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EVEN PAIRS IN SQUARE-FREE BERGE GRAPHS *

Cldudia Linhares Sales ® Frédéric Maffray ®

Abstract

We consider the graphs that contain no odd chordless cycle on at least
five vertices (an “odd hole”), no chordless cycle on exactly four vertices
(a “square”), and no subgraph that consists of two triangles with three
vertex-disjoint paths between them (a “stretcher”). We show that any
such graph either is a complete graph or has two vertices that are not
linked by an odd chordless path (an “even pair”). This is a partial answer,
in the case of square-free graphs, to several conjectures concerning even
pairs in Berge graphs.

1 Introduction

We consider only finite and undirected graphs. A graph G is perfect if for every
induced subgraph H of G, the chromatic number x(H) of H is equal to the
maximum size of its cliques w(H). An odd (even) hole is a chordless odd (even)
cycle of G of length at least five. An odd (even) anti-hole is a complement of an
odd (even) hole. We will follow the convention of calling Berge graph any graph
that contains no odd hole and no odd antihole. The class of perfect graphs was
defined in 1960 by Claude Berge who also made a famous conjecture (see [14]
for a survey):

Conjecture 1 (Strong Perfect Graph Conjecture [2]) Any graph that con-
tains no odd hole and no odd anti-hole is perfect.

A proof of Berge’s conjecture has been announced recently [6]. The outline
of the proof is that every Berge graph either is of some “basic” type or admits
some property that cannot be satisfied by any minimally imperfect Berge graph.
However, the details of this proof are not published and it is expected that the
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whole result will be very complex and lengthy. A proof of Berge’s conjecture in
the case of graphs not containing an induced subgraph isomorphic to a square
(chordless cycle on four vertices) was given earlier in [7]. Here we want to
consider some different questions concerning Berge graphs.

An even pair in a graph G is a pair of non-adjacent vertices of G' such
that the length (number of edges) of each chordless path between them is even.
Meyniel [13] (see also Fonlupt and Uhry [9] and Bertschi and Reed [4]) proved
that no minimally imperfect graph has an even pair, and called strict quasi-
parity (SQP) the class of graphs where every induced subgraph that is not a
clique has an even pair. So every strict quasi-parity graph is perfect. The
converse is not true, as one can find infinitely many perfect graphs that are not
strict quasi-parity [11] and are minimal with this property. In general, finding
an even pair is co-NP-complete [5]. See [8] for a recent survey on even pairs.

Contracting two vertices z,y in a graph G means removing them and re-
placing them by a single vertex adjacent to every vertex of G \ {z, y} that was
adjacent to at least one of z,y. Bertschi [3] calls a graph G even-contractile
if there is a sequence Gy, ..., Gy of graphs such that G = Gy, each G; is ob-
tained from G;_; by contracting an even pair of G;_;, and Gy is a clique.
Bertschi calls perfectly contractile any graph all induced subgraphs of which are
even-contractile. Everett and Reed conjecture the following characterization of
perfectly contractile graphs.

Conjecture 2 (Everett and Reed [15]) A graph is perfectly contractile if
and only if it contains no odd hole, no antihole and no odd stretcher.

Here a stretcher is any graph that consists of two vertex-disjoint triangles
{a1, az,a3} and {b1,be,b3} and three chordless paths P;, P», P3, such that P;
is from a; to b;, and there is no edge between these paths other than the two
triangles’ edges. A stretcher is odd (even) if all three chordless paths have odd
(even) length. See Figure 1.

A perfectly contractile graph contains no odd hole and no anti-hole since
such graphs have no even pair. Moreover it can be proved (see [12]) that any
sequence of even-pair contractions in an odd stretcher leads to the anti-hole
with six vertices, which has no even pair. Thus no perfectly contractile graph
may contain an odd stretcher. So the “only if” part of Everett and Reed’s
conjecture holds.
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An odd stretcher: Cg An odd stretcher An even stretcher
Figure 1: Some stretchers

Our purpose here is to examine the existence of even pairs in square-free
Berge graphs in the direction suggested by the above concepts and conjectures.

