CLIQUE-SYMMETRIC UNIFORM HYPERGRAPHS John P. McSorley D Thomas D. Porter #### Abstract Let H be an r-uniform hypergraph of order p, and $\{H_{p1}, H_{p2}, \ldots\}$ be a countable sequence of r-uniform hypergraphs with H_{pn} having pn vertices. The sequence is H-removable if $H_{p1} \cong H$ and $H_{pn} - S \cong H_{p(n-1)}$ where S is any vertex subset of H_{pn} that induces a copy of H. This paper deals with the case $H = K_p^r$. It provides a construction of hypergraphs with a high degree of symmetry; where for any such hypergraph, all the ways of removing the vertices of any fixed number of disjoint K_p^r 's yields the same subgraph. The case r = 2 was studied by the authors in [3]. This paper gives the generalization to r-uniform hypergraphs for all $r = 2, 3, \ldots$ ### 1 The Case r = 2 We first briefly list the previous ideas in [3] and [4] concerning the case r = 2. The same vocabulary and definitions will be needed in our subsequent sections. In general we follow the notation in [5]. In particular if W is a subset of the vertices of a graph G, then G[W] denotes the subgraph of G induced by W. The digraphs and graphs we consider are loopless and without multiple arcs or edges. We also use $[p] = \{1, \ldots, p\}$. Call a countable sequence of graphs $\{G_{pn}\}=\{G_{p1},G_{p2},\ldots\}$ K_p -removable if it satisfies the following two properties: **P1:** $G_{p1} \cong K_p$ **P2:** $G_{pn} - W \cong G_{p(n-1)}$ for every $n \geq 2$ and every vertex subset $W \subset V(G_{pn})$ that induces a K_p in G_{pn} , *i.e.*, $G_{pn} \cong K_p$. We often write $G_1 = G_2$ in place of $G_1 \cong G_2$. Keywords: clique, Eulerian digraph, hypergraph, m-partite, Stirling number Let \vec{D} be a digraph of order p, with $d^+(u) = d^-(u)$ for every vertex u in $V(\vec{D})$. Then \vec{D} is an eulerian digraph if \vec{D} 's underlying 'undirected' graph is of one component, otherwise \vec{D} is eulerian on each of its underlying components. Let $N^+(i)$ denote the out-neighborhood of vertex i. Consider a copy of K_p with vertices labelled $\{(1,1),\ldots,(p,1)\}=\{(i,1)\,|\,i\in[p]\}$; call these vertices vertices at level 1, and call this graph $D_1(K_p)$. Now consider another copy of K_p with vertices labelled $\{(i,2)\,|\,i\in[p]\}$, these are vertices at level 2. For any vertex (i,2) join it to the vertices $\{(i',1)\,|\,i'\in N^+(i)\}$ at level 1, so we see that these edges are derived from the digraph \vec{D} . We call the graph so formed $D_2(K_p)$. Now consider a third K_p with vertices labelled $\{(i,3)\,|\,i\in[p]\}$, at level 3. Join any vertex (i,3) to vertices $\{(i',2)\,|\,i'\in N^+(i)\}$ at level 2 and to vertices $\{(i',1)\,|\,i'\in N^+(i)\}$ at level 1; this is $D_3(K_p)$. Now, for any $n \geq 1$, consider the graph which has been constructed level by level, up to n levels, according to the previous definition; call this graph $D_n(K_p)$ or simply D_n when p is clear. We say the digraph \vec{D} generates the sequence $\{D_n\}$. The vertices of D_n , $V(D_n)$, are of the form (i,j) for every $i \in [p]$ and every $1 \leq j \leq n$, where j is their level; and the edges are of two types: (i) fixed-level edges, say at level j $$((i_1, j), (i_2, j))$$ is an edge for all $i_1, i_2 \in [p]$ where $i_1 \neq i_2$; and (ii) cross-level edges, for j > j' $$((i,j),(i',j'))$$ is an edge if and only if $i' \in N^+(i)$. For any fixed $i \in [p]$, let $I_i = \{(i,1), \ldots, (i,n)\} = \{(i,j) | 1 \leq j \leq n\}$ be the set of vertices of D_n in 'column i'. Then, because $i \notin N^+(i)$, *i.e.