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SHARP BOUNDS ON THE NUMBER OF RESONANCES
FOR CONFORMALLY COMPACT MANIFOLDS WITH
CONSTANT NEGATIVE CURVATURE NEAR INFINITY

Claudio Cuevas ® Georgi Vodev ®

A resonance is a complex number A € C describing a nonstable quantum state os-
cillating with a frequency Re )\, whose life-time is proportional to 1/Im X. Therefore,
the closer a resonance is to the real axis (that is, the smaller its imaginary part is), the
longer it lives, and hence the more interesting it is from the physical point of view. In the
physical experiments the real parts of the resonances are observed as the points at which
the first derivative, s'()), of the phase s(\), A € R, of the scattering matrix has peacks.
The knowledge of the resonances near the real axis also enables us to deduce important
information about the decay of the local energy of the solutions of the wave equation.

The systematic study of resonances associated to compactly supported perturbations
of the Laplacian on R™ was initiated by Lax and Phillips. They have constructed a
mathematical theory for the wave equation outside a compact obstacle as well as for the
wave equation with compactly supported potential. In the Lax e Phillips’s book [5] the
resonances are defined as the poles of the meromorphic continuation of resolvent (acting
on suitable spaces).

The goal of this work is to prove a sharp bound on the number of resonances for the
Laplacian on conformally compact manifolds with constant negative curvature near infi-
nite. Recall that a compact n-dimensional manifold (X, g) is called conformally compact

with constant negative curvature near infinity if and only if g = p~2h where:
(i) pis a C*®-function on X such that p|0X =0, dplox #0, p>0in X;

(ii) A is a Riemannian metrix on X of class C*(X);

(iii) All sectional curvatures of ¢ are equal to —1 in some neighborhood of the boundary
of X.
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Denote by Ay the Laplace-Beltrami operator on (X, g). The resolvent operator is
defined by

R(s)=(Ax —s(n—1—38))"": L*(X) — L*(X), for Res>1,

where L?(X) = L*(X,dVol,). The resolvent operator from L2, (X) into L7, (X) ex-
tends meromorphically to the whole complex plane. This fact was proved by Mazzeo and
Melrose [6] for a larger class of conformally compact complete manifolds. The poles of
this continuation are called resonances. We emphasize that the resolvent extends mero-
morphically, but not as an operator from L? to L?, only between suitable weighted spaces.

Denote by Rx the set of all resonances repeated according to the multiplicity, and let
Nx(r) be the number of resonances in a disc of radius r with r > 1.

Guillopé and Zworski [2] prove that Nx(r) = O(r"*'). As they noted this bound is
not optimal and the expected power is n. Indeed, in the case of n = 2 they obtained a
better bound Ny (r) = O(r?) (see [3]) as well as a lower bound Ny(r) > r2/C, C > 0,
under additional assumption (see [4]).

Our main result is the following:

Theorem 1.1 For any conformally compact manifold (X, g) with constant negative cur-

vature near infinity, the following upper bound holds:
Nx(r) < Cr® (1.1)

with a constant C' > 0.

Thus we improve the polynomial bound of Guillopé and Zworski [2].

Note that such a bound was proved by Patterson and Perry in [7] for a class of quotients
by hyperbolic spaces in the even dimensional case via the properties of the dynamical zeta
functions. Perry [8] has recently obtained sharp lower bound of the form Nx(r) > r"/C
for such quotients.

The bound (1.1) follows from the following upper bounds:

Proposition 1.2 For each 0 < € < 1 there exist a positive constant C. such that

<l|s|<r os€ CE} <O r>1 (1.2)

#{SGRX:g_
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where

C.=C\{seC:m—e< Arg sf% <7+e}

Proposition 1.3 For each 0 < & < 1 there ezist a positive constant C. such that

#{scRx:|s|<r seC}<Cam r>1 (1.3)
where
~ T n—1 3
s = D= < A _— <= - .
C seC 2+57 rg (s 7 53 5

The number of resonances in the shadow region is of order O.(r").
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Figure 1. Proposition 1.2
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From Proposition 1.2 and 1.3 we can deduce that

Nx(r) — Ny (g) <Cr+C Yr>0

with some constant C' > 0. Using the above estimate we can infer that Nx(r) < Cr™.
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Figure 4.

The proofs of Proposition 1.2 and 1.3 are published in [1]. They are based on Car-
leman’s theorem but we need to proceed differently in each case. To prove Proposition
1.2 we modify the parametrix for the resolvent constructed by Guillopé and Zworski (see
[2]), who followed the more general construction of Mazzeo and Melrose ([6]). This mod-
ification provides us, given any integer N > 1, a function hy(s) = O(e“N") analytic in
{s € C. : |s| < N}, such that the resonances in the region (with multiplicities) are among
the zeros of hy. Our approach is based on the observation that the operator responsi-
ble for the non-optimal estimate in Guillopé and Zworski’s paper have a factor which is
the commutator of the Laplacian with cutoff functions. Then the idea is to take these
functions characteristic thus obtaining for the commutator delta densities. This enables

us to achieve the dimension reduction needed for obtaining the optimal upper bound for

the function hy. A similar idea has already been used in Vodev [9] to get sharp upper
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bound on the number of resonances for arbitrary elliptic first order system in R™. This
approach does not allow to count properly the poles in a conical neighborhood of the half
line {s € R: s < (n —1)/2} because the resolvent may have poles on this line coming
from the parametrix construction (and from the poles of the free resolvent in the even
dimensional case), whose multiplicities are hard to control. That is why we count the
resonances in the conical region defined in Proposition 1.3 in a different way, using that

they are also poles of the scattering matrix.
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