Our main result is:

Theorem 1 Let G be a square-free Berge graph that does not contain a stretcher.
Then G either is a clique or contains an even pair.

The proof of Theorem 1 is given in Section 3, using results from Section 2.
This theorem is only a partial answer to Conjecture 2 in the case of square-
free graphs; indeed, the Theorem does not cover the more general case when
the graph may contain even stretchers. Some comments on this question are
proposed in the conclusion.

2 Tools

For two vertices z,y in a graph G, we frequently say ‘z sees 3’ instead of ‘z is
adjacent to ¥’ and ‘x misses y’ instead of ‘z is not adjacent to g’ .

In a graph G, given a vertex z, we call z-edge any edge uv whose two
endvertices see T (so uvz is a triangle). A AP (configuration) is a graph that
consists of a triangle abe, a vertex x, three chordless pathsa---z,b---z,¢c---x
such that at most one of the three paths has length 1, any two of these paths
have only z as a common vertex, and the graph has no other edge. We may
also say that we have a AP(abc, z).

The following three lemmas are classical and easy.
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Lemma 1 Any AP configuration contains an odd hole.

Proof: Consider a AP with the notation above. Clearly, two of the three
defining paths have the same parity. Thus their union induces an odd hole.
O

Lemma 2 In a graph G with no odd hole, let P be a chordless path and x be
a vertex that sees both endvertices of P. If P has odd (resp. even) length then
the number of x-edges in P is odd (resp. even).

Proof: We write P = py - - - p;, and prove the lemma by induction on k. If £ = 1
the lemma is trivial. Suppose & > 2. Let j be the smallest index such that x
sees p; and j > 0. If j = 1 then pyp, is an z-edge and the desired result follows
by induction on P \ po. If j > 2 then none of popi, ..., pj_2pj—1 is an z-edge,
the vertices z,py, ...,p; induce a hole, so j is even, and the result follows by
induction on P\ {po,...,pj—1}

O

Lemma 3 In a graph G with no odd hole, let H be a hole and x be any vertex
that sees two consecutive vertices of H. Then either x has no other neighbour

on H, or the number of x-edges in H is even.

Proof: The lemma holds if x sees no other vertex of H and also if = sees all
other vertices of H. If x sees some but not all of the other vertices, then the
cycle H can be labelled h, ..., hx—1 (k even) such that x sees hg, hy and h; for
some j with 2 < j <k —2. One of the two paths hy ---h; and h; - - - hy has odd
length and the other has even length. Applying Lemma 2 to them yields the
desired result.

O

Lemma 4 Let G be a square-free graph that contains a hole, and let H be
a shortest hole of G. Then every vertex of G \ H sees either zero, one, two

consecutive, three consecutive, or all vertices of H.

Proof: A routine examination shows that if a vertex = of G \ H violates the
conclusion of the lemma then HU{z} induces a subgraph that contains a square
or a hole shorter than H.

O
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The preceding lemma will frequently be used in the following form: if x €
G \ H sees two non-consecutive vertices of H but not all of H, then z sees
exactly three consecutive vertices of H and no other.

Given a path P and a set X of vertices that induces a connected subgraph
of G of size at least two, we define the X-segments of P as follows: mark every
vertex of P that has a neighbour in X; an X-segment is then any subpath
of P of length at least one whose endvertices are marked and whose interior
vertices are not marked. Note that it is not assumed that P and X do not
intersect; actually, every vertex of P N X is marked because every vertex of X
has a neighbour in X. When each endvertex of P itself is marked, the path P
is (edge-wise) partitioned into its X-segments.

Given an induced subgraph H of a graph G and a vertex x of H, it will be

convenient to use the notation
Ju(z) ={ve G\ (H\z) | Nw)n(H\z)=N(z)N(H\z)}

Obviously x € Jy(x). Note that, if v € Jy(z), the subgraph (H \ z) U {v} is
isomorphic to H, and Jg\zyuge}(v) = Ju(z).