*, because \vec{D} doesn't have loops, this is an independent set of vertices. Now let W be a subset of $V(D_n)$ that induces a p-clique; then each of the p independent sets I_1, \ldots, I_p contain exactly one vertex from W. Let $W = \{(1, v_1), \ldots, (p, v_p)\}$ be an arbitrary vertex subset in D_n with exactly one vertex from each independent set I_i . Let W have vertices at m different levels: ℓ_1, \ldots, ℓ_m where $\ell_1 < \cdots < \ell_m$. For $1 \le k \le m$, let $V_k = \{i \mid v_i = \ell_k\} \neq \emptyset$ be the set of first coordinates of all vertices of W at level ℓ_k . Then the sets V_1, \ldots, V_m partition [p]. In D_n consider two levels of vertices, V_i and V_j with $l_i < l_j$ and let $y \in V_i$ and $x \in V_j$. Then if the edge e = xy is in the induced subgraph $D_n[W]$ of D_n we call the arc (x, y) in our original generating digraph \vec{D} a W-skew arc. Hence a W-skew arc of \vec{D} gives rise to edges in D_n which join different levels of W. Let (A, B) denote the set of arcs in D from A to B, i.e., all arcs (a, b) with $a \in A$ and $b \in B$. **Theorem 1.1 ([4]).** With the above notation: a set W of vertices of D_n with level-partition V_1, V_2, \ldots, V_m , induces a p-clique iff the associated W-skew arcs form a complete symmetric m-partite subdigraph in \vec{D} . **Theorem 1.2 ([4]).** Let \vec{D} be any eulerian digraph of order p. Then its generated sequence of graphs $\{D_n\}$ is K_p -removable. # 2 The Hypergraph Construction The ideas and results in Section 1 lead to the following extension to hypergraphs. A hypergraph consists of a collection of vertices and a collection of edges; if the vertex set is V, then the edges are subsets of V. A hypergraph is r-uniform if all of its edges have size r. The complete r-uniform hypergraph of order p, denoted by K_p^r , is the hypergraph with vertex set V = [p] and with edges all of the $\binom{p}{r}$ r-subsets of V. For a fixed pair p and r, with $p \geq r \geq 2$, let $\{H^r_{pn}\} = \{H^r_{p1}, H^r_{p2}, H^r_{p3}, \ldots\}$ be a sequence of r-uniform hypergraphs where H^r_{pn} has pn vertices. Such a sequence is called K^r_p -removable if it satisfies the following properties: **P1** $$H_{p1}^r \cong K_p^r$$ **P2** $H_{pn}^r - K_p^r \cong H_{p(n-1)}^r$ for every $n \ge 2$ and for every (induced) K_p^r in H_{pn}^r . For each pair p and r, with $p \ge r \ge 2$, we show the existence of K_p^r -removable sequences. Let (A_1, \ldots, A_m) denote a partition of [p]. We define the complete m-partite r-uniform hypergraph of order p, denoted $K^r_{|A_1|,\ldots,|A_m|}$, as follows: The vertex set is [p], and an r-subset, Q, of [p] is an edge if and only if Q contains at most r-1 members from any class A_j . So, eg., $K^r_{n,n}$ has 2n vertices and $$\binom{n}{1}\binom{n}{r-1} + \binom{n}{2}\binom{n}{r-2} + \dots + \binom{n}{r-1}\binom{n}{1} = \binom{2n}{r} - 2\binom{n}{r}$$ edges. Notice that for r=2 we have the usual $K_{n,n}^2$, the complete bipartite graph with n^2 edges. The number of edges in $K_{|A_1|,...,|A_m|}^r$ is $$e(K_{|A_1|,\dots,|A_m|}^r) = \sum \binom{|A_1|}{k_1} \cdots \binom{|A_m|}{k_m}$$ where the sum is over all $k_1 + \cdots + k_m = r$, with $0 \le k_j < r$ for all $1 \le j \le m$. Motivated by Theorem 1.1 we now construct K_p^r -removable sequences, $\{H_{pn}^r\}$, from each fixed partition (A_1, \ldots, A_m) of [p]. With $\{H_{pn}^r\} = \{H_{p1}^r, H_{p2}^r, \ldots\}$ the construction is as follows: - 1. $H_{p(m-1)}^r \cong (m-1)K_p^r$, i.e., we first start with m-1 disjoint levelled copies of K_p^r . - 2. For $n \geq m$, the graph H_{pn}^r is defined as follows. First, take n disjoint levelled copies of K_p^r ; the notation for the vertices introduced at level 1, level 2, ..., level n, is the same as in Section 1, eg., the copy of K_p^r at level j has vertex set $\{(1,j),(2,j),\ldots,(p,j)\}$. From the given partition (A_1,\ldots,A_m) of [p], to each A_j , $1 \leq j \leq m$, we select a distinct level l_{A_j} , where $1 \leq l_{A_j} \leq n$. We use $(A_1,\ldots,A_m) \to (l_{A_1},\ldots,l_{A_m})$ to denote the selected levels. Notice that to the partition (A_1,\ldots,A_m) there are $m!