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FUNDAMENTAL SOLUTIONS FOR THE TRICOMI
OPERATOR: POLE IN THE ELLIPTIC REGION

José Barros-Neto

Abstract

In this article we describe fundamental solutions for the classical Tri-
comi operator with pole in the elliptic region. The results presented here
are slightly more general that the ones to be described in a forthcoming
joint paper with Israel M. Gelfand.

1 Introduction

A fundamental solution for the Tricomi operator

? &
T:y@+@ (1.1)

with pole at a point (£,7) € R? is a distribution K(z,y;&,n) so that

where §(z—&, y—n) is the Dirac distribution at (£, n). In this paper, we consider
only the case where the pole (£, 7) is located in the elliptic region of 7, that
is, the half plane R? = {(z,y) € R%y > 0}. In view of the invariance of the
Tricomi operator relative to translations parallel to the x-axis, there is no loss
of generality in restricting ourselves to the case £ =0 and n =56 > 0.

The change of variables
2
r=x and s= gy‘w (1.3)

transforms 7 into
3s

T=(3

e (1.4)
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where

a° N 2 . 10
Or?  0s?  3s0s
Note that if y > 0, both x and s are real and we call 7, the reduced el-

T (15)

liptic Tricomi operator. However, if y < 0, then s is complex and we set
s = —2i(—y)*?/3, with i = v/—1

The change of variables

¢C=x+1is, and m=x—is (1.6)
or, in terms of x and y,
gty 2y i 2
f—x—)—zgy , and m=z i3y (1.7)
transforms 7 into
T = 233230 — m)?3T,, (1.8)
where ) /
0 1/6 [0 0
T — _ e — s | e
M otom 1—m (ae am> ds)
Note that if y > 0 both ¢ and m are complex; if y < 0, then
_ . B Al g gl

are the (real) characteristic coordinates of the Tricomi operator and we say that
7Ty, is the reduced hyperbolic Tricomi operator.

Paying special attention to the operator 7;, we look for homogeneous so-
lutions to the equation 7,w = 0. Any homogeneous function of degree A, a

complex number, in the variables ¢ and m can be written as

wi(l,m) = £2(C), (1.11)

with ¢ is a function of a single variable ¢ = m/¢. Direct substitution in (1.9)

shows that ¢(¢) is a solution of the hypergeometric equation

(1 =0)¢"(Q) +{c—(a+b+1)C}'(C) — abo(¢) =0, (1.12)

witha = -\, b=1/6, and ¢ =5/6 — \.
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If a, b, and c are given complex numbers, with ¢ # 0, —1, -2, - - - , it is known
[14] that the hypergeomelric series

F(a,b,C;C):Z%

n=0

6 (1.13)

where
T'(a+n)
I(a) '

is a solution to (1.11). The series converges absolutely for || < 1. In addition

(@o=1, (@.=ala+1)---(a+n—-1)= (1.14)

if Re(c —a —b) > 0, then it also converges absolutely for |¢| = 1 and we have

Le)'(c—a—10)

Flo b L) — T(c—a)l(c—1b)’

(1.15)

In the present paper we must consider not only the hypergeometric series
but also its analytic continuation to the whole complex plane C minus the
cut [1,00). The reader should consult [7, 14] for a detailed discussion on the
analytic continuation of the hypergeometric series. Here, we briefly discuss the
important points needed for the comprehension of this paper.

As it is shown in [14], Barnes’ contour integral defines a single-valued an-
alytic function of ¢ in the region |arg(—¢)| < m, that is, the (-plane minus
the positive real axis, and gives the analytic continuation of the series. Such a
function which standard convention still denotes by F(a, b, ¢; ) is the principal
branch of the analytic continuation generated by the hypergeometric series. If
a — b is not an integer or zero, then by conveniently choosing the contour of
integration, one obtains from Barnes’ integral the following representation for

the analytic continuation:

F(a,b,c;¢) = A(=¢)™*F(a,1—c+a,1-b+a;¢7") (1.16)
+ B(=O)°F(b,1—c+b1—a+b(¢™),

where F(a,1 —c+a,1 —b+a;¢7!) and F(b,1 —c+ b1 —a+ b (7h) are
hypergeometric series in (™!, absolutely convergent for (| > 1, and | arg(—(¢)| <

7 [14]. If a — b is an integer or zero, then (1.16) must be modified because of
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the presence of double poles in the integrand of Barnes’ integral. In the case

a = b the following result to be found in [7] holds:

F(a,a,¢¢) = (=0)*[log(=0)U(¢) + V(¢)]; (1.17)

where |arg(—(¢)| < m, and U(¢) and V() are power series in (' absolutely
convergent for |¢| > 1. The explicit expressions of the series U(¢) and V' ({) can
be found in [4, 7].
Going back to (1.11) the functions
1

wx (€, m) = O F(=\ L

) (1.18)

are then homogeneous solutions of degree A of 7,w = 0. They were already
considered in the papers [3, 4], where it was remarked that if one is looking for
fundamental solutions to the Tricomi operator, then the appropriate degree of
homogeneity must be A = —1/6.

From now on, A = —1/6 and we define
L1, m

E(t,m) = CVOF(g 5 LY

). (1.19)

This is a homogeneous solution of degree —1/6 to T,w = 0. Let now (g, mo)

be an arbitrary point in C? and consider the change of variables

U —my ~m/ —mg

l m=——.
él — éo ’ m' — fo
Direct verification or by following Darboux in [5] one can show, after a relabeling

of variables, that

E (8, m; Lo, mo) = (£—mo) V5 (o —m) /O F( (1.20)

is also a solution to Z,w = 0. This function was used in [4] to obtain fundamental
solutions relative to an arbitrary point located in the hyperbolic region of 7.
We point out that the homogeneous functions (1.19) had already been con-
sidered by Germain and Bader in [10]. Also J. Leray in [11], after restricting
himself to the hyperbolic region of 7 and localizing the problem, produced fun-

damental solutions in terms of the hypergeometric function F(1/6,1/6,1;().
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The plan of this paper is as follows. We show in Section 2 how to obtain from
(1.20) fundamental solutions to the Tricomi operator with pole at (0,b),b > 0.
In Section 3, by passing to the limit, we obtain the fundamental solutions of
the joint paper [3].

We would like to thank Fernando Cardoso, Daniela Lupo and Kevin Payne

for several helpful conversations.

2 Fundamental solutions: pole at (0,b),b > 0

For b an arbitrary positive number, let a = 2b%/2 /3. Going back to formula (1.20)
replace ¢y by —ia, and mg by —&y. From (1.7) it follows that

(€= mo)(m — o) = %[9(332 + %) + 4y — 120y,
for y > 0, and from (1.10) it follows that
(£ —mo)(m — £y) = %[9(:52 + a?) + 4° +i12a(—y)*/?),
for y < 0. Similarly, we have
(¢ = to)(m = 1m0) = 5[9(27 + %) + 4y* + 12y
it y > 0 and
(€= £o)(m — mo) = 2[9(z” + ) + 4 — i12a(—y)*"]

9

if y < 0. Thus, we derive from (1.20) the following solution to 7w =0 :

11w

:0,0) = (—v)Y6F(3, =, 1; — 2.1
E(@1;0,8) = (o) PR, 5,15, (.1)

where 9(z? + a?) + 4y® + 12ay3/? ify >0

y° + 12ay ity >

u(w,y) = (2.2)

9(z? + a?) + 4y* —i12a(—y)*? ify <0

and

9(x% + a?) + 4y° — 12ay°/2 ify>0

v(z,y) = (2.3)

9(z? + a®) + 4y® +i12a(—y)*? fy <0
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In order not to overload our notations we are keeping the same letter £ to denote
two different expressions, namely, (1.20) and (2.1). However the presence of the
variables (¢, m) in one case and (z,y) in the other should dispel any confusion.

