

©2003, Sociedade Brasileira de Matemática

COVERINGS BY R-DIMENSIONAL ROOK DOMAINS

E. L. Monte Carmelo *

Dedicated to the Prof. Jayme L. Szwarcfiter, on the occasion of his 60^{th} birthday.

Abstract

Based on the matrix method, constructions of q-ary code of length n and covering radius R are established. One generalizes a theorem due to Blokhuis and Lam, and also improves a result by van Lint Jr; while another extends a construction by Carnielli.

1 Introduction

Given the set V_q^n of all words with length n and components from the ring \mathbb{Z}_q (or the field \mathbb{F}_q , when q is a prime power), the R-dimensional rook domain of x is defined as the set of all vectors y in V_q^n which differ from x in at most R coordinates, i.e., $\{y \in V_q^n : d(x,y) \leq R\}$, where d denotes the Hamming distance. If V_q^n can be represented as the union of R-dimensional rook domain of the vectors in $C \subset V_q^n$, then we say that C R-covers V_q^n (or C is an R-covering set of V_q^n) and we call the elements in C by rook.

In this note we focus on the numbers

$$K_q(n,R) = \min\{ |C| : C \text{ R-covers } V_q^n \}$$

which was initially posed for R = 1 by Taussky and Todd [9] in terms of abelian groups, and generalized for arbitrary R by Carnielli [2]. The determination of these numbers has resisted a series of mathematical and computational attacks for more than 50 years. Indeed, besides a list of particular classes, exact values are known for small entries (see [4]). However, there is substantial progress

Keywords: bounds on codes, lengthening of covering codes, matrix method, dominating set. MSC 2000: 05B40 and 94B65.

^{*}Research partially supported by CAPES-Brazil

on bounds for several classes and instances, and bounds has been periodically updated in tables when q and n are small (see [4]).

Many of such upper bounds are derived by inductive relations, which produce new R-covering codes from old s-covering codes, where 0 < s < R. In this note, we are concerned with the following theoretical question: how to obtain new R-covering codes using only R-covering codes?

The first inductive relation (section 3) generalizes a theorem due to Blokhuis and Lam [1], and improves also a theorem by van Lint Jr. [7], while another extends one by Carnielli [3]. Both constructions are based on the matrix method (see next section), which is reduced to the dominating set.

2 Matrix method and dominating set

For the sake of our purposes, we recall the following well-known results on $K_q(n, R)$ (see [4], for instance).

Lemma 1 For every q and n,

- (a) $K_q(n,0) = q^n$ and $K_q(n,n) = 1$;
- (b) $K_q(2,1) = q$ and $K_q(3,1) = \lceil q^2/2 \rceil$;
- (c) for a prime power q and n such that $1 + (q-1)n = q^t$, we have $K_q(n,1) = q^{n-t}$ (perfect codes).

The direct sum construction yields the following relations (see [2] or [4]).

Lemma 2

(a)
$$K_q(m+n, R_1 + R_2) \le K_q(m, R_1) K_q(n, R_2)$$
,

(b)
$$K_q(m+n,R) \le q^m K_q(n,R)$$
.

We now describe the main tool, so-called *matrix method*, whose origin is due to Kamps and van Lint [6]. This approach was later refined and systematized for the case R = 1 by Blokhuis and Lam [1], and generalized for arbitrary R in [3, 7].

Let $A = (I_k; M) = (a_1, a_2, ..., a_m)$ be an $k \times m$ matrix, where I_k denotes the $k \times k$ identity matrix and M is a $k \times (m - k)$ matrix with entries from \mathbb{Z}_q . A

subset S of V_q^k is called an R-covering of V_q^k using A iff any x in V_q^k can be written as a sum of a vector $s \in S$ and a \mathbb{Z}_q -linear combination of at most R columns of A, i.e.,

$$x = s + \alpha_1 a_{l_1}^T + \alpha_2 a_{l_2}^T + \dots + \alpha_R a_{l_R}^T,$$

where $s \in S$, and z^T denotes the transpose of the column z in A. Since the canonical vectors are also columns in A, note that S R-covers V_q^k coincides with the case where $A = I_k$.

Theorem 3 [3, 7] If S is an R-covering of V_q^k using a $k \times m$ matrix $A = (I_k; M)$, then

$$K_q(m,R) \le |S| q^{m-k}$$
.

Example: The set $S = \{(0,0), (1,1)\}$ does not 1-cover V_3^2 , because d(x,(2,2)) = 2 for any x in S. However, it is an 1-covering of V_3^2 using the matrix

$$A = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Theorem 3 yields $K_3(3,1) \leq 6$ (the exact value follows from Lemma 1.b).

The problem of deciding whether S is an R-covering of V_q^k using a suitable matrix can be restated in terms of graph theory, as described below.

Let G = (V, E) be an undirected graph with vertex set V and edge set E. The subset $S \subset V$ is said to be a *dominating set* of G iff, for every vertex v in V, either $v \in S$, or there is a vertex $s \in S$ such that s is adjacent to v.

Proposition 4 Covering set using matriz is equivalent to the dominating set for a class of graphs.

