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Abstract

The clique operator K maps a graph G into its cliqgue graph, which
is the intersection graph of C(G) (family of cliques of G). Let G be the
class of all graphs and #H that of all graphs satisfying that C(G) is a Helly
family. In this work we will be interested in the following question: is
K (G) the same as K2(G)? The present paper represents an effort toward
its solution.

Since K(H) = H, we focus our study to graphs in G \ H and we
obtain a necessary condition for a graph to be in K(G) \ # in terms of
the presence of a certain subgraph A. Then A and all graphs obtained
from A by the addition of extra edges are the smaller that could be
in K(G)\ K2(G), i. e. separate K(G) from K2(G). To analyze all
these graphs we must develop general results which are presented in this
work: we show an algorithm for recognition of clique graphs, we give a
constructive characterization of K ~1(G) for a fixed but generic G. Finally
we study all graphs derived from A proving that none of them is in
K(G) \ K2(G) and that if there is a graph which separates both classes
it must have at least eight vertices.

1 Introduction

The clique operator K transforms a graph G into a graph K(G) having as
vertices all the cliques of G, with two cliques being adjacent when they intersect.
The graph K(G) is called the cliqgue graph of G. Among all the better studied
graph operators, K seems to be the richest one and many questions regarding
it remain open.

In this work we are interested in this question: is there a graph that is a
clique graph but not a clique graph of a clique graph? In other words, if G is
the class of all graphs, is K(G) equal to K?(G)?

The basic result for clique graphs was given by Roberts and Spencer ([6]):
a graph G is a clique graph if and only if there is a family of complete sets of
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G which covers all the edges of G and satisfies the Helly property. We call an
RS family of G a family of complete sets in G that fulfills this conditions.

Trivially, if the family of cliques of G satisfies the Helly property ( or is G
in the class H ) G will be a clique graph. Moreover, Escalante ([2]) proved that
K(H) = H. Then it is clear that if there is a graph in K(G) \ K*(G) it must
not be in H. But to find a graph in K(G) \ K2(G), i. e. which separates both
classes seems to be very difficult.

Although we do not give an answer to our original question, we have found
general results about the clique operator. Our contributions can be summarized
as follows. We develop an algorithm that detects if a graph has or not an RS
family, i. e. if a graph is or is not a clique graph. We also show that being a
clique graph is a property that is maintained by addition of twins, but not being
a clique graph is not necessarily maintained by addition of twins. In addition,
we give a constructive characterization of K~!(G) for a fixed but generic G in
terms of special RS families of G.

We obtain a necessary condition for a non-Helly graph to be in the image
of K in terms of the presence of a certain subgraph A.

Using these results we present several properties that a graph must satisfy
to be in K(G) \ K*(G). Beginning with graph A, which has seven vertices, we
analyze all graphs derived from A by the addition of edges, and conclude that
none of them is in the difference. We conclude that a graph in K(G) \ K%(G)
must have at least eight vertices.

The paper is organized as follows. Section 2 contains the basic definitions
used throughout. In Section 3 we give the algorithm, which will be used later
to show that certain graphs are not clique graphs. Section 4 characterizes all
the graphs in K~*(G) for every graph G and we analyze the behaviour of twin
vertices. In Section 5 we study non-Helly clique graphs. Finally, Section 6

contains our concluding remarks.

2 Definitions

In this article all graphs are simple, i.e., without loops or multiple edges (except
for the DAMG of Section 3.1). Let G be a graph. We denote by V(G) and E(G)
the vertex set and edge set of G, respectively. If uv is an edge of G, we call
G —uv the graph such that V(G —wv) = V(G) and E(G —wv) = E(G) — {uv}.
w and v are twin vertices of G if wv € E(G) and zu € E(G) if and only if
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2v € E(G). A set C of vertices of G is complete when any two vertices of C' are
adjacent. A maximal complete subset of V(G) is called a cliqgue. We denote by
C(G) the clique family of G.

