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Abstract

Based on the matrix method, constructions of g-ary code of length
n and covering radius R are established. One generalizes a theorem due
to Blokhuis and Lam, and also improves a result by van Lint Jr; while
another extends a construction by Carnielli.

1 Introduction

Given the set V" of all words with length n and components from the ring Z,
(or the field JF,, when ¢ is a prime power), the R-dimensional rook domain of
z is defined as the set of all vectors y in V" which differ from z in at most
R coordinates, i.e., {y € V' : d(z,y) < R}, where d denotes the Hamming
distance. If V" can be represented as the union of R-dimensional rook domain of
the vectors in C' C V', then we say that C' R-covers V;* (or C'is an R -covering
set of V') and we call the elements in C' by rook.

In this note we focus on the numbers
Ky(n, R) = min{ |C|: C R-covers V' }

which was initially posed for R = 1 by Taussky and Todd [9] in terms of abelian
groups, and generalized for arbitrary R by Carnielli [2]. The determination of
these numbers has resisted a series of mathematical and computational attacks
for more than 50 years. Indeed, besides a list of particular classes, exact values
are known for small entries (see [4]). However, there is substantial progress
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on bounds for several classes and instances, and bounds has been periodically
updated in tables when ¢ and n are small (see [4]).

Many of such upper bounds are derived by inductive relations, which pro-
duce new R-covering codes from old s-covering codes, where 0 < s < R. In this
note, we are concerned with the following theoretical question: how to obtain
new R-covering codes using only R-covering codes?

The first inductive relation (section 3) generalizes a theorem due to Blokhuis
and Lam [1], and improves also a theorem by van Lint Jr. [7], while another
extends one by Carnielli [3]. Both constructions are based on the matrix method
(see next section), which is reduced to the dominating set.

2 Matrix method and dominating set

For the sake of our purposes, we recall the following well-known results on
Ky(n, R) (see [4], for instance).

Lemma 1 For every q and n,
(a) K¢(n,0) = ¢" and K4(n,n) =1;
(b) K,(2,1) = q and K,(3,1) = [¢*/2];

(¢) for a prime power q and n such that 1+ (¢ — 1)n = ¢*, we have K,(n,1) =
g~ (perfect codes).

The direct sum construction yields the following relations (see [2] or [4]).
Lemma 2
(a) Ky(m+n, Ry + Ry) < K (m, R)Ky(n, Rs),
(b) Ky(m +n, R) < ¢™K4(n, R).

We now describe the main tool, so-called matriz method, whose origin is due
to Kamps and van Lint [6]. This approach was later refined and systematized
for the case R =1 by Blokhuis and Lam [1], and generalized for arbitrary R in
3, 7]

Let A = (Iy; M) = (a1, as, ..., a,) be an k X m matrix, where I denotes the
k x k identity matrix and M is a k x (m — k) matrix with entries from Z,. A
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subset S of V} is called an R-covering of V,f using A iff any z in V,F can be
written as a sum of a vector s € S and a Z,-linear combination of at most R
columns of A4, i.e.,

T i g
T = s+ oa, +aa, + -+ aray,,

where s € S, and 2T denotes the transpose of the column z in A. Since the
canonical vectors are also columns in A, note that S R-covers qu coincides with
the case where A = Ij.

Theorem 3 [8, 7] If S is an R-covering of qu using a k X m matric A =
(Ix; M), then
K,(m,R) < [S] ™",

Example: The set S = {(0,0), (1,1)} does not 1-cover V2, because d(z, (2, 2))=
2 for any z in S. However, it is an 1-covering of V2 using the matrix

1 01
4= { 011 j|
Theorem 3 yields K3(3,1) < 6 (the exact value follows from Lemmal.b).

The problem of deciding whether S is an R-covering of qu using a suitable
matrix can be restated in terms of graph theory, as described below.

Let G = (V, E) be an undirected graph with vertex set V and edge set E.
The subset S C V is said to be a dominating set of G iff, for every vertex v in
V, either v € S, or there is a vertex s € S such that s is adjacent to v.

Proposition 4 Covering set using matriz is equivalent to the dominating set
for a class of graphs.

Proof: Fixed k, ¢, R, and a matrix A = (I, M), let us construct the graph
G = (V,E) as follows: take V = qu, and, for two points z # y in V, define z
is adjacent to y if and only if x — y is a Z,-linear combination of at most R
columns of A. Since —1 € Z,, G is an undirected graph. Note that to say that
S is an R-covering of Vq’“ using A is equivalent to say that S is a dominating
set of G.
O
As an immediate consequence, the number K,(k, R) can be evaluated by
solving the minimum dominated set problem on the graph G = G(k, ¢, R, I).
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3 The constructions

Let us introduce the following notation: I, denotes the identity matrix of order
.

Theorem 5 For any prime power q and R > 1,
K,(g(n— R+1)+ R,R) < ¢ V-ED K (n R).

Proof: Let C' be a minimal R-covering set on V" containing the zero vector
(this is always possible by adding a suitable vector to the covering set). Take
S = Cx{0} C V**'and consider the following (n+1)x (¢—1)(n—R+1)+(n+1)
matrix:

1Ry 2l ry1 - (q - 1)In—R+1

A= Iy 0 0 0

1 1 1
where I, 1 denotes the identity matrix of order n + 1, 0 represents the (R —
1) X (n — R+ 1) zero matrix, and T denotes the 1 x (n — R + 1) matrix whose

all entries are 1. Here IF, = {0,1,...,¢ — 1}.