\binom{n}{m}$ such level (l_{A_1},\ldots,l_{A_m}) selections. To each fixed level selection $(A_1, \ldots, A_m) \to (l_{A_1}, \ldots, l_{A_m})$ we identify the set A_j with their corresponding vertices in level l_{A_j} . The identification is through the first coordinates of the vertices in l_{A_j} . For example, if $A_j = \{x_1, \ldots, x_{|A_j|}\}$, then we identify A_j with the vertices, $\tilde{A}_j = \{(x_1, l_{A_j}), (x_2, l_{A_j}), \ldots, (x_{|A_j|}, l_{A_j})\}$ in level l_{A_j} of H^r_{pn} . We then have $(A_1, \ldots, A_m) \cong (\tilde{A}_1, \ldots, \tilde{A}_m)$ with $|\tilde{A}_1| + \cdots + |\tilde{A}_m| = p$, for each of the $m!\binom{n}{m}$ such $(\tilde{A}_1, \ldots, \tilde{A}_m)$'s. We then add to the initial n disjoint copies of K^r_p , all edges in $\bigcup E(K^r_{|\tilde{A}_1|,\ldots,|\tilde{A}_m|})$, where the union is over all $m!\binom{n}{m}$ such $(\tilde{A}_1, \ldots, \tilde{A}_m)$'s. We call this graph H^r_{pn} , the hypergraph generated by the partition (A_1, \ldots, A_m) . We use the symbol $gen(A_1, \ldots, A_m)^r$ to denote such a sequence $\{H_{pn}^r\}$. Notice by the construction, from (A_1, \ldots, A_m) and a chosen level- $(\tilde{A}_1, \ldots, \tilde{A}_m)$, the vertices $\tilde{A}_1 \cup \ldots \cup \tilde{A}_m$ in $V(H_{pn}^r)$ induce a K_p^r . The other K_p^r 's in H_{pn}^r are 'fixed-level' cliques, *i.e.*, the K_p^r introduced at each level $1, \ldots, n$. For the vertex subsets I_i , as defined earlier, the construction yields edges which contain at most one vertex from any 'column i'. Hence I_i is an independent set in H_{pn}^r . Also notice that each induced K_p^r contains exactly one vertex from each I_i , $1 \le i \le p$. For r=2, the connection to the digraph \vec{D} in Theorem 1.2 is as follows: Consider any complete m-partite graph $G=K^2_{|A_1|,\dots,|A_m|}$. Let \vec{D} be the digraph formed from G by replacing each edge xy in G with two arcs (x,y) and (y,x). Then \vec{D} is Eulerian and it generates the K^2_p -removable sequence $\{D_n\}$ as in Theorem 1.2. Suppose W induces a K^r_p in H^r_{pn} . Let the vertices of W be $\{(i,w_i)\mid 1\leq i\leq p\}$. In the graph $H^r_{pn}-W$, the set $I_i\backslash\{(i,w_i)\}$ is an independent set: call this the i-th independent set of $H^r_{pn}-W$. Now we construct an isomorphism ϕ between the vertices of $H^r_{pn}-W$ and the vertices of $H^r_{pn}-W$, namely in the set $I_i\backslash\{(i,w_i)\}$, are mapped to the vertices in the i-th independent set of $H^r_{p(n-1)}$, namely to the set $\{(i,1),\ldots,(i,n-1)\}$, as follows: $$\phi(i,j) = \begin{cases} (i,j-1), & \text{for } w_i < j \le n \\ (i,j), & \text{for } 1 \le j < w_i. \end{cases}$$ In [3] it is shown that ϕ is an isomorphism. It is straightforward to show that ϕ moves edges in $H_{pn}^r - W$ to edges in $H_{p(n-1)}^r$. We have: **Theorem 2.1.