In formulas (2.2) and (2.3), u(x,y) and v(z, y) are complex conjugate of each
other whenever y < 0. We wish to analyze the variation of their arguments in
terms of z, y, and b (or a recalling that a = 2b%2/3). It suffices to consider
v(z,y). For a fixed b, v maps R? into the half-plane (Re(v), Im(v)), Im(v) > 0.
Define in the hyperbolic region of 7" the following two sets:

Dyo={(zy) €R*:9(a® +a®) + 4¢° > 0,y < 0} (2.4)
and
D= {(2,9) € R 97 +a2) + 44° < 0, < 0}, (2.5
as shown in Figure 1. In the region D, ,, both Re(v) = 9(z? + a?) + 4y* and
Y
T
9w2—|—4y3 =0 — Dy,

y 9(z? +a?)+4y> <0

Figure 1

Im(v) = 12a(—y)*? are positive. If 6 is such that

12a(— 3/2

tan(f) = _LeCp e !
9(x% + a?) + 4y°

we may choose 6 to vary from 0 to 7/2. In the region D_,, Re(v) < 0 and

Im(v) > 0, and we choose 6 to vary from 7/2 to m. We say that 6 is the

principal argument of v. In general the argument of v is

arg(v) = 0+ 2km, k € Z. (2.6)
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Note that if (z,y) € D, and y — 0, then § — 0, hence arg(v) — 2k, and we
set arg(v) = 2k7 whenever y < 0.

Since u is the complex conjugate of v we may write
arg(u) = —0 + 2km, k € Z. (2.7)

If (z,y) € Dy, and y — 0, then arg(u) — 2km and we set arg(u) = 2km
whenever y > 0. Next if

arg(—v) = arg(v) + 7  and arg(%) = arg(u) — arg(v),
one obtains from (2.6) and (2.7) that
- < arg(fg) <.
v

Therefore, no matter how one chooses the arguments of u and v, the hyperge-
ometric function F(1/6,1/6,1;u/v) in (2.1) represents the principal branch of
the analytic continuation of its series.

Now, for y > 0, u and v defined by formulas (2.2) and (2.3) are real and

> 0. Moreover, u/v > 1 (to see this, write v and v in terms of the variables x

and s, as in formula (2.13) below.) By virtue of (1.17), we may then write (2.1)

as
11 u
: = (—v)YF(<,=,1,—
E@yi00) = (—0) VR, 5 L0
_ u 11 U
u 1/6(_;)1/6}7(6’6717;) (28)
s i B sl e u
uV{log(— YU () + V().

By recalling that arg(u) = 2km we rewrite the last formula as
£(z,y;0,8) = e~/ {log(~)U(2) + V(2)}. (2:9)
We now state the following

Theorem 2.1. For 0 < k <5 the distribution
eikw/B

Fi(z,y;0,b) = s

E(z,y;0,0) (2.10)

is a fundamental solution of T with pole at (0,b).
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Proof. 1. Consider first the case £ = 0. We must show that
(TF,¢) = (F,T¢) = $(0,b), V¢ e C>(R?). (2.11)

It follows from our brief review on hypergeometric functions in Section 1
and particularly from formula (1.17) that F is locally integrable and everywhere
smooth except at (0,b) where it has a logarithmic singularity. Thus, we may

write the second bracket in (2.11) as an integral:

T =55 [[ E@ponTo@n dway. (1)

We may assume that the support of ¢ is contained in the half plane y > 0
because, away from (0,b), F is a solution of 7w = 0.
2. It is now more convenient to introduce the change of variables (1.3) where,

for y > 0, both = and s real. In these variables we have
u=9z>+(s+a)’] and v=9[z’+(s—a)?

and £(z,y;0,b), given by (2.1), can be written as

11 224 (s+a)?
. _a-1/3 2 (. 2\1-1/6 .
£(z,50,a) = 3 [—(2® + (s —a)®)| 7V F(gagal,m)- (2.13)
Again the abuse of notation £(x,y;0,b) = &£(x,s;0,a) should not cause any
confusion in what follows. After taking into account (1.4) and noting that the

Jacobian determinant of the transformation is

d(,y) _ ~1/3 .—-1/3
S =6/,

replacement into (2.12) yields

1
(F, T = 7%// sY3&(x, 5,0, a)Toap(x, s) dx ds, (2.14)
R2
where (, s) = ¢(x, (35/2)%?). To complete the proof it suffices to show that
the last integral is equal to —22/3¢(0, a).