Let F = (F;)ier be a finite family of finite, nonempty sets. Its dual family
DF is the family (F(u))uev where U = U;e; F; and F(u) = {i € I,u € F;}. We
denote by LF the intersection graph of F, i.e., V(LF) = I and two vertices i
and j are adjacent if and only if F; N F; # 0. We also say that F represents
LF.

The 2-section of F, denoted by SF, is the graph with V(SF) = U,¢; F; and
two vertices x and y are adjacent if and only if there exists ¢ € I such that
x,y € F;. It is easy to see that LF = SDF [1].

An intersecting family (F;);cs is a family such that any two sets Fy, F; with
k,l € I intersect. A family (F;);er of arbitrary sets satisfies the Helly property,
or is Helly, when for every intersecting subfamily (F});es with J C I, we have
Njes Fj # 0. A graph is Helly when the family of its cliques is Helly. We denote
by H the class of Helly graphs. A family F is conformal when the cliques of
SF are all members of . This amounts to saying that its dual family DF
is Helly [1]. A family F is reduced when none of its members is contained in
another member of the family.

As we said earlier, the clique operator K transforms a graph G into a graph
K(G) having as vertices all the cliques of G, with two cliques being adjacent
when they intersect. Thus, K(G) is nothing else than the intersection graph of
the family of all cliques of G. The graph K(G) is called the cliqgue graph of G.

We call G the class of all graphs then K(G) will be the class of all clique
graphs.

In an important paper for the theory of clique graphs, Roberts and Spencer
[6] found the following characterization of K (G):

Theorem 1 (Roberts and Spencer, 1971) A graph G is in K(G) if and
only if there is a family IC of complete sets in G such that:

1. K covers all the edges of G (i.e., if xy € E(G), then {x,y} is contained
in some element of K).

2. K satisfies the Helly property.

We call an RS family of G a family of complete sets in G that fulfills the
hypothesis of the Roberts and Spencer theorem.
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3 An Algorithm Recognizing Clique Graphs

In this section we present an algorithm that looks for RS families in an arbitrary
graph G.

Let A and F be two families of complete sets of a graph G. We say that
A is below F (notation: A < F) when for every member A of A there is a
member F of F with A C F.

A family A of complete sets of G is admissible when there is a Helly family
F such that A < F and SA=SF.

A conflict in a family A of complete sets of a graph G is an intersecting
subfamily without a common intersection. Thus, conflicts exist in non Helly
families only. A solution for a conflict C in A is a vertex v such that, for every
member C of C, the set {v} UC is a complete set. A conflict without solutions
is unsolvable.

If A is a family of complete sets of G, C is a conflict in A, and v is a solution
for C, we denote by M(A,C,v) the family obtained from A by replacing every
member C of C by {v}UC, and then reducing the family by removing duplicate
sets and then taking only the maximal sets.

The following theorem will be useful.

Theorem 2 Let F be a Helly family of complete sets of a graph G, A a family
below F, and C a conflict in A. Then there is a solution v for C such that
M(A,C,v) < F.

Proof: Since C is a subfamily of A and A < F, for each member C of C there is
a member F¢ of F with C C F. The family formed by the F¢'’s is intersecting,
because C is intersecting. Since F is Helly, there is a vertex v common to all
the F¢’s. We claim that v is the solution sought. Indeed, given a member of
M(A,C,v), if this member belongs to .4, then it is already below F. If it is of
the form {v} UC for some member C of the conflict, then it is contained in F.
Thus we have M(A,C,v) < F.

O

A solution tree T for a graph G is a finite tree with the following character-
istics.
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1. Each node of T is labeled with a pair (A4, C), where A is a reduced family
of complete sets of G and C is a conflict in A if A is not Helly.

2. The root of T is labeled with a pair (A, C) where A is the family of edges
of G.

3. If (A,C) is the label of a leaf of T, then either A is a Helly family, or C
is an unsolvable conflict. In the former case we say that the leaf is a good
leaf, and in the latter case, a bad leaf.

4. Each internal node labeled with (A,C) has exactly one child per solution
v of the conflict C, and the child corresponding to v has label (A’,C’),
where A’ = M(A,C,v).