We observe that if G is square-free, H is a shortest hole in G and x is any
vertex of H, then, by Lemma 4, a vertex is in Jy(z) if and only if it sees the
two neighbours of z in H and misses at least one vertex of H.

3 Proof of Theorem 1

Let G be a graph satisfying all the hypotheses of Theorem 1, and let us prove
that G is a clique or has an even pair.

Recall that a graph G is chordal if every cycle of G of length at least four
has a chord. It is well known that every chordal graph is perfect (see [1, 2] or
[14, Chap. 1]), and it is known that every chordal graph that is not a clique
contains an even pair (see [8, 10]; actually, it is not hard to see that any two
non-adjacent vertices z,y that maximize the size of N(z) N N(y) form an even
pair). So, in proving the theorem, we may assume that G contains a hole.

Let H be a shortest hole of G (H has length at least six). Call o, u, S in
this order three consecutive vertices of H, and let Q = vy ---v, (g even, ¢ > 2)
be the chordless path formed by H \ {«, u, 8}, where vy sees « and v, sees f.
For simplicity write

A= Jy(a) and B = Jy(B).
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Note that A is non-empty (o € A) and is a clique (for otherwise two non-
adjacent vertices from A plus v and vy would induce a square). Likewise B
is a non-empty clique. Moreover, there is no edge ab with a € A, b € B, for
otherwise Q U {a, b} would be an odd hole. For any a € A and b € B, denote
by H®® the hole formed by Q U {u, a, b}.

Our aim is to show that a well-chosen pair of vertices a € A, b € B forms an
even pair of G. This will be established using several lemmas regarding paths

between A and B, as follows.

Lemma 5 Suppose that there exists a chordless odd path P = zox1 -+ Tp_1%p
(p odd, p > 1) with xy € A and z, € B (it is not assumed that P and H*"»
have no other vertices in common). Then we have p > 3, and either x, € A or
Tp—1 € B.

Proof: We have p > 3 because there is no edge between A and B, as observed
above. Suppose now that none of z; € A, z,_; € B holds. We note that no z;
with 0 <7 < p sees all of H*"», because z; misses at least one of zy,z, as p is
odd and p > 3. Moreover,

No z; with 0 < i < p sees both u and a vertex of Q). (1)

Indeed, suppose that (1) fails for some vertex x;. If 2 < i < p — 2, vertex z;
would miss zo and z,, thus Lemma 4 would be violated along the hole H®-®».
If i = 1, the only possibility allowed by Lemma 4 would be N(z1) = {u, zo, vo},
that is, ; € A, which we have excluded. Likewise i = p— 1 is excluded. So (1)
holds.

Consider the u-edges of P. Since u sees both endvertices zy, z, of P, Lemma
2 implies that P has an odd number of u-edges.

Consider the @-segments of P. Note that 2y and z, have a neighbour in
Q@ (they are “marked”), so P is (edge-wise) partitioned into its ()-segments.
Moreover, at least one interior vertex of P has a neighbour in @ (it is marked),
for otherwise P U ) would induce an odd hole. Thus P has at least two Q-
segments.

It follows from the previous two paragraphs that there exists a (Q-segment
S of P that contains an odd number of u-edges, and that S does not contain
both %, z,; by symmetry we may assume that S does not contain z,. By (1),
at most one u-edge of S contains a vertex that has a neighbour in @, and if
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there is such an edge it must be zox; (and z is the first vertex of S). Write
S=uxp---x; with 0 <h<j<p If j=h+1then zpzy4, is the u-edge of S,
so x; is adjacent to both u and @), a contradiction to (1). So j > h + 2.

If 2 is in @, then x,41 has a neighbour in @ (it is marked), thus j = h+1,
which we have just excluded. So z;, ¢ @, and similarly z; ¢ Q. Also no interior
vertex x; of S is in @ (else three vertices ;_1, z;, Z;+1 of S would be marked,
contradicting the definition of a Q-segment). In summary, we have SN Q = 0
and no interior vertex of S has any neighbour along Q.