Proof: Fixed k, q, R, and a matrix $A = (I_k, M)$, let us construct the graph G = (V, E) as follows: take $V = V_q^k$, and, for two points $x \neq y$ in V, define x is adjacent to y if and only if x - y is a \mathbb{Z}_q -linear combination of at most R columns of A. Since $-1 \in \mathbb{Z}_q$, G is an undirected graph. Note that to say that S is an R-covering of V_q^k using A is equivalent to say that S is a dominating set of G.

As an immediate consequence, the number $K_q(k, R)$ can be evaluated by solving the minimum dominated set problem on the graph $G = G(k, q, R, I_k)$.

3 The constructions

Let us introduce the following notation: I_v denotes the identity matrix of order v.

Theorem 5 For any prime power q and $R \ge 1$,

$$K_q(q(n-R+1)+R,R) \le q^{(q-1)(n-R+1)}K_q(n,R).$$

Proof: Let C be a minimal R-covering set on V_q^n containing the zero vector (this is always possible by adding a suitable vector to the covering set). Take $S = C \times \{0\} \subset V_q^{n+1}$ and consider the following $(n+1) \times (q-1)(n-R+1) + (n+1)$ matrix:

where I_{n+1} denotes the identity matrix of order n+1, $\overline{0}$ represents the $(R-1) \times (n-R+1)$ zero matrix, and $\overline{1}$ denotes the $1 \times (n-R+1)$ matrix whose all entries are 1. Here $\mathbb{F}_q = \{0, 1, \ldots, q-1\}$.

We apply Theorem 3 with k = n + 1 and m = q(n - R + 1) + R. We claim that S R-covers V_q^{n+1} using A. Indeed, let each vector w in V_q^{n+1} be written as w = (x; t), where $x \in V_q^n$ and $t \in \mathbb{F}_q$. By construction, there is (s; 0) in S which disagrees with (x; 0) in at most R coordinates, say that

$$(x;0) = (s;0) + \alpha_1 e_{l_1} + \alpha_2 e_{l_2} + \dots + \alpha_d e_{l_d}$$
 (1)

where $d \leq R$, $\alpha_i \in \mathbb{F}_q$, and e_{l_i} are columns in I_{n+1} . If t = 0, then w is covered by S, according to (1). For the case $t \neq 0$ and d < R, we can represent w as

$$w = (s; 0) + te_{n+1} + \alpha_1 e_{l_1} + \alpha_2 e_{l_2} + \dots + \alpha_d e_{l_d}.$$

We now examine the last case $t \neq 0$ and d = R. Since the R canonical vectors in (1) are distinct to e_{n+1} , by pigeonhole principle, there is an index, say l_1 , such that $1 \leq l_1 \leq n - R + 1$. Hence

$$w = (s; 0) + t \left(e_{n+1} + t^{-1} \alpha_1 e_{l_1} \right) + \alpha_2 e_{l_2} + \dots + \alpha_R e_{l_R}$$

is a required representation, because the vector $(e_{n+1} + t^{-1}\alpha_1 e_{l_1})^T$ is a column of A. The result follows from Theorem 3.

In particular, when q is a prime and R = 1, Theorem 5 reduces to [1, Theorem 4.1].

Corollary 6 [7] For a prime power q and $R \geq 1$,

$$K_q(qn+1,R) \le q^{n(q-1)}K_q(n,R).$$

Proof: Apply Theorem 5 and Lemma 2.b with m = (q-1)(R-1).

Therefore, Theorem 5 improves m coordinates on the above relation. The construction given by van Lint Jr. (see also [4, Theorem 3.5.3]) can be improved under certain conditions, according to [5].

Corollary 7 For all $R \geq 1$,

$$K_2(2n-R+2,R) \le 2^{n-R+1}K_2(n,R).$$

The case R=1 coincides with the very useful relation $K_2(2n+1,1) \leq$ $2^{n}K_{2}(n,1)$ (see [4, Theorem 3.4.3]).

Some ideas arising from the proof of Theorem 5 can be applied to extend [3, Theorem 3.9], as follows.

Theorem 8 Given a prime power q, put $n = R + K_q(R, R) + K_q(R + 1, R) +$ $K_q(R+2,R) + \cdots + K_q(r-1,R)$. We have

$$K_q(n,R) \le [1 + (q-1)(r-R)]q^{n-r}.$$

Proof: Take
$$S = \{\alpha e_j : \alpha \in \mathbb{F}_q \text{ and } 2 \leq j \leq r - R + 1\} \subset V_q^r \text{ and}$$

$$A = \begin{bmatrix}
0 & 0 & \cdots & 1 & 0_R \\
0 & 0 & \cdots & K_q(r - 1, R) & 0_R \\
0 & \vdots & & * & \vdots \\
0 & 1 & \cdots & & \vdots \\
1 & K_q(R + 1, R) & \cdots & 0_R \\
K_q(R, R) & * & \cdots & \vdots & -- \\
* & \vdots & \vdots & & & I_R \\
\vdots & \vdots & \vdots & & & * \end{bmatrix}$$

Here, for any i such that $R \leq i \leq r-1$, $C_i = [0\cdots 01 \ K_q(i,R)*\cdots*]^T$ represents the $K_q(i,R)\times r$ submatrix composed by all columns $(0,\cdots,0,1,v)^T$, where v denotes a rook from a minimal R-covering on V_q^i containing the zero vector. The submatrix $[O_R\cdots O_R;I_R]^T$ is composed by the transpose of the vectors $e_{r-R+1},e_{r-R+2},\cdots,e_r$ in V_q^r .