The following theorem is essential to guarantee that the algorithm works for
all graphs.

Theorem 3 Every graph G admits a solution tree.

Proof: Consider pre-solution trees, where all the conditions for a solution tree
are met except that leaves may be labeled with only the first family of the pair.
Such leaves will be called pending leaves. Start with a tree with just the root
node labeled with the family of all edges of G. Perform the following steps until
no more pending leaves remain:

choose a pending leaf p, and let A be its label

if A is Helly, make (A, .A) the label of p

if A is non Helly, choose a conflict C in .4 and for each solution v of
C create a child of p with label M(A,C,v).

This procedure terminates, since each time an edge is created the families
involved grow, all families are reduced, and the ultimate limit is C'(G), the
family of all cliques of G. There is a finite number of reduced families below
C(G). When it terminates, there are no more pending leaves and the tree is a
solution tree.

O

The following result shows that a solution tree actually answers the question:
is G a clique graph?
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Theorem 4 Let G be a graph and T any solution tree for G. Then G € K(G)
if and only if there is a good leaf in T.

Proof: Suppose that G € K(G) and let F be an RS family of G. Consider a
solution tree T for G. We will show that, for every n > 0, either there is a path
of length k£ < n from the root to a good leaf, or there is a path of length n from
the root to an internal node labeled with (A,C) where A < F. Since the tree
is finite, this will imply that there is a good leaf in 7.

To simplify the proof, we will use the phrase “path to a family 4" meaning
“path from the root to a node labeled with (A,C)”. The proof will be by
induction on n. For n = 0, take the path containing just the root. It satisfies
the stated conditions since the family of the edges is below F. For n > 0, assume
the result true for n — 1, hence, either there is a path of length £k < n — 1 to
a good leaf or there is a path of length n — 1 to a family A < F. In the first
case, we are done. In the second case, if A is Helly we are done as well. If A
is not Helly, the path ends in a node p that has also a conflict C in its label.
Since C < F, Theorem 2 tells us that there is a solution v for C such that
M(A,C,v) < F. Augmenting the path with the child of p corresponding to v,
we prove the induction step. This concludes the “only if” part of the theorem.

For the “if” part, assume there is a good leaf in 7', a solution tree for G.
Observe that all labels (A,C) of nodes in T are such that A is a family of
complete sets that covers the edges. If there is a good leaf, the family A is
Helly, that is, it is an RS family of G. Thus, G € K(G).

O

3.1 Solution DAMGs

A solution tree is a concrete object that can prove that a graph is not a clique
graph. To simplify those proofs, a more compact object, called a solution
directed acyclic multigraph or solution DAMG, can be used.

Given a graph G, a solution DAMG for a graph G is a finite, directed, acyclic
multigraph D with a single source node with the following characteristics.

1. Each node of D is labeled with a pair (A,C), where A is a reduced family
of complete sets of G and C is a conflict in A if A is not Helly.
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2. The unique source of D is labeled with a pair (A, C) where A is the family
of edges of G.

3. If (A, C) is the label of a sink of D, then either A is a Helly family, or C
is an unsolvable conflict. In the former case we say that the sink is a good
sink, and in the latter case, a bad sink.

4. Each non sink node labeled with (\A4,C) has exactly one outcoming arc
per solution of the conflict C, and this outcoming arc is labeled with the
corresponding solution.

5. Each non source node p with incoming arcs from ps, pa, . . ., pr With labels
U1,Va, . .., Vg has label (A, C) satistying A < M(A;,C;,v;) for every i such
that 1 <4 <k, where (A4;,C;) is the label of node p;.

Theorem 5 Let G be a graph and D any solution DAMG for G. Then G €
K(G) if and only if there is a good sink in D.

Proof: Suppose that G € K(G) and let F be an RS family of G. Consider a
solution DAMG D for G. We will show that, for every n > 0, either there is
a path of length £ < n from the source to a good sink, or there is a path of
length n from the source to a node labeled with (A, C) where A < F. Since the
DAMG is finite, this will imply that there is a good sink in D.