By the definition of a ()-segment, each of ,x; has a neighbour in @. So
there exists a subpath @' of @ such that one endvertex of Q' is adjacent to zy,
the other is adjacent to z;, and ' is as short as possible with these properties
(Q" may have length 0). It follows that S U Q' induces a chordless cycle in
G, of length at least (j — h) + 2; since j > h + 2, this cycle is not a triangle,
thus it is a hole. Since there are an odd number of u-edges along this hole,
Lemma 3 implies that u has exactly two neighbours x;, z;.1 along S. We have
h<i<i+1<j<p; h=1is possible only if h = 0, else x, would violate (1).

Let k be the smallest integer such that z;v; is an edge, and let [ be the
largest integer such that z,v; is an edge. Each of k¥ < I, k =1, k > [ is
possible. For the sake of convenience we write vy41 = %, and vg42 = u. Recall
from Lemma, 4 that each of z,, z; has one, two or three consecutive neighbours
along H; more precisely, N(zp) N H = {v;} or {vi_1,u} or {vj—2,v,_1, v}, and
N(z;) N H = {vi} or {vg,ve1} or {vk, Vgt1, vkr2}. We can now prove that
H U P contains an induced AP or a stretcher (a contradiction). This is done
formally by distinguishing between the following two cases.

Case 1: 1 < k.

Here S U Q[v, vy] is a chordless cycle.

If z; misses vg4+1 then z; has no neighbour on Q[vg11,v,], and so the trian-
gle uz;z;+1 with the three chordless paths S[x;, zp] U Q[vi, vi], S[it1, ;] U v,
Qlvg, vg) Uzp Uu form a AP(uz;xit1,v;), a contradiction.

If z; sees vg41 and not vgyo (possibly k = ¢) then the triangles uz;z; 1
and z;vgvg+ with the three chordless paths Sz, zp] U Quy, v], S[Tit1, 5],
Qvk+1, V4] Uz, U u form a stretcher, a contradiction.

If z; sees vyt and vgio (possibly k = g — 1), then the triangle uz;z;; with
the three chordless paths S[z;, zp] U Q[vy, vi] U, S[Tit1, 2], ;U Q[g2, vg] U
2p Uu form a AP(uz;xiy1,2;), a contradiction.

Case 2: k<1 —1.
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This case is slightly different from Case 1 as the cycle S U Q[v;, vk] is not
necessarily chorldess.

First assume that N(z,) N N(z;) NQ = (. Let k' be the largest integer such
that z;up is an edge. Let I' be the smallest integer such that z,vp is an edge.
By Lemma 4, we have k < k' < k+2and [ —2 <[’ <. By the assumption,
we have k' < I'. Since k' < ¢, we have j < p —2. Since I’ > 0, we have h > 2,
hence i > h.

If ' = I, then the triangle ux;x;1; with the three paths S[z;,z4] U vy,
S[xip1, ;] U Qluk, v, Qlur,vg] U xp Uw form a AP(uz;ziq,v;), a contradic-
tion.

If ! =1 —1, then the triangles ux;z;y1 and xpvv;_; with the three paths
Sz, zn), S[Tiv1, ;] U Quw, vi—1], Qur, vg] U 2, U u form a stretcher.

If I' = I—2, then the triangle uz;x;+1 and the three paths S{z;, 23], S[Tit1, ;]
U Qlvg, vi—2] Uz, zpU Quy, vg]U zp,Uu form a AP (uz;z;41, Th), a contradiction.

Now assume that N(z,) N N(z;) N Q # 0, and let ¢ be the largest integer
such that v; sees both z,z; (t < ).

Suppose vy misses both xp,2;. So j < p— 2. Then the triangle uz;z;+1
with the three paths S[z;, zp] U vy, S[@is1,x;] U ve, Qug,vg) U zp U u form a
AP (ux;x;i1,vt), a contradiction.

