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Abstract

The clique graph of a graph G is the intersection graph K (G) of the
(maximal) cliques of G. The iterated clique graphs K"(G) are defined
by K°(G) = G and K¥(G) = K(K*'(G)), i > 0 and K is the clique
operator. In this article we describe the K-behaviour of the classes of
Py-reducible, Pj-sparse and extended Pj-sparse graphs. These classes
are an extension of the well known class of Ps-free graphs or cographs.
Furthermore, we give some partial results for the larger class of serial
(i.e. complement-disconnected) graphs.

1 Introduction

The clique graph of a graph G is the intersection graph K (G) of the (maximal)
cliques of G. The iterated clique graphs K"(G) are defined by K°(G) = G
and K(G) = K(K7(Q)), i > 0. We refer to [22] and [24] for the literature on
iterated clique graphs. Graphs behave in a variety of ways under the iterates of
the clique operator K, the main distinction being between K-convergence and
K-divergence. A graph G is said to be K-divergent if lim,,_,. |V (K"(G))| =
oo. If G is not K-divergent, then it is K-convergent.

The first examples of K-divergent graphs were given by Neumann-Lara (see
[4, 16]). For n > 2, define the n-dimensional octahedron O, as the complement
of a perfect matching on 2n vertices. Then O, is a complete multipartite graph
K55 2. Neumann-Lara showed that K(O,) = Oyn-1 and hence, for n > 3, O,
is K-divergent. Recently, other graphs have been found to be K-divergent [11,
12, 19].

Most of the results on convergence of iterated clique graphs are on the
domain of clique-Helly graphs. In fact, clique-Helly graphs are always K-
convergent [4]. In general, much less is known about K-convergence, when
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non clique-Helly graphs are considered. Some results on convergence of graphs
which are not clique-Helly can be found in [1, 2, 3]. We give, in this paper,
some results that guarantee K-convergence of a special class of graphs that are
not clique-Helly.

The question whether the K-convergence of a graph is algorithmically de-
cidable is an open problem. Even for restricted families of graphs very little is
known. For families containing both K-convergent and K-divergent graphs, K-
convergence has been characterized only for complements of cycles [16], clock-
work graphs [13], regular Whitney triangulations of closed surfaces [14] and
cographs [10]. However, in all these cases K-convergence can be decided in
polynomial time.

In this paper, we shall study the K-behaviour of some natural extensions of
the class of cographs, i.e., the graphs not containing as an induced subgraph a
chordless path on four vertices.

The K-behaviour of cographs has been completely characterized in [10],
where also some partial results for the larger class of serial graph were given.

Some other sufficient conditions for K-convergence and K-divergence that
hold more in general for the class of serial graphs are given in Section 3. They
will allow us to describe completely the K-behaviour of the following classes
of graphs with few P,’s: the classes of Pj-reducible, Pj-sparse, extended P;-
reducible and extended P;-sparse graphs. This characterization leads to a poly-
nomial time recognition algorithm for K-convergence.

The P;-reducible graphs have been defined in [8] as the class of graphs
such that any vertex belongs to at most one induced P;. The P,-sparse graphs
have been introduced in [7] as the graphs for which every set of five vertices
induces at most one P,. By relaxing the restriction concerning the exclusion
of the chordless Cs-cycle, that is a forbidden configuration for P;-reducible and
Py-sparse graphs, two wider classes of graphs called the class of the extended
Py-reducible graphs and extended P,-sparse graphs have been introduced
in [5]. A characterization of the K-behaviour of graphs belonging to the above
classes is given in Section 4.