To simplify the proof, we will use the phrase “path to a family .4” meaning
“path from the source to a node labeled with (A,C)”. The proof will be by
induction on n. For n = 0, take the path containing just the source. It satisfies
the stated conditions since the family of the edges is below F. For n > 0,
assume the result true for n — 1, hence either there is a path of length £ <n—1
to a good sink or there is a path of length n — 1 to a family A < F. In
the first case, we are done. In the second case, if A is Helly we are done as
well. If A is not Helly, the path ends in a node p that has also a conflict C
in its label. Since C < F, Theorem 2 tells us that there is a solution v for C
such that M(A,C,v) < F. Augmenting the path with the outcoming arc of p
corresponding to v, we prove the induction step. This concludes the “only if”
part of the theorem.

For the “if” part, assume there is a good sink in D, a solution tree for G.
Observe that all labels (A,C) of nodes in D are such that A is a family of
complete sets that covers the edges. If there is a good sink, the family A is
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Helly, that is, it is an RS family of G. Thus, G € K(G).
O

To simplify the arguments ever further, we will place the edges of G plus
the cliques of size three in the source, which are necessarily present in every
RS family. In addition, we will show only the conflicts and the arc labels; the
family A, of each node p will be implicitly defined as

/\ M(Ag, Cq, Vgp),
q—p

where A denotes the (reduced) infimum with respect to <, that is,

k
/\]—"Z-:flAfg/\.../\]-"k:{AHA} < F; for every i such that 1 <i <k
i=1

and A is maximal with this property }

and v, is the label of the arc from ¢ to p.

4 The inverse image of a fixed GG

Given a graph G in K(G), we characterize the class of graphs whose image
under K is G. Remember that an RS family of G is a family that satisfies the
conditions of the Roberts-Spencer Theorem. If in addition, the RS family has
a reduced dual, then we said that it is an ERS family of G. We show in this
section that each ERS family of G corresponds to a graph H in K~'(G), and
vice versa.

Before giving the characterization, let us recall a couple of results on inter-
section graphs. For the proofs, see the work of Gutierrez [3]

Lemma 1 /3] If F is a family of complete sets of G which covers all edges of
G, then G 1is the intersection graph of the family DJF.

Lemma 2 [3] If G is the intersection graph of a family F then DF is a family
of complete sets of G which covers all edges of G.

The following result is a consequence.

Theorem 6 [4] Let G and H be two graphs. Then K(H) = G if and only if H
1s the intersection graph of an ERS family of G.
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4.1 Twin Vertices

We have seen that the graphs in the inverse image K~!(G) are in one-to-one
correspondence with the ERS families of G. There is an infinite number of
these families. It is easy to see that if a given complete set of G appears in an
ERS family two or more times, this produces twin vertices in the corresponding
graph H € K~1(G). We would like to simplify the study of K~!(G) by taking
only ERS families with no repeated elements, because there is a finite number
of such families. For instance, to test whether a given graph G belongs to K2(G)
we could take all reduced (i.e., without twins) graphs in K~'(G) and check each
one for pertinence in K(G). Unfortunately, this result is only partially true:

Theorem 7 [{] Let G be a graph and u, v twin vertices in G. If G—u € K(G)
then G € K(G).

The converse of Theorem 7 does not hold. Denote by P the first graph de-
picted in Figure 1, which is not a clique graph. The graph Px in the same figure
is obtained from P by adding a twin to one of the central vertices. However,
Px does belong to K(G), because the complete sets

C = {1,4,2},
Cy = {1,3,6},
C; = {2,3,5},
Cy = {1,2,3,3},
Cs = {3,3,5},
Ce = {3,3,6},

form a reduced RS family of the graph in question. In fact, there are only
two reduced RS families of Px. Replacing Cy and C3 by C} = {1,3,6} and
C% = {2,3,5} we obtain the other one.