Suppose v sees x. Thus v misses z; (so ! =¢) and ¢t < g —1 (so
j < p—2). If vy misses xp, the triangles uz;x;11 and z,vve1 with the
three paths S[x;, zp], S[Tit1,2;] U vy, Quit1,vg) U xp U u form a stretcher, a
contradiction. If viio sees zp (so t < ¢ — 2), then the triangle ux;x;11 with
the three paths S[z;, 4], S[%iy1, 2] U ve Uxp, 2o U Quita, vg| U 2, U u form a
AP (ux;x;i+1,%h), a contradiction.

Suppose vi4; sees z; (and thus misses x5). If vi4o misses x;, we have either
t<g—landj<p—2ort=gandj=p—1. Accordingly, write R = Q[v11,v]
ift <g—1and R=0if ¢t = ¢. In either case the triangles uz;z;+1 and z; V041
with the three paths S[x;, zp] U vy, S[zis1, 2], RU z, Uu form a stretcher, a
contradiction. If vy, sees x;, then we have either t < ¢ —2 and j < p — 2
ort=g¢—1and j =p—1. Accordingly, write R' = Q[vy12,0,] if t < ¢ — 2
and R = 0 if t = ¢ — 1. In either case the triangle uz;z;y; with the three
paths S[z;, z4] Uve Uz, S[Tit1, %], 2 U R' Uy Uwu form a AP(uz;Zit1, %), a
contradiction. This completes the proof of the lemma.

O

The proof of Theorem 1 continues as follows. Define a binary relation <4
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on A as follows: for a,a’ € A, write a <4 d' if there exists a chordless odd path
from a to a vertex of B such that the second vertex of this path is a’. We will

prove:
Lemma 6 The relation <4 is antisymmetric on A.
Lemma 7 The relation <4 s transitive on A.

Clearly, the preceding two lemmas imply:
Lemma 8 The relation <4 is a strict partial order on A.

Proof of Lemma 6 (antisymmetry of <4). Suppose that the lemma is
false: there exist two vertices x,y € A with x < y and y < z. Thus, there exists
a chordless odd path P, = zz; - - -z, with 29 = z, 21 = y, and =, € B (with r
odd, r > 3), and there exists a chordless odd path P, = yoy; - - - ys with yo =y,
y1 =z, and y, € B (with s odd, s > 3). We choose the paths P, P, such that
the number of vertices in their union is minimized. Possibly =, = y,. If . # y,
then x,ys is an edge as B is a clique. We claim that:

{zg,...,z,}NA=0 and {yo,...,ys}NA=0 2
{z2,..., 2,1} NB=0 and {yo,...,ys—1}NB=10 (3)

Indeed (2) holds because A is a clique containing z¢ and yo. To see that (3)
holds, suppose on the contrary that some z; is in B with ¢ < r. Since B is
a clique we have i = r — 1. Thus we have a chordless odd path z; ---z; with
x1 € A, z; € B, and i > 4 (because there is no edge between A and B); applying
Lemma 5 to this path, we should have either zo € A, contradicting that A is a
clique, or z,_» € B, contradicting that B is a clique.

Next, we claim that:

There exist integers 4, j (with 2 < i <r,2 < j < s) such that
x;y; is an edge, Py[z1, 2;] and Py[y1, y;] are vertex-disjoint and )

Pylz1, 2] U Pyly1, y;] is a hole, and either (a) i=7and j=s
or (b) i <r,j<sand Ppzii1, 2] = Pylyj+1,s]-

To prove this, let ¢ be the smallest integer (¢ < r) such that z; sees a vertex
of Py \ {vo,y1}, and let j be the smallest integer with 0 < j < s such that
there is an edge x;y;. Note that i > 2 because x; = yo; likewise j > 2 because
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y1 = %o. The definition of 4, implies that the paths Py, z;], Pyly1,y;] are
vertex-disjoint. Since none of Zo%s, Yoyo are edges, Pylx1, 2;]UPyy1,y;] is a hole
of length at least four, thus it must be an even hole, and 7,j have the same
parity. Let k be the largest integer (with j < k < s) such that z;y; is an edge.