We apply Theorem 3 with k =n+ 1 and m = g(n — R+ 1) + R. We claim
that S R-covers V"' using A. Indeed, let each vector w in V;"*' be written

as w = (z;t), where z € V;* and t € IFy. By construction, there is (5;0) in S
which disagrees with (z;0) in at most R coordinates, say that

(7;0) = (5;0) + ey, + azer, + - -+ + agey, (1)

where d < R, o; € IF;, and e, are columns in I,,;4. If £ = 0, then w is covered
by S, according to (1). For the case ¢ # 0 and d < R, we can represent w as

w = (5;0) + ten1 + i€y, + azep, + -+ - + agey,.

We now examine the last case ¢ # 0 and d = R. Since the R canonical vectors
in (1) are distinct to en41, by pigeonhole principle, there is an index, say [y,
such that 1 <[l; <n — R+ 1. Hence

w=(s;0)+1 (€n+1 + t_laleh) + agey, + -+ agey,
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is a required representation, because the vector (eny1 + ¢ 'aze,)? is a column

of A. The result follows from Theorem 3.
O

In particular, when ¢ is a prime and R = 1, Theorem 5 reduces to [1,
Theorem 4.1].

Corollary 6 [7] For a prime power q and R > 1,
Ky(an+1,R) < VK, (n, R)

Proof: Apply Theorem 5 and Lemma 2.b with m = (¢ — 1)(R — 1).
O
Therefore, Theorem 5 improves m coordinates on the above relation. The
construction given by van Lint Jr. (see also [4, Theorem 3.5.3]) can be improved
under certain conditions, according to [5].

Corollary 7 For all R > 1,
K2(2TL — R + 2, R) S 2”’R+1K2(n, R)

The case R = 1 coincides with the very useful relation Ky(2n + 1,1) <
2"Ky(n,1) (see [4, Theorem 3.4.3]).

Some ideas arising from the proof of Theorem 5 can be applied to extend
[3, Theorem 3.9], as follows.

Theorem 8 Given a prime power q, put n = R+ K (R, R)+ K,(R+ 1, R)+
K(R+2,R)+---+ Ky(r —1,R). We have

Ky(n,R) <[1+(¢—1)(r — R)]¢"".
Proof: Take S = {ae;:a € Fyand 2<j<r— R+ 1} C V] and

0 0 1 Or ]
0 0 <o K,r—1,R) Og
0 : *
: 0
0 1
e q K(R+1,R) --- Or
K,(R, R) % : __
* :
: 5
L * * * ]
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Here, for any i such that R < i < r—1,C; = [0---01 K,(i,R) % ---*]"
represents the K, (i, R) X r submatrix composed by all columns (0, --,0,1,v)7,
where v denotes a rook from a minimal R-covering on V; containing the zero
vector. The submatrix [Og---Og; [ R]T is composed by the transpose of the
vectors €,_Ry1, €r—Rt2, "+, € in V.

Note that e; appears in C,_; for 1 < ¢ < r — R, and so all the canonical
vectors in V" appear as columns in A, i.e, I, is a submatrix of A, x.

Now, we apply Theorem 3 using k£ = r and m = n. It is sufficient to show
that S is an R—covering of V] using A. Indeed, the zero vector is covered by S.
Otherwise, let w = (0,0, -+, 0,wy,ws, " -+, w;) be an arbitrary vector in V;\{0},
where the first 7 — i coordinates are zero and wy # 0, for one i, 1 < i < r.

We analyse some cases. Case 1: if ¢ < R, then w = 0+wie,_; 1 +woer_jro+
-+ -+ w;e, has the desired form. Case 2: if i > R+ 1. Let 3 be the inverse of
w;. By construction of A, there is a column v” in C} , such that

Bw = v+ aie, + agze, + -+ -+ asey, (2)

for some s < R, where ¢;, denotes suitable canonical vector in I.. Case 2.1: if
$ < R, thus w is a linear combination of s + 1 < R columns of A. Case 2.2:
s = R, without loss of generality, suppose that e;, has the last R—1 coordinates
equal to 0, because there are R unitary vectors in (2). Then

w = 5_1a16l1 o B_l/u =+ ﬁ_la2elz S S /3_10[136[}3

where 37 'aye;, belongs to S, because 2 <y <r— R+ 1.
Each o € Fy, a # 0, produces r — R vectors in .S, while o = 0 yields only
the null vector. Then |S| =1+ (¢ — 1)(r — R), and the proof is complete.
O
Example: We recall the following values: K5(1,1) =1, K5(2,1) = 2, K5(3,1) =
2, K5(4,1) = 4, K5(5,1) = 7, K5(6,1) = 12, and K5(7,1) = 16 (see table in
[4]). Applying Theorem 8 for ¢ = 2, R = 1 and r = 8, we obtain K(45,1) <
249 which is equivalent to 16/15 of the current bound K»(45,1) < 15.23%. How-
ever, as in many instances, this estimate was obtained using a non-systematical
combinations of relations and existence of special codes. Indeed, K5(45,1) <
22K,(43,1), by Lemma 2.b, while K,(43,1) < 22 K,(21,1), by Corollary 7,
which also implies K,(21,1) < 21°K5(10, 1). Finally, K,(10,1) < 15.23 is derived
from a particular construction based on a strongly seminormal code, according
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to [8].
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