5 Non-Helly Graphs in K(G)

We know that K%(G) C K(G). If these two classes are distinct, there must be
a clique graph which is not a clique graph of a clique graph. Helly graphs are
known to have inverse images under the clique operator which are also Helly
graphs, and therefore are in K?(G). Thus, we must study the non Helly graphs
in K(G).
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Figure 1: Graphs P (left) and P*. The latter is in K(G), and is obtained by
addition of a twin to P, which does not belong to K(G).

5.1 The graphs A and B

The graph P depicted in Figure 1 is the smallest non Helly graph. We say that
a graph G has P when G has three mutually adjacent vertices 1, 2, and 3, and
three other vertices 4, 5, and 6 such that 4 is adjacent to 1 and 2 but not to 3,
5 is adjacent to 2 and 3 but not to 1, 6 is adjacent to 1 and 3 but not to 2.

Notice that this is different from saying that G has P as an induced subgraph,
and it is also different from saying that G has a subgraph (not necessarily
induced) isomorphic to P. However, this concept is important because of the
following fact. Define a graph to be Helly hereditary when it is Helly and all
of its induced subgraphs are Helly as well. Prisner [5] showed that G is Helly
hereditary if and only if G does not have P in the sense defined above.

The following result tells us more about the structure of a graph in K(G)
that has P.

Theorem 8 If G € K(G) and G has P then G has a subgraph isomorphic to
A (see Figure 2).

Proof: In [4] we have proved that G has a subgraph isomorphic to A or B (see
Figure 2). Observe that A is a subgraph of B (take vertices 1, 2, 4, and all
unnamed vertices in Figure 2 and all edges between them). Therefore, in this

case again G has a subgraph isomorphic to A.
O

A graph can have P and also subgraphs isomorphic to A without belonging
to K(G) (use the algorithm to see that this graph is not a clique graph), as the
example in Figure 3 shows.
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i 4
i 2 1 2
6 3 5 6 3 5
A B

Figure 2: Graphs A and B.

Figure 3: Graph with two A’s but not a clique graph.
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The following corollary easily follows.

Corollary 1 If G € K(G), then G is Helly hereditary if and only if G does not
have subgraphs isomorphic to A.

Proof: Since G is Helly hereditary if and only if G does not have P [5], the

result follows.
O

Graph A is therefore a good starting point in the search for graphs that
“separate” the Helly hereditary ones inside K(G).

5.2 Graphs derived from A

As a step towards characterizing K(G) \ K?(G) we ask ourselves what is the
minimum number of vertices a graph in this class must have. Since A is smaller
than B, we concentrate our efforts on graphs derived from A.

For the graph A itself, we have that it actually belongs to K%(G) (see Fig-
ure 4).

In the remainder of this section we will analyze all graphs with seven vertices
derived from A by the addition of extra edges, and show that none of them
belongs to K(G) \ K?(G). The next result will be then that at least 8 vertices
are necessary to separate K(G) from K?(G).

Graph A has 13 edges. The complete graph on seven vertices has 21 edges.
The eight edges not present in A must be considered. However, edges 15, 26,
and 34 are not present by our initial hypothesis that the graph is not Helly
hereditary. Therefore, five edges remain: 45, 46, 56, 5x, 6x. Considering all the
possibilities of presence or absence of these edges, we can build a total of 32
graphs. Of those, graph A, as we saw, is in K?(G).

What follows is an analysis of the other 31 graphs. Two important facts for
the analysis are stated below. To simplify the notation, we will write sets with-
out the surrounding curly braces and without commas separating the elements.
For instance, set {1,2,z} will be denoted simply by 12z.

Fact I. The only reduced RS family for A is : 14x, 24x, 123x, 136, 235.
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i

H,

Figure 4: Graph A and two graphs H; and Hs in K~'(A). Notice that H, is in
K(G), showing that A € K?(G).
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Fact II. There are only two reduced RS families for Px and both have the
central K, : 1233’; and the two K3 that have 33’ (see Section 4.1).
The following theorem is useful to reduce the number of graphs analyzed.

Theorem 9 Let G be a graph, C = {a,b,c} a clique of G, and F a reduced RS
family of G. In addition, let G' = G —ab and F' = F — {C}. Then:

1. C is a member of F.

2. If {a,c} is not a clique of G' then F' covers ac.

3. If{a,c} and {b,c} are not cliques of G' then F' is an RS family of G'.

Proof: 1) Is immediate.