Note that e_i appears in C_{r-i} for $1 \le i \le r - R$, and so all the canonical vectors in V_q^r appear as columns in A, i.e, I_r is a submatrix of $A_{r \times n}$.

Now, we apply Theorem 3 using k=r and m=n. It is sufficient to show that S is an R-covering of V_q^r using A. Indeed, the zero vector is covered by S. Otherwise, let $w=(0,0,\cdots,0,w_1,w_2,\cdots,w_i)$ be an arbitrary vector in $V_q^r\setminus\{0\}$, where the first r-i coordinates are zero and $w_1\neq 0$, for one $i, 1\leq i\leq r$.

We analyse some cases. Case 1: if $i \leq R$, then $w = 0 + w_1 e_{r-i+1} + w_2 e_{r-i+2} + \cdots + w_i e_r$ has the desired form. Case 2: if $i \geq R+1$. Let β be the inverse of w_1 . By construction of A, there is a column v^T in C_{i-1}^T such that

$$\beta w = v + \alpha_1 e_{l_1} + \alpha_2 e_{l_2} + \dots + \alpha_s e_{l_s} \tag{2}$$

for some $s \leq R$, where e_{l_i} denotes suitable canonical vector in I_r . Case 2.1: if s < R, thus w is a linear combination of $s + 1 \leq R$ columns of A. Case 2.2: s = R, without loss of generality, suppose that e_{l_1} has the last R - 1 coordinates equal to 0, because there are R unitary vectors in (2). Then

$$w = \beta^{-1}\alpha_1 e_{l_1} + \beta^{-1}v + \beta^{-1}\alpha_2 e_{l_2} + \dots + \beta^{-1}\alpha_R e_{l_R}$$

where $\beta^{-1}\alpha_1 e_{l_1}$ belongs to S, because $2 \leq l_1 \leq r - R + 1$.

Each $\alpha \in \mathbb{F}_q$, $\alpha \neq 0$, produces r - R vectors in S, while $\alpha = 0$ yields only the null vector. Then |S| = 1 + (q - 1)(r - R), and the proof is complete.

Example: We recall the following values: $K_2(1,1) = 1$, $K_2(2,1) = 2$, $K_2(3,1) = 2$, $K_2(4,1) = 4$, $K_2(5,1) = 7$, $K_2(6,1) = 12$, and $K_2(7,1) = 16$ (see table in [4]). Applying Theorem 8 for q = 2, R = 1 and r = 8, we obtain $K_2(45,1) \le 2^{40}$, which is equivalent to 16/15 of the current bound $K_2(45,1) \le 15 \cdot 2^{36}$. However, as in many instances, this estimate was obtained using a non-systematical combinations of relations and existence of special codes. Indeed, $K_2(45,1) \le 2^2K_2(43,1)$, by Lemma 2.b, while $K_2(43,1) \le 2^{21}K_2(21,1)$, by Corollary 7, which also implies $K_2(21,1) \le 2^{10}K_2(10,1)$. Finally, $K_2(10,1) \le 15 \cdot 2^3$ is derived from a particular construction based on a strongly seminormal code, according

to [8].

Acknowlegments. The author would like to thank the anonymous referees, for several remarks which lead to the improvement of the present version.

References

- [1] Blokhuis, A.; Lam, C. W. H., More coverings by rook domains, J. Combin. Theory Ser. A 36 (1984), 240-244.
- [2] Carnielli, W. A., On covering and coloring problems for rook domains, Discrete Math. 57 (1985), 9-16.
- [3] Carnielli, W. A., *Hyper-rook domain inequalities*, Stud. Appl. Math. 82 (1990), 50-69.
- [4] Cohen, G., Honkala, I., Litsyn, S., Lobstein, A., *Covering codes*. (North-Holland, Amsterdam, 1997).
- [5] Honkala, I., On lengthening of covering codes, Discrete Math. 106/107 (1992), 11-18.
- [6] Kamps, H. J. L.; van Lint, J. H., A covering problem, Colloq. Math. Soc. János Bolyai, 4 (1970), 679-685.
- [7] van Lint Jr., J. H., *Covering radius problems*, M.Sc. thesis, Eindhoven University of Technology, The Netherlands (1988).
- [8] Östergård, P. R. J.; Kaikkonen, M. K., New upper bounds for binary covering codes, Discrete Math., 178 (1998), 165-179.
- [9] Taussky, O.; Todd, J., Covering theorems for groups, Ann. Soc. Polonaise Math., 21 (1948), 303-305.

E. L. Monte Carmelo
Departamento de Matemática
Universidade Estadual de Maringá
Av. Colombo, 5790
87020-900, Maringá, PR, Brazil
E-mail: elmcarmelo@uem.br