Suppose that k — j is even (so i, 7, k have the same parity; possibly k& = j).
The path z125 - - - 2;yx - - - Ys, with 1 € A and y; € B, is chordless by the choice
of 4 and k, and its length is (¢ — 1) + 1 + (s — k) which is odd. Call v the
neighbour of y; on this path (y = ys—1 if k < s—1;y =z; if k = s). By Lemma
5 applied to this path, we should have either 2z, € A or v € B. The former
is precluded by (2), so we have v € B. By (3), this is possible only if v = z;
and ¢ = (so 1,7,k are odd). If j = s we have conclusion (a) of (4). If j < s
we have j < s — 2 since j is odd. Now the path y,y» - --y;; is a chordless odd
path with y; € A and z; € B; applying Lemma 5 to this path, we should have
Y2 € A or y; € B, which are both impossible by (2) and (3). So we may assume
that k — j is odd. In particular, & > j.

If > j+3, then y1yo- - y;2Yx - - - ys is a chordless odd path from A to B.
We call v the neigbhour of ys along this path (y = ys_1 if k < s—1; v = a; if
k = s). Applying Lemma 5 to this path, we must have either y, € A or v € B.
By (2) this implies v € B, and by (3) this is possible only with v =z, (i = 7)
and k£ = s; but these contradict the fact that & — j is odd while ¢, j have the
same parity.

So we must have £k = j + 1. Observe that P, = zox1 - zyj41---Ys is a
chorldess odd path, and that P,UP, C P,UP,. The choice of P, P, (minimizing
the size of their union) implies P, U P, = P, U P,, which is possible only if
P, = P]. Thus we have ;11 -2, = Y41 Ys, and we have conclusion (b) of
(4). Thus (4) is proved.

We now claim that:

On every u-segment of x; - - -z, the number of vy-edges is even. (5)

On every u-segment of y; - - - ys the number of vy-edges is even. (6)

To see that (5), holds, let us suppose on the contrary that there exists a u-
segment S = x,---x; of x,---x, that contains an odd number of vy-edges.
We have 1 < g < h < r. Note that, since vy, o, u, x; cannot induce a square
(9 <@ < h), vertices u and vy have no common neighbour along z, - - - ,, except
if 2, = x; and in this case z; is their only common neighbour on S. In either
case h > g+ 2, and so S U {u} is an even hole. Thus there is an odd number
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of vg-edges on S U {u}, and Lemma 3 applied to S U {u} and v, implies that
vo has only two (consecutive) neighbours on S, say x;, ;1 for some integer !
with g <1 < h. If I > 1 then also g > 1 (else vy would have three neighbours
x1, T, T on S U{u}), and the triangle voz;z;41 together with the three paths
voZol, U S[zg, 7] and S[z;11, xp] Uu form a AP(vozz11, ), a contradiction.
If I = 1, we have also g = 1, and since S U {u} is an even hole, h is odd; but
then uUzy Uy US[xe, 1] induces an odd hole, a contradiction. Thus (5) holds.
Similarly (6) holds.

In view of (4), we have 7 — i = s — j and we call this value d. In case
(a) of (4) we have d = 0 and u sees both z;,y;. In case (b) of (4) we have
d > 1, and it will be convenient to denote by vgi4,...,ve+1 the vertices of
Pylzit, 2r] = Pyly;+1,ys) in that order (Vgrq = Tit1 = Yjt1, -+ - Vg1 = &y =
Ys), and u sees vy4;. Note that vg---vg-- - vg4q is a path, which we call R. So
Q@ CR,and Q = R if and only if d = 0. If d > 1 path R is not necessarily
chordless, as there may be chords between @ and vgi;---vgq. We call C the
hole Pz, x;] U Pyly1, y;], and recall that vy sees (= y1) and y (= 1), which
lie on C. Considering the adjacency of vy to C, we distinguish between two
cases.