3. To evaluate the double integral in (2.14) we proceed as follows. For f and

¢ smooth functions in R? we have the identity

fTg= 97 f = (f9o = 9fe)e + (fgs — g fs + %fg)s,
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with 7.* the formal adjoint of 7,. If f, g € C*(D) where D is an open set in R?
with smooth boundary, then we have Green’s identity for the reduced elliptic

operator 7, :

[[Tg =gz pydnds= [(19. ~ gy ds = (f9.~ of. + 5 o o (215)
D g

We apply this identity with f = s'/3&(z,5;0,a), g = ¥(x,s), D an annulus
centered at (0,a) of radii € and R, with R large enough so that the support of
1 is contained in the ball of center (0, a) and radius R. Since, away from (0, a),
sY3&(x, 8;0,a) is a solution to 7*w = 0, it follows from (2.11) and (2.15), after
setting £* = sY/3€(z, 5;0, a), that

1
/ E T dx ds:/ (EXthy — WEZ) ds—(E*, — YEX + —YE*) du, (2.16)
D () 3s

where y(¢) is the circumference centered at (0, a) with radius e. If n denotes the
exterior normal (pointing towards (0,a)) and do the line element along ., then

we may write the line integral in (2.16) as

- dy e 1 .ds
[@f/( By e Py, (2.17)

where do is the infinitesimal arc length element. We must find the limit of I(e)

as € — 0.

4. Tt is convenient to rewrite the expression of £* as follows. Consider the
points Py(0,a) and P;(0, —a) and let

=d(Py,P)=+/12+ (s—a)? and r =d(P,P)=+/72+ (s +a)?

denote, respectively, the distances from Py and P, to P(z,y). Taking into ac-

count formulas (2.8) and (2.9) and recalling that k = 0, we obtain
2 2 2
£ = ()3 {log (T )U( )+V( e U(—l)} (2.18)

T

Remark that £* has a logarithmic singularity at » = 0, that is, at (z, s) = (0,a).
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5. Along 7. the terms dy/dn and (1/3s)wds/dn remain bounded hence their
integrals in (2.17) tend to zero, as ¢ — 0. Thus, one is left with the evaluation

of the integral

dEx
J(e) = —/ b——do =
o dn

After differentiating £* with respect to r, one verifies that the only term to be

d€ *
| _ . 2.1
)w . |l do (2.19)

(e

integrated is the one resulting from the derivative of log(r#/r?), namely,

s 1. r?
(B
(7‘1) r (7‘2

).

All other terms give integrals that tend to zero as € — 0. By introducing polar

coordinates x = ecosf, s —a = esinf, 0 < § < 27, we then obtain

%8 1. 72
1' = _1 2(= 1/3 2 i B 5
(LI)I(I)J(G) lim 4 (7“1) 7AU(TQ)|,n_51/1(ecos€,a—I-eslnﬁ)ede
2 2m
B et :_22/3 ) 99
21/3 F(1/6)F(5/6)w(07 CL) ¢(07 a), ( 0)

because I'(1/6)I'(5/6) = 2. Hence the case k = 0 is proved.
6. In the general case, the factor ¢**"/% in formula (2.10) cancels out the

—ikm/3

factor e in formula (2.9) and so we end up with the same expression for

&* in (2.18). This completes the proof.