2 Preliminaries and definitions

We consider simple, undirected, finite graphs. The sets V(G) and E(G) are
the vertex and edge sets of a graph G. For any vertex v in V(G), the neigh-
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bourhood of v is the set N(v) = {u € V(G) | {u,v} € E(G)}. A trivial
graph is a graph with a single vertex. The symbol G represents the comple-
ment of G. A complete is a set of pairwise adjacent vertices in G and a
stable set is formed by pairwise non adjacent vertices of G. A clique of G
is a complete not properly contained in any other complete. A subgraph of
G is a graph H with V(H) C V(G) and E(H) C E(G). For X C V(G), we
denote by G[X] the subgraph induced by X, that is, V(G[X]) = X and
E(G[X]) consists of those edges of E(G) having both ends in X. If v is a ver-
tex of a subgraph H of G adjacent to every other vertex of H, then we say
that v is universal in H. Let X be a subset of V(G) and = any vertex of X.
The quotient graph G/X is defined as V(G/X) = (V(G) — X) U {z} and
E(G/X)=EGV(G)-X))u{{z,v} | {u,v} € E(G), ue X, v e V(G)—X}.

Let H and H' be vertex disjoint graphs. The union or parallel composi-
tion of H and H’ is the graph G = H U H' defined as V(G) = V(H) UV (H')
and E(G) = E(H)U E(H'). The join, sum, or serial composition of H
and H’ is the graph G = H + H' defined as V(G) = V(H) U V(H') and
E(G) = EH)UEH)U{{z,y} | x € V(H), y € V(H")}. The product
G x G’ of two graphs G and G’ is given by V(G x G') = V(G) x V(G') and
E(G x G") = {{(u,u), (v,v")} : {u,v} € E(G), {u',v'} € E(G")}. We will also
use the fact that K(G1 + Gy) = K(G1) x K(G5) (see [16, 24]).

One promising paradigm for studying properties of a class of graphs involves
partitioning the set of vertices of a graph into subsets called modules, and the
decomposition process is called modular decomposition.

A module of G is a set of vertices M of V(G) such that all the vertices of
M have the same neighbours outside of M, that is, each vertex in V(G) — M
is either adjacent to all vertices of M, or to none. For instance, every singleton
vertex as well as the whole V(G) are modules. We say that M is a strong
module if for any other module A the intersection M N A is empty or equals
either M or A. For non-trivial G, the family {M, Mo, ..., M,} of all maximal
(proper) strong modules is a partition of V(G) and p > 2. This partition is the
modular decomposition of G. We will often identify the modules M; with
the induced subgraphs G; = G[M;].

For disconnected G, the maximal strong modules are the connected compo-
nents. In this case G = G UG U --- UG, is called parallel.

If G is disconnected, the maximal strong modules of G are the connected
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components of G. In this case G = Gy + Gy + -+ - + G, is called serial.

If both G and G are connected, then G is called neighbourhood.

The modular decomposition of a non-trivial graph G is used recursively in
order to define its unique modular decomposition tree 7(G). The root
of T(G) is G, the first-level vertices of T(G) are the maximal strong modules
of G, and so on. The leaves of T(G) are the vertices of G and the internal
nodes of T(G) are modules labeled with P, S or N (for parallel, serial, or
neighbourhood module, respectively). A linear time algorithm that produces
the modular decomposition tree is given in [15].

If G is a serial graph and each G; has a modular decomposition of the form

Gi=UL, Gy, pi 2 2,

we say that G is a parallel-decomposable serial graph.

In order to study K-convergence, an important role has the class of clique-
Helly graphs that have been introduced in [4, 6] and studied in [20, 21], among
others. A graph is clique-Helly if its cliques satisfy the Helly property: each
family of mutually intersecting cliques has non-trivial intersection. The Theo-
rem 1 characterizes clique-Helly graphs [23].

Let T be a triangle of a graph G. The extended triangle of G, relative
to T, is the subgraph T of G induced by the vertices which form a triangle with
at least one edge of T

Theorem 1 A graph G is clique-Helly if and only if each of its extended tri-
angles has a universal vertex.

In order to study K-divergence the following results are useful tools. We
recall them from [16, 17] for the reader’s convenience.

