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Abstract

We construct almost invariant subspaces and the corresponding ef-
fective Hamiltonian for magnetic Bloch bands. We assume that the
magnetic and electric potentials are slowly varying perturbations of the
potential of a constant magnetic field and a periodic lattice potential,
respectively.

1. Introduction

In [5] we constructed wave packets for adiabatic perturbations of Schrodinger
operators in periodic media. The recent work of Panati-Spohn-Teufel, [14], led
us to consider the relation of those constructions to effective Hamiltonians. In
83 we sketch a simple derivation of effective Hamiltonians for these problems,
and in §4 we show how one could predict the form of the effective Hamiltonians
from the wave packets in [5].

The main simplification in our method is the omission of the Floquet-Bloch
transformation. This transformation has many nice properties. In particular,
it is unitary, and this makes it useful in studying spectral properties of oper-
ators. In the work of Helffer-Sjostrand [10] and Gérard-Martinez-Sjostrand [8]
this transformation was used quite effectively in the computation of spectra,
both of perturbed and effective Hamiltonians. However, if one is simply inter-
ested in effective Hamiltonians, the Floquet-Bloch transformation requires that
one transform the Hamiltonian by a Fourier integral unitary operator only to

transform it back at the end of the calculation.
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The method that we use here applies when the eigenspaces of the unper-
turbed Hamiltonian depend smoothly on quasi-momentum and form trivial bun-

dles over a fundamental domain for the dual lattice.

2. Preliminaries

The Hamiltonian for an electron in a crystal lattice I' in R? in the presence of

a constant magnetic field w = (w1, wa, w3) is given by

Bt (-l 1 225} vig W)
= om\Tar T2 s

where V' is a smooth, real-valued potential, periodic with respect to I'. Here m
and e are the mass and charge of the electron. To simplify notation we will use
units in which h =2m =e=1.

We will assume that I is generated by the basis {ey, 5, e3} for R3,
II'= 61Z + GQZ + 6327 (2)

and let E be the fundamental domain {37_, t;e;,t; € [0,1)}. We will use the
dual lattice I'™* = €]Z + €37 + €3Z, where €} - €, = 270, with the fundamental
domain E* = {33_, t;el,t; € [0,1)}.

To realize Hy as a self-adjoint operator in L*(R®) we define it first on the
Schwartz functions S(R?), and then take the Friedrichs extension. The resulting

operator commutes with the magnetic translations introduced by Zak [19],
T, f(z) = e (g — ) )
for v € I'. We assume that
(w,I'xT) C 4nZ.

With this assumption G = {T,,,y € T'} is an abelian group, and we can reduce
H, by the eigenspaces of G, i.e. setting

Dy = {u € H (R, T,u= e *u,v T}, (4)
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considered as a subspace of L%(E), Hy restricted to Dy is self-adjoint with

compact resolvant. We denote its spectrum by

E\(k) < Bs(k) < ...

Then by standard results the spectrum of Hy as an operator in L2(R?) is equal
to
Ukers Un_y Em(k).
Note that, since Dy« = Dy for v* € I'*, E,,.(k +7*) = E.(k).
Standard perturbation theory shows that the function E,,(k) is continuous

for k € R? and real analytic in a neighborhood of any & such that
E,-1(k) < En(k) < Epga (k) (5)

The closed interval A,, = Upeg-E,,(k) is known as the “m-th magnetic Bloch
band” in the spectrum of H,.

In what follows it will be convenient to replace Hy acting on Dy, by

. ) 0 wxz
Hq(k) = —zka ikw _ [ _g
0( ) (o2 0€ < 2_833 + 5

2
+ k) +V(z)
with the domain
D= {u € HZQOC(]Rg)a T’YU’ =u,y € F}
for all k. As with Dy, we consider D as a subspace of L*(E).

Assumption A. For a given m we will assume that E,, satisfies (5) for all

k. Under this assumption we can choose the eigenfunction ¥(zx, k) associ-

ated to E,,(k) to be a real-analytic function of k with values in D, such that
[z ¥ (x, k)|?dz = 1, and

Ho(k)¥(k) = En(k)U(k) for all k .
Assumption B. We assume that

Uz, k+7*) =7 "U(z, k), v* €T
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This assumption makes the complex line bundle of the eigenspaces a trivial

bundle over the torus the torus, R®/T*. In general one has
U(z, k4 7*) = O eH0ETNY(g k), 4* € T,

where 6(k,~*) is real-valued, and determines the structure of the family of

eigenspaces as a complex line bundle. Since
O(k, mie] + maey +mael) = mi0(k, e;) + mab(k,es) + msb(k, e3),

when 6(k,v*) is nonzero, the derivatives of ¥ with £ may be unbounded and ¥
may not belong to the class of symbolds B which we introduce below. Thus we

need Assumption B.

Remark 1. The general method of constructing effective Hamiltonians which
we give here will apply under the weaker hypothesis: for a given m there exist

p and ¢ such that
Eppoi(k) < Epp(k) and E,yq(k) < Enmggi1(k) for all k,

and the corresponding eigenspaces form a trivial bundle over R3/T'*. However, in
this case the effective Hamiltonian will be a matrix operator acting on functions

with values in CP*9*1 as in [7],[8] and [14].