Case 1. Vertex vy has a neighbour on C \ {z,y}.

By Lemma 3, C must contain an even number of vy-edges.

If w has no neighbour on C \ {z,y} (so d > 1), we find a stretcher induced
by the two triangles uzy and x;y;v41q with the three paths Py, z;], Pyly, yj]
and u U R[vy, vy14], where h is the largest integer such that uv, is an edge
(g+1 < h<g+d). Sou has at least one other neighbour than z,y on hole
C, and so, by Lemma 3, C' must contain an even number of u-edges (note that
z1y1 is one of them).

If 2;y; is not a u-edge (so d > 1), we may assume that P,[z;, ;] has an
odd number of u-edges and Py[yi,y;] has an even number of u-edges (or vice-
versa). However, the two paths Py[z1, z,] and P,[y;,ys] must both have an even
number of u-edges by Lemma 2. This is possible if and only if exactly one of
TiVgtd, YjUq+a 18 @ u-edge; so u sees vUgrq. Thus vy misses vgyq by (2), and so
none of T;Vy14, YjVq+a is @ vo-edge. Since u sees exactly one of x;, y;, vertex vy is
not adjacent to both, that is, ;y; is not a vo-edge. Now (5) and (6) imply that
Pylz1, ;] and Py[y1, y;] both have an even number of vy-edges, and consequently
C has an odd number of vy-edges, a contradiction.

If z;y; is a u-edge, a similar conclusion arises even more immediately: both
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%;,y; are non-neigbhours of vy, thus again by (5) and (6) the paths Pglz1, z;]
and Pylyi,y;] both have an even number of vo-edges, and consequently C' has
an odd number of vy-edges, a contradiction.

Case 2. Vertex vy has no neighbour on C\ {z,y}.

If no vertex of @ has any neighbour in C\{z, y}, we find a stretcher consisting
of the two triangles vozy, ;y;V4+a With the three paths Py|z1, z;], Pyly1,y,] and
R', where R' is any shortest path from vy to vy44 contained in R. So we may
assume that some vertex of () has a neighbour in C' \ {z,y}. Let p be the
smallest integer (0 < p < ¢) such that v, has a neighbour in C \ {z,y}; by
symmetry we may assume that v, has a neigbhour on P,[zs, z;]; let m be the
smallest integer (with 2 < m < ¢) such that v,z,, is an edge. Note that p > 1
since vy has no neighbour on C'\ {z,y}.

Suppose m < i. Let P"” be any shortest path from y; to v, contained in
Pyly1,ys] U Q[vg, vpy]. Note that x,, has no neighbour along P" except possibly
Up+1 and vpyo. If @, misses vy, or if v,,9 does not lie on P”, then the triangle
vozry and the three paths Q[vo, vp], Py[z1, Tm]Uv,, P form either a AP (vozy, vp)
(if ., misses vp1q, Or vy does not lie on P") or a stretcher (if z,, sees v,y
and vp4q lies on P"). If z,, sees vpis and vyyo lies on P" then we find a
AP (vyzy, Tm) formed by the triangle vozy and the three paths Qvo, vp] U 2,
Pz, ), Tm U (P"\ {vp, vpt1}), a contradiction.

Suppose m = i. By symmetry we may assume that if v, has a neighbour
along P,[y1,y;] it is only y;. If v, misses y; we find a AP (vozy,x;) with paths
Pylz1, xi], Pylyi, y;) Uz and Qvg, vp] U ;. If v, sees y; then the same vertices
induce a stretcher with the two triangles vozy and vyz;y;. This completes the
proof of the lemma.

O
Proof of Lemma 7 (transitivity of <4). Let a,a’,a” be three vertices of
A such that a <4 a' and @' <4 a”. Thus there exists a chordless odd path
You1 - - - ys such that yo = @', y1 = a”, and y, € B (with s odd, s > 3).

If a has no neighbour along s ---ys then ayiys---y, is a chordless odd
path to B, implying a <4 a” as desired. Let us now assume that a has a
neighbour along s ---ys, and let ¢ be the largest integer such that ay; is an
edge (2 <i < s). We have i < s as there is no edge between A and B.