Let G, H be graphs. A morphism « : G — H is a vertex-function « :
V(G) — V(H) such that the images under « of adjacent vertices of G either
coincide or are adjacent in H. A retraction is a morphism « from a graph
G to a subgraph H of itself such that the restriction a|H of o to V(H) is the
identity. In this case, H is a retract of G. Notice that, if v is a vertex of G,
there is always a total retraction from G to v. If H is a retract of G, then
K(H) is a retract of K(G).
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The following theorem describes the relationship between retracts and K-
divergence [16].

Theorem 2 If G has a K-divergent retract H, then G is K -divergent.

Other useful results that guarantee K-divergence relate to coaffine graphs.

A coaffination in a graph G is an automorphism o of G such that for all
u e V(G), u # o(u) and {u,o(u)} ¢ E(G). A graph G with a fixed coaffine
automorphism is called a coaffine graph.

Let G and H be coaffine graphs and g and oy their coaffinations, respec-
tively. A morphism « : G — H is admissible if aog = oga. The coaffine
graphs together with admissible morphisms form a category. A subgraph H
of a coaffine graph G is a coaffine subgraph of G if the inclusion morphism
o H — (G is admissible. admissible morphism a.: G — H.

If G is a coaffine graph, then K (G) is also a coaffine graph with a coaffination
ok : V(K(G)) — V(K(G)) defined by 0x(Q) = 0(Q), where o(Q) is the
image of () under o.

A coaffine graph G is expansive when there exists a sequence ny, ns, ... of
natural numbers, n; — oo, and a sequence H;, Ho, ... of coaffine graphs where
H; contains an increasing number of joined coaffine terms when ¢ — oo and
H; is a coaffine subgraph of K™ (G).

Note that if G is an expansive graph, then G is a K-divergent graph.

For coaffine graphs the following theorems hold [17].

Theorem 3 Let G and H # () be coaffine graphs. The graph G is expansive, if
K(QG) contains G+ H as an induced coaffine subgraph.

Theorem 4 Let G be a coaffine graph and H an induced coaffine subgraph of
G. If H s expansive, then also is G.

Given a modular decomposition of a graph G the following lemmas, proved
in [10], are useful for finding a retraction of G.

Lemma 5 Let G be a graph and M a module of G. Let R be a retract of
G[M]. Then any retraction p : G[M] — R can be extended to a retraction
o G— (G—G[M])UR.
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Lemma 6 Let G be a graph and M a module of G. Then the quotient graph
G/M s a retract of G.

Lemma 7 Let G be a graph. If P = 51U S, U---US, is a parallel module of
G and some S; is a single vertex v, then G — v is a retract of G.

Finally, we recall the following result given in [10].

Theorem 8 Let G = Gy + Gy + - -+ + G, be a serial graph. Then G is clique-
Helly if and only if it satisfies one of the following conditions:

1. G has a universal vertex, or

2. p =2 and all the connected components of G1 and G5 have a universal
vertex.

3 Some results about the K-behaviour of serial
graphs

In Theorem 8 the clique-Helly serial graphs have been characterized. In this
section we shall give some results that guarantee K-convergence of serial graphs
that are not clique-Helly.

If a graph is not clique-Helly, one might wonder whether its iterated clique
graph could become clique-Helly. For a graph G, define Helly defect of G as
the smallest value 7, such that K*(G) is clique-Helly.

Theorem 9 Let G = Gy + --- + G, be a serial graph. If K(G;), for some i
(1 <i<p) has a universal vertez, then K(G) has a universal vertex.

Proof: Let Q¢ be a universal vertex of K(G;).

Any clique @ of G is of the form: Q = Q1 +-- -+ @, where Q; is any clique
of G;. Since for any Q; belonging to G; we have Q; N Q;" # 0, then we also
have that Q N Q;* # 0, for any clique @ of G. Hence any clique of the form
Q=01+ - +Q, with Q; = Q¥ is a universal vertex of K(G).