3 Fundamental solutions: pole on the real axis

We recall that the case of fundamental solutions with pole on the real axis was

studied in the joint paper [3] where we showed that the distributions

111 o
_21/331/2F(_ =,1;1)(92% + 4¢°) 18 0 1.,

66 (3.1)

0 elsewhere,

F+(Iay) =

where
D, = {(z,y) € R?: 922 + 49 > 0}, (3.2)
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and
1 11
—F(=,=,1;1)|92% + 49%/® in D_
2137 676
F_(z,y) = (3.3)
0 elsewhere,
where
D_ = {(x,y) € R?: 922 + 49* < 0}, (3.4)

are two distinct fundamental solutions of 7 relative to the origin. Note that
922 + 4y = 0 is the equation of the two characteristic curves of 7 emerging
from the origin. The first solution F, is supported by the closure of the region
“outside” these two characteristics while the second one F_ is supported by the
closure of the region “inside” these characteristics.

A natural question to consider is whether one can obtain either F'y or F_ or a
suitable linear combination of both as a limit, in the sense of distributions, when
b — 0, of the fundamental solutions Fj. For simplicity, we restrict ourselves to
the case k = 0 and set Fo = F.

Theorem 3.1. We have

1 V3 i 11 e
gy~ §)F(67671§1)(9$2+4Z/3) i

1 1 &3 11 o
—g(g ~ 5 F(G 5 DI’ + 477 i D_
(3.5)

m Dy
ll)ir% F(z,y;0,b)=

Proof. Note that as b (or a) tend to 0, the sets D, and D_ , defined by (2.4)
and (2.5) tend, respectively, to the sets D, and D_.

1. Let (z,y) € Dy with y < 0. For b small enough (z,y) € D, and F is
given by the formula

(o)

11

As b — 0, u/v — 1, and F(1/6,1/6,1;u/v) tends to F(1/6,1/6,1;1), whose
value is given by (1.15) with @ = 1/6, b = 1/6, and ¢ = 1. It then suffices to
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consider the limit of (—v)~%. Since arg(v) = 0,0 < 6 < /2, with arg(v) — 0,

as b — 0,it follows that arg(—v) — 7, and we have
(—v)~ /6 = gmiame(-0)/6|y-1/6 _, (g _ %)(ng +4y3)71/6‘

Thus, at the limit, we obtain the top expression in formula (3.5).

2. Assume that (z,y) € Dy with y > 0. In this case, both u and v are real
and, as b — 0, F(1/6,1/6,1;u/v) still tends to F(1/6,1/6,1;1). Since (—v)~/¢
tends to the same value as in item 1. we also obtain, at the limit, the top
expression in formula (3.5).

3. Let (x,y) € D_ with y < 0. In this case, (z,y) € D_,, for all a, and
the expression of F is given by the same formula (3.6), where u and v are
complex conjugate of each other. It follows, as in item 2., that the limit of
F(1/6,1/6,1;u/v),asb — 0, is F/(1/6,1/6,1;1). On the other hand (see Section
2), arg(v) = 0, m/2 < 6 < 7, is such that @ — 7, as b — 0. This implies that
arg(—v) — 2 and so
1_/3
2 2

as b — 0. From these results, we get the bottom expression in formula (3.5),

(=)™ = ( )192% + 4y°| /%,

which completes the proof.
O

We remark that Theorem 3.1 is also true for F,0 < k < 5. Returning to
these fundamental solutions, observe that they are complex valued functions,
consequently their real parts are also fundamental solutions to the Tricomi
operator 7. From Theorem 3.1 applied to Re F, the real part of F, we derive
the following

Corollary 3.1. We have

3 1 11 , .
2ot (5 e LVOF +47)7) in Dy
lim Re F(x,y;0,0) =
=0 1.1 11 2 3)-1/6 ’
F(=, =, 1)|92z% + 4y°|/°) in D_

66
(3.7)

>
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Formula (3.7) can be rewritten as follows

3 1
})ln(l) Ref(x7y707b) = §F+($,y) - §F_(£C,y),

that is, the limit of the real part of F(x,y;0,b) is a fundamental solution with

pole at the origin given by a linear combination of the fundamental solutions
F, and F_.
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