If iis odd (3 < ¢ < s—2), then ay;---ys is a chordless odd path with
a € A and ys; € B; applying Lemma 5 to this path, we have either y; € A
or ys_, € B. The former is impossible because A is a clique. So y,_; € B.
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But then yoay; - - - ys—1 is a chordless odd path to a vertex in B, which implies
a' <4 a, contradicting Lemma 6.

If iiseven (2 < ¢ < s—1), then ypay; - - - ys is a chordless odd path to a vertex
in B, again implying a' <4 a and contradicting Lemma 6. This completes the
proof of the lemma.

O

Since <4 defines a strict partial order on A, we can find a linear extension
of this order, thus defining a total order which we still denote by <4.

Likewise, we can define a strict partial order <g on B as follows: for xz,y € B,
write z <p y if there exists a chordless odd path from z to a vertex of A such
that the second vertex of this path is y. This order is extended arbitrarily to a
total order on B, still denoted by <p.

Lemma 9 Let a be the mazimal verter of the totally ordered set (A, <a) and b
be the mazimal verter of (B, <g). Then {a,b} is an even pair of G.

Proof: Suppose on the contrary that there exists a chordless odd path zg - - - z%
with 29 = a and z;, = b. We have k > 3 as there is no edge between A and
B. Lemma 5 implies z; € A or z;_; € B. However, If 21 € A then az;---x;
is a chordless odd path implying ¢ <4 z;, which contradicts the choice of a
as a maximal vertex of (A, <4), while if z;_; € B the choice of b is similarly
contradicted.

O

This lemma completes the proof of Theorem 1.

We finish this section with remarks on the algorithmic aspects. It is easy
to detect a shortest hole (if any) in a graph G = (V, E): for any three vertices
x,y,z such that xy € F, yz € E, xz ¢ E, look for a shortest path from x
to z in G\ (N(y) \ {z, z}). Once a shortest hole H is found, determining the
sets A and B as defined above is easy, by neighbourhood examination. Next,
we can determine the relation <4 on A (and similarly <) as follows: for any
two vertices a,a’ € A, and for each b € B, look for a shortest path from a’ to
bin G\ [(N(a)\ {a'}) U (B\ {b})]; if there is such a path P and it has odd
length, the proof of Lemma 5 finds in polynomial time an induced subgraph of
H®* U P that is a C4, an odd hole, or a stretcher; if there is such a path and
it has even length, that means a <4 a; if there is no such path for any b € B
then we have a £4 a'; we can then repeat this for every ordered pair of vertices
of A. Furthermore, if two vertices of A violate antisymmetry (respectively if
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three vertices of A violate transitivity), the proof of Lemma 6 (resp. of Lemma
7) finds in polynomial time an induced subgraph of H U P that is a Cy, an
odd hole, or a stretcher. In summary, there exists a polynomial-time algorithm
which, given any graph G different from a clique, returns either an even pair of
G or an induced subgraph of G that is a Cy, an odd hole or a stretcher.

4 Remarks

Figure 2: A Cj-free Berge graph with no even pair.

A family of graphs of interest is given by the line-graphs of bipartite subdi-
visions of K, (in short LGBSK4). It is easy to see that every LGBSKA4 contains
a stretcher, so the class of graphs not containing any LGBSK4 is larger than
the class of graphs not containing a stretcher. We conjecture that the existence
of an even pair remains true if our Cy-free Berge graph G is allowed to contain a
stretcher, but under the condition that G does not contain any LGBSK4. This
conjectured fact would be stronger than our theorem, but the proof of such a
fact escapes us. On the other hand, forbidding induced LGBSK4’s is essential.
To see this, observe in Figure 2 a Cy-free Berge graph G that is not a clique
and has no even pair (actually G is the smallest such graph; also G has no even
pair). We remark that G is the line-graph of a bipartite subdivision of Kj.
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