(U,ﬁ?}()lngK, (U](-}I)(’*)jg{j(k),K<k§mo}. With the same arguments as above relying

on Corollary 6.5 and conditions 3) and 5), its coefficients have the form
Wiy | i) (Biuoadie + Ole™ /™) . (6.13)

Since the two bases are O, (e~*/")-close to orthonormal bases, we obtain

V) = [ | 00| (L + Oue=em).

We set
(Wino | david)
= &) ) R ) » (6.14)
M 4O
Wiy | 0
We have
,Bf’hUKK v U(B’SK + O.(vge™/M). (6.15)
We next define the new bases ( 1) and ( ](11){ 1)
Of course we keep v,g}{ 1= ,(“),( and v](k) Kol = ) for K <k <my.

We then take

U;()K 1= Hl{)\K}(Afh)UKKH 1{)‘K}(A ))UKK

1 0
and ]((}()K i = IBf,h Er()K 1
ForlgkgK—landjgl{j(k),K—l<k§m0},wetake

0 0) 0 0
UIE:;( 1 Ul(c <U() ‘UKK 1>U§()K 1

1 0) 1 il
and J(I)< 1= UJ( (“( ) ‘ U K—1>/Uj('(;(),K71'
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By construction the conditions 1), 2) and 4) are satisfied by these new bases.

The condition 3) will be satisfied as well if ’UK = uﬁ?K i H = O, (e~*/") holds.
The identity (6.12) gives

Ve e{l,...,K}, vk =1lpaaq(AP)oi%. (6.16)
Moreover Corollary 6.5 yields
Vke{l,....K—1},Vj € {L,...,m}, | ]_ Ve /b,

Like in the proof of Proposition 6.6, we obtain for some a7 > 0

0
o) (APY) = Ljg s emarrmy (ALD). (6.17)

We now write, by spectral decomposition and using (6.17) and (6.16),

2 2
Ak Hl{)‘K}(A;(,)ZL)Ug,)KH + OE()\KE—C!7/h) Hl[o’/\K)(A(OJ)z)U(O) H

= (ARl | Vi) (6:18)
and observe that by (6.15)
(B | v = || = e (14 Oufe). (6.19)

Hence we obtain
Hl{/\K}(Afh UKKH =14+ 0.(e” as/h)
We conclude with
)y, © || © 4,0 |
Hl[O,/\K)(Af,h)UK,KH = HUKKH - Hl{)\K}(Af,h)UK,KH
= O.(e7 2"} + O, (e72/M),

We have proved

HUQ)K - UEI(())K— H = Oc(e™®/™).

This implies

0
ﬁ}h“ KK B}AUKK 1”
)1 A 0 _ (0 )
5f,h [01)\1{]( f,h)(”K,K Uk,K—1

05(\/ /\Ke_as/h) s

0) (0)
Hﬁj(c;)zvgu( — VKV, (l)r()K 1“
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while we have
Hﬂf,hvg(())l( - VKU :;KH = O;(vke a4/h)-
The almost orthonormality of (vj’K)jE{ljmij} inherited from the condition 3)

and the almost orthogonality of (w](-l)){h___,ml} imply

e —a/2h
Yjik),x J(K) K| —

This yields
1 1 -
[t = it | = 0.
Let us verify condition 5) for the new bases.

For k € {1,..., K — 1} the construction of the new bases and the induction

gives
0 0 0 0 _ 0
’Ul(c}( 1= Ul(c}{ <U£%(|U§(3K—1>U§{,)K—1 = Uk1)'no_ Z te K Ug{’),K’—l
K<K'<mo
= UI(cO)_ Z bk, K U§?2,K—l’
K<K'<mqg
with ¢y, g == (v,(;]}(, | v x_1)- Hence we get, with o = [0,h3/2)(A§c(31).b) o,
0) (0 0) (0
Binvikos = BRu = D tuw BRvid ks
K<K'<mo
1)y 40) (0 1
= Ty (A8 d = D o vio ik ks
K<K'<mo

Meanwhile for j & {j(k), K — 1 < k < my}, the vectors 51)( were constructed
such that

L
1
1)1(»,11)(71 € (F,((lzl) (Span{v](K) PRI ’U]('(‘Zno),K—l})
We obtain, for all k € {1,...,K — 1} and all j & {j(k), K — 1 < k < mg},

0 ik 1 0 0
WS | B ) = (opsrs (A“) vy | dpy
0 0
= (%, |dDyP).

Stopping the induction :

When j(1) # 0, one continues the induction until the bases (U,(c ) and (v; )) are
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constructed. When j(1) = 0 ones stops the induction when the basis (U,(CO%) and
(U](11) ) are constructed. Indeed in this case we have /Bj(c?,zﬂo) = 0 and for all K,
1 < K < my, v§°}( = U§0).
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