O

Theorem 10 Let G = G+ G5 be a parallel-decomposable serial graph. If every
K(Gyj), forany i,j (1 <i<2,1<j<p;) has a universal vertez, then K(G)
15 a clique-Helly graph.
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Proof: The cliques of G are formed by the sum of two cliques: some ¢);; from
G1; and some Qq from Gy, where 1 < j < p;, 1 <1 < p,. In this situation in
which Q = Q1+ Qu, let us write j(Q) = j and {(Q) = [. Notice that QNQ’ # 0
implies j(Q) = (@) or I(Q) = Q).

By hypothesis, each K(G;;) has a universal vertex Q3. Then the special
cliques @ of G;; intersects any other clique of Gy;. Therefore, for each pair
J,1 as above, the special clique Qf; + Q3 of G intersects any clique @ of G for
which j(Q) =j or [(Q) = .

Let T = {a,b,c} be a triangle of K(G). Then a,b,c are three pairwise
intersecting cliques of G, so we have either j(a) = j(b) = j(c) or I(a) = (D) =
I(c). Without loss of generality, we consider j(a) = j(b) = j(c) = j'.

By Theorem 1 we have to show that the extended triangle T has a universal
vertex. In fact, if I(a), I(b) and I(c) are all different, then any special clique
Qi + Qy of G (1 <1 < ps) is a universal vertex of T. If at least two of these
indexes are equal, say l(a) = I(b) = I, then the special clique Q}; + Q3 is a
universal vertex of T

O

Corollary 11 Let G be a graph satisfying the hypothesis of Theorem 9 or The-
orem 10, then G is K-convergent with Helly defect at most 1.

Let G = Gi +---+ G,, p > 2, be a serial graph. If some G; is trivial,
then G has a universal vertex and, by Theorem 8, G is K-convergent. Now,
in Theorem 12, we give sufficient conditions to a serial graph without universal
vertex to be K-divergent.

Theorem 12 Let G = G+ --+G), p > 2, be a serial graph without a universal
vertex.

1. If p > 3 and G; are parallel or Cs, then G is K-divergent.

2. If p=2, Gy 1s C5 and G5 is Cs or parallel, then G is K-divergent.

Proof: Let G =G, +---+ G,, p > 2, be a serial graph without a universal
vertex. In [10], it is proved that G is K-divergent if p > 3 and G, are parallel.
Thus, it is sufficient to consider p > 2 and G with at least one G; isomorphic
to 05.
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By Lemmas 5 and 6 we can retract each connected component of every
parallel module G; to a single vertex. By repeating the application of Lemma 7,
we can retract each parallel G; to K. Then Cs+- -+ Ky +-- -+ K, is a retract
of G.

Notice that C5+: - -+C5 and Cs+- - -+ Ko+ - -+ K, are coaffine graphs. These
graphs contain an induced coaffine subgraph Cs + Cs and Cs 4 K, respectively.
If Cs + Cs and Cs + K, are expansive graphs then, by Theorem 4, C5+-- -+ Cj
and Cs + --- + Ky + - - - + K, are expansive graphs too. Follows that they are
K-divergent and, by Theorem 2, so is G.

Now we show that G = Cs + Cs and G = Cs + K, are expansive graphs.
Then, they are K-divergent. Let us notice that G is, in both cases, a coaffine
graph. Then K(G) is also coaffine.

If G = C5 + K, then K(G) = Cyo. In [18] it is proved that for n > 8, C,,
is expansive. For the convenience of the reader, we rewrite here the proof for
n = 10.

Let us number by 0,...,9 the cyclic sequence of vertices of C1g. Let us
consider the following cliques of Cip: A = {0,2,4,6,8}, B = {1,3,5,7,9}
and the 10 cliques obtained applying the coaffine automorphism (0,1,2,3,4
5,6,7,8,9) of Cp at the clique {0,2,4,7}. In K(C1) the vertices corresponding
to the above cliques induce a coaffine subgraph isomorphic to Ko + Cho and,
therefore, K(G) is expansive by Theorem 3. Then, G is expansive too.