2) If {a, c} is not a clique of G, there is a vertex y # b adjacent to a and ¢
in G and G'. Notice that y is not adjacent to b, otherwise {a,b, c} would not
be maximal. Let F' and F’ be members of F that cover ay and cy respectively.
Hence F, F' and {a,b, ¢} form an intersecting subfamily of F. Since F has the
Helly property there is a vertex z € F N F'N{a,b,c}. We have z = b because b
is not adjacent to y. If z = a or z = c there is a complete set, F' or F’, different
from {a, b, c} that covers ac.

3) Is trivial from 2).

0O

The analysis of the 31 remaining graphs can be divided in three cases, as
follows.

Case 1: If both edges 5z and 6x are present, the graph is Helly and is in K2(G).
Case 2: If edges 5z and 6z are both not present:

1. A+45= A+ 46 is not in K(G) because of Fact I and Theorem 9.

2. A+56is in K2(G), since it suffices to add a vertex in Hj of Figure 4
corresponding to clique 356.

3. A+ 45+ 46 is not in K(G) because A + 45 is not in K(G) and by
Theorem 9.

4. A+45+56 =2 A+ 46 + 56 are not in K(G) by the same reason.
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5. A+45+456+46 because A+45+56 is not in K(G) and by Theorem 9.

Case 3: If exactly one of the edges 5x, 62 is in the graph. It suffices to analyze the
cases in which 5z appears, because the other cases produce isomorphic
graphs.

1. A+ 5z 2 Pxisin K%(G). Take the following graph in K~!(Px):

S({af, abe, abc, ebdd’i, bedd’y, cdjg, ed’hi}).
This graph admits the following RS family:
{af, abe, abc, ebdd’i, bedd’j, cjg, gjd, ehi, ihd’}.
2. A+5x+ 45 is in K2(G). Take the following graph in K ~1(Px):
S({ af, abe, abe, ebdi, bedj, cdjg, edhi}).
This graph admits the following RS family:
{af, abe, abe, ebdi, bedy, cjg, gjd, ehi, ihd}.

3. A+ 52+ 56 =2 A+ 5z + 46 is not in K(G) because of Fact II and
Theorem 9.

4. A+5x+56-+46 because A+5x+56 is not in K (G) and by Theorem 9.
5. A+ 5x+445+56 = A+ 5x + 45+ 46 is not in K(G) because of
Theorem 5 and the solution DAMG in Figure 5.

6. A+ 5z +454 56 +46 is not in K(G) because A+ 5z + 45+ 56 is not
in K(G) and by Theorem 9.

6 Conclusions

We studied the question “is K(G) the same as K?(G)?”, where G is the class
of all graphs, and concluded that a graph in K(G) \ K?(G) must have at least
eight vertices.

Other partial results include the following. We obtain a necessary condition
for a graph to be in the image of K in terms of the presence of certain subgraph
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23, 25,356
3,5

136,12, 235
3

123,14, 24

1,2 T
124,235, 136 25, 24z, 45
bad 2,4,5 z

245,123z, 356 123z, 45x, 356
bad bad

Figure 5: A solution DAMG for graph A + 5x + 45 + 56, showing it is not a
clique graph. Only conflicts are shown at nodes. The family A at each node
is determined implicitly as indicated in the end of Section 3.1. Arcs leaving a
node are labeled with the possible solutions for its conflict. Multiple labels over
an arc should be interpreted as multiple arcs parallel to the one shown, each
one with a different label. The source node contains all edges and all cliques of
size three of G.



PREIMAGE, IMAGE, AND ITERATED IMAGE OF THE.... 123

A. We also show that being a clique graph is a property that is maintained by
addition of twins, but not being a clique graph in not necessarily maintained
by addition of twins. In addition, we give an algorithm for the recognition of
clique graphs. Its complexity is unknown, probably exponential, but it is useful
in producing proofs that graphs are not clique graphs.
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