3. Main Result

The adiabatically perturbed Hamiltonian is

or 2
where W and A = (A, A, A3) are smooth, and bounded together with all of
their derivatives. As before, we define H, first on S(R?), and then take the

= (-ﬁ +2XT A(e:r)) +V(2) + Wiex),

Friedrichs extension to get a self-adjoint operator in L?(IR?).
The essential step in applying multi-scale techniques is simply to consider

y = ex as a new independent variable in H.. Let

( 0 0 wxz

H = —iz— —ie—+

Ew % > + A(y)) +V(z) + W(y).
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Then, for u(z,y) we can define w(x) = u(z, ex) and conclude that
[ail(z, ex) = [Howl(). (6)

The identity (6) enables us to solve the Schrodinger equation for H. uniformly
in € by solving the Schrédinger equation for A, uniformly in (y,¢). The latter
might sound more difficult, but it turns out not to be.

Let B denote the subspace of C*°(R? x R? x R?) consisting of functions of

the form
P(x,y,k,€) = Po(x,y, k) + €Pi(2,y,k) + - - - + ¥ Py (2,9, k)
such that P(z +,y,k,€) = e« @1/2P(x,y, k, €) and
sup 10505 P;(-,y, k)|l 12m) < oo, for all a, B € N,
9,
To P € B we associate the e-pseudo-differential operator
P(@,y,eDy,)f (@,y,€) = (2n€)™* [ 0=/ P(a,y,k,0) ()dzdk, | € SR°).

Note that here we are using the standard quantization — as opposed to the Weyl

quantization. Our main result is the following:

Theorem. For every N € N there exist Py = Fo + €F) + -+ + eNFy € B and
Hel‘;f =ho+€hy + -+ €eVhy € B, with the h;’s independent of x, such that

[jfe(PN(L y,eD,, e)u) — Py(z,y,€D,, e)(HeA}f(% eD,)u) = oM (1)
for u € S(R3). Moreover, considered as an operator from L*(R3) into L*(E x

R®), Py is approzimately isometric, i.e. PPy =1+ O(eV ).

We interpret ngf as the effective Hamiltonian up to order €. The leading
term in its symbol is ho(y, k) = E,.(k + A(y)) + W (y). This is the well-known
“Peierls substitution”, [15]. The symbol of h; is given by

1 9 0E.(k+Aly)

hai(y, k) = %8y %

—L-B—i{¥( k+A®y), ¥(-, k+Ay)- (8)
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Here B(y) = V x A(y) and

ov ov ov ov ov oV
L =1Im <<M(y’k)6_k2’6_k3>’<M(y’ )8_14:3’8—k1>"<M(y’ )8—lﬁ’0—kg>>

with M(y, k) = Ho(k) — ho(y, k). The function W(z, k + A(y)) is given by

(z, b+ Ay)) = 8‘1’(357’“8; AD) Bkt Aw)

and ¢ and k are defined by the Hamiltonian system

e N Em(k+ A(y)) + W(y)) i~ _OEm(k+ AQy) + W(y))
ok Oy ’

Thus one recognizes i(¥(-, k+ A(y)), ¥(-, k + A(y))) as the term generating the
Berry phase precession, cf. [13], [17]. The vector L is an angular momentum
and L - B contributes the “Rammal-Wilkinson” term to the energy, cf. [1].
Comparing (8) with [14, (22)] (in the case [ = 1), one sees that they agree
completely when one takes into account the difference in the choice of sign in
the magnetic potential, A(y), and the use of Weyl quantization in [14]. The
sign of the Berry phase term in (8) may appear inconsistent with [5, (29)], but
it is not. In [5] (¢, k) was the vector field from the Hamiltonian —E,, (k+ A(y)).

The proof of the theorem is given in [6], and it is short. One treats x as
a parameter, and uses the e-pseudo-differential calculus in y to construct the
symbols of the pairs (ho, Fy), (h1, F1), ..., successively so that (7) holds to order

O(eN+1).

Relation to Wave Packets. In [5] and [9], instead of introducing effective
Hamiltonians, we constructed wave packets. These packets are nonetheless
related to effective Hamiltonians in that one can compute what the effective
Hamiltonian must be — assuming that there is one — from the packets. To see
this one can proceed as follows. The packets have the form (here s = et and
W(y) =0)

w(@,9,5,€) = €40 f(y, 5)U(a, Z—j T A) + 0],
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where ¢ and f are solutions of

% = Em(g—zS + A(y)) and

0s
G —Pu G+ aw) -G+ (-ir- B+ (v )5

Here all functions of (k, y) are evaluated at k = k(y, s) = 9y¢, and D = (1/2)0,,-
(Op B (0,0+A(y))). Assuming that the evolution of f is governed by an effective
Hamiltonian H,;; = ho(y, eD,)+€hi(y, eD,)+O(€€), we must have (on bounded

(9)

intervals in s)
e (€O, 0)](y,5) = 0 fy, ) + O (10

Differentiating (10) with respect to s, one concludes

190

E. ..
= 7 - a—i)ew(%s)/e + O(e). (11)

i iz s)/e
£ Hegp (%99 £y, ) = (
Using the symbol expansion from the pseudo-differential calculus

e Heps (€ f) = ho(y, k)+

Lok 10 OF 1 1~ Pl

LW, 5300 iy L o
i ok " By 21 < Ok 0k

ayj oy

T

il (W) +ha(y, B)f () +O(e%). (12)

)

Substituting (12) into (11) and comparing the result with (9), one recovers the
formulas given earlier for ho(y, k) and hy(y, k).
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