Let us now consider the case G = C5 + Cs. Since K(G) = K(Cs) x K(Cs)
and K (Cs) = Cs, then K(G) is a regular graph of degree 4 isomorphic to graph
depicted in Figure 1.

Let us denote by ij, i =0,...,4, j =0,...,4 the vertex set of K(G). The
adjacent vertices of each vertex ij of K(G) are i(j41) and (i +1)j, where from
now on all the sums are taken modulo 5.

Let us consider the following sets of vertices of K(G).

Vi={(i+7)(2j), 7=0,...,4}, i=0,...,4.

It is easy to see that each V; is a stable set of K(G) and the sets V;,
i =0,...,4 form a partition of V(K(G)). Furthermore any other vertex of
V(K(G))\V; is adjacent to exactly one vertex of V; and, therefore, V; is a max-
imal stable set of K(G). Hence, each V; is a clique in K(G). Such cliques do
not intersect, then the graph induced by the vertices V; of K?(G) is isomorphic
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04 14 24 34 44
03 13 23 33 43
0 12 22 32 42
01 11 21 31 41
() 10 20 30 40

Figure 1: The graph K(G)

to K5. Notice that K35 is coaffine, since any cyclic permutation is a coaffination
of Ks.

Let us denote by V;; the set of vertices obtained from V; by substituting the
vertex (i + 7)(2j) of V; by its adjacents in K(G). The correspondence between
the vertices uv = (i+ 7)(2j) of K(G) and the sets Vj; is a bijection. In fact, for
any pair of distinct vertices u and v of K(G), we have Ng(g(u) # Ng(g(v)-
Moreover, by definition of Vj;, |V(Cs x Cs)| = | U; ; Vil

It is easy to see that each set Vj; is a clique of K(G). Let us consider
the subgraph H of K*(G) induced by the set of vertices Vi;, i = 0,...,4 and
j =0,...,4. The one to one correspondence defined above is an isomorphism
from K (G) onto H. In fact, by construction, {(i+5)(25), (k+1)(20)} € E(K(G))
if and only if V;; N Viy = 0. Therefore H is isomorphic to K(G).
and, therefore, K?(G) contains an induced subgraph isomorphic to K5+ K (G).

Recall that K(G) and K are coaffine graphs. Then so is K5+ K (G). Hence,
by Theorem 3, K (G) is expansive and so is G. Therefore, the proof is complete.

U

Theorem 13 Let G = Gy + G2 be a parallel-decomposable serial graph. If at
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least one G; is a Cs or a serial graph whose modules are either Cs’s or parallel
modules, then G is K-divergent.

Proof: Without loss of generality, let us assume that G satisfies the hypoth-
esis.

By Lemma 6 we can retract each G;; # G11 to a single vertex.

By eventually repeating the application of Lemma 7 we can retract G, to
Gy and G5 to K,. Therefore, by Lemma 5, G11 + K is a retract of G. Hence
G is K-divergent by Theorems 12 and 2.

O

4 Pj-reducible, Pj-sparse, extended P,—reducible
and extended Pj-sparse graphs

The purpose of this section is to characterize the K-behaviour of graphs be-
longing to the classes of Pj-reducible, Ps-sparse, extended P,—reducible and
extended Pj-sparse graphs. The class of Py-sparse graphs properly contains the
class of Pj-reducible graphs. The graph featured in Figure 2 is P;-sparse graph,
but not P;-reducible.

Figure 2: The graph G is Pj-sparse graph, but not Ps-reducible.

We first recall from [8] the following characterization of a Pj-reducible graph:

Theorem 14 A graph G is a Py-reducible if and only if for every induced sub-
graph H of G exactly one of the following conditions is satisfied:

1. H 1is disconnected;
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2. H is disconnected;

3. there exists a unique Py = abed in H such that every vertex of H outside
{a,b,c,d} is adjacent to both b and ¢ and non-adjacent to both a and d.

A characterization of a P;-sparse graph is given in [9] and it is based on a
special class of graphs, the spiders, whose definition is as follows:

A graph G is a spider if the vertex set V(G) admits a partition into sets
S, Q and R such that:

1. S is a stable set, @ is a complete and |S| = |Q| > 2;

2. Every vertex in R is adjacent to all vertices in @ and non-adjacent to all
vertices in S

3. There exists a bijection f between S and @ such that either N(z) =
{f(z)} forz € Sor N(z) =Q — {f(z)} for z € S.

Theorem 15 A graph G is Py-sparse if and only if for every induced subgraph
H of G with at least two vertices exactly one of the following conditions are
satisfied:

1. H 1s disconnected;
2. H is disconnected;

3. H 1is isomorphic to a spider.

By relaxing the restriction concerning the exclusion of the chordless Cj cycle,
that is a forbidden configuration for Pj-sparse and Pj-reducible graphs, two
wider classes of graphs called extended Pj-sparse and extended P;-reducible
graphs are obtained [5]. Extended Pj-sparse graphs (extended Pj-reducible
graphs) differ from the Pj-sparse graphs (Pj-reducible graphs) by the presence
of modules that are Cs. Hence the condition 3 of Theorem 15 can be changed
by condition 3’: H is isomorphic to a spider or a C5, when G is a connected
extended Pj-sparse graph.

Theorem 16 Let G be a connected extended Py-sparse graph with no universal
vertex. Then G is K-divergent if and only if G is a serial graph and it satisfies
one of the following conditions:
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1. p > 3 and each G; is a parallel module or a Cs.
2. p=2, Gy is a Cs and Gs 1s a Cs or a parallel module.

3. p =2, G is a parallel-decomposable serial graph and at least one Gy; 1s a
Cs or a serial graph whose modules are either Cs’s or parallel modules.

Proof: Sufficiency follows by Theorems 12 and 13.

To prove necessity we show that in all the other cases G is K-convergent.
Let G be a connected extended P,-sparse graph with no universal vertex.

If G is also a connected graph, then by condition 3’, G is a spider or a Cs.
In the first case, K(G) has a universal vertex. In the second case, K(Cs) = Cs.
In both cases G is K-convergent.

If G is a disconnected graph, then G is a serial graph. If G is not parallel-
decomposable serial graph and none of its modules is a Cs, then at least one G;
is either a trivial graph or a spider. Then, by Theorem 9, we have in both cases
that K(G) has a universal vertex and, by Corollary 11, G is K-convergent.

The only remaining case is when G is a parallel-decomposable serial graph
with p = 2 and no Gj; is either a Cs or a serial graph whose modules are either
Cs’s or parallel modules. Hence each G;; is either a trivial graph or a spider
or a serial graph with at least one module that is a spider or it has a universal
vertex. In all cases K(G;;) contains a universal vertex and K (G) is a clique-
Helly graph, by Theorem 10, and by Corollary 11, G is K-convergent.

O

Since extended Pj-reducible graphs are extended Pj-sparse graphs, the The-
orem 16 is also true for connected extended Pj-reducible graphs.

By excluding the presence of C5 modules we obtain the following character-
ization of the K-behaviour of Pj-sparse graphs.

Corollary 17 Let G be a connected Py-sparse graph. Then G is K-divergent if
and only if G is a serial graph and it satisfies one of the following conditions:

1. p> 3 and G is a parallel-decomposable serial graph.

2. p=2, G is a parallel-decomposable serial graph and at least one Gy; s a
parallel-decomposable serial graph.
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It easy to see that Corollary 17 is also true for Py-reducible graphs. In fact,
a Py-reducible graph is a Py-sparse graph with |S| = |@Q| = 2 (see Theorems 14
and 15).

Corollary 18 A connected extended Pj-sparse graph is K-convergent if and
only if the Helly-defect of G is at most 1.
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