** Let $p \ge r \ge 2$, and let (A_1, \ldots, A_m) be any partition of [p]. Then the sequence of hypergraphs $gen(A_1, \ldots, A_m)^r$ is a K_p^r -removable sequence. In the following let S(m,t) be the Stirling numbers of the second kind. Notice, by the above construction of $gen(A_1, \ldots, A_m)^r = \{H^r_{pn}\}$, H^r_{pn} contains essentially two types of induced K^r_p 's, either fixed-level or cross-level. The vertices of a K^r_p are either all at a fixed level, or are at exactly m different levels. However, by the isomorphism ϕ , the removal of any one of these two types of induced K^r_p 's yields up to isomorphism the same sub-hypergraph. So, the hypergraph construction gives the clique-symmetric uniform hypergraph we were searching for that does not simply possess n fixed-level type K^r_p 's. We remark that the gen $(A_1, \ldots, A_m)^r$ construction can be slightly modified to also contain cross-level K_p^r 's containing vertices from exactly t levels, for all $2 \le t \le m-1$, as follows: The partition (A_1, \ldots, A_m) of [p] is given. For fixed t, $2 \le t \le m-1$, let (b_1, \ldots, b_t) be a partition of [m]. From (b_1, \ldots, b_t) define the corresponding (B_1, \ldots, B_t) where $B_j = \bigcup_{k \in b_j} A_k$. Notice that (B_1, \ldots, B_t) is then a partition of [p]. Also notice that $K^r_{|B_1|, \ldots, |B_t|}$ is a complete t-partite sub-hypergraph of $K^r_{|A_1|, \ldots, |A_m|}$; and there are t!S(m, t) such possible (b_1, \ldots, b_t) 's, and hence t!S(m, t) such possible (B_1, \ldots, B_t) 's. We remark that in general, for any complete m-partite graph, where $m \geq 3$, there are S(m, t) complete t-partite spanning subgraphs, where $2 \leq t \leq m-1$. As before, each (B_1, \ldots, B_t) is assigned a level-selection $(\ell_{B_1}, \ldots, \ell_{B_t})$ producing the corresponding $(\tilde{B}_1, \ldots, \tilde{B}_t)$. Now define $X_t = \bigcup E(K^r_{|\tilde{B}_1|, \ldots, |\tilde{B}_t|})$, where the union is over all $(\tilde{B}_1, \ldots, \tilde{B}_t)$'s. For the generalized construction from a given (A_1, \ldots, A_m) , we again start with n disjoint levelled K^r_p 's. We add to these the edges $X_2 \cup X_3 \cdots \cup X_m$. It can be shown the isomorphism ϕ works for this graph as well. We call such a K_p^r -removable sequence $\{H_{pn}^r\}$ as constructed above a t-gen $(A_1,\ldots,A_m)^r$ sequence. We note that for a given (B_1,\ldots,B_t) and its associated $t!\binom{n}{t}$ corresponding $(\tilde{B}_1,\ldots,\tilde{B}_t)$'s, that any permutation $\sigma(B_1,\ldots,B_t)$ of (B_1,\ldots,B_t) , yields the same set of $(\tilde{B}_1,\ldots,\tilde{B}_t)$'s as (B_1,\ldots,B_t) does. Hence there are $t!S(m,t)\binom{n}{t}$ such $(\tilde{B}_1,\ldots,\tilde{B}_t)$'s, for each $2 \leq t \leq m$. By the construction every K_p^r in H_{pn}^r is in one-to-one correspondence with a fixed $(\tilde{B}_1,\ldots,\tilde{B}_t)$. For the case t=1, we interpret the (\tilde{B}_1) 's as the beginning n-level copies of K_p^r , so $X_1 \cong nK_p^r$. Hence we have a rather nice formula for the number of K_p^r 's in H_{pn}^r . **Theorem 2.2.** Let (A_1, \ldots, A_m) be a partition of [p]. For the K_p^r -removable sequence t-gen $(A_1, \ldots, A_m)^r = \{H_{pn}^r\}$, the hypergraph H_{pn}^r has $\sum_{t=1}^m t! S(m,t) \binom{n}{t} = n^m K_p^r$'s. More directly, the value n^m in Theorem 2.2 can be interpreted as follows: From the given initial partition (A_1, \ldots, A_m) of [p] we embed each A_j (by our definition of \tilde{A}_j) into any of the n levels, level $1, \ldots,$ level n, thus creating $(\tilde{B}_1, \ldots, \tilde{B}_t)$. Hence there are n^m such embeddings. We remark also that, by the defined construction, for each embedding $(\tilde{B}_1, \ldots, \tilde{B}_t)$ the vertices $\tilde{B}_1 \cup \cdots \cup \tilde{B}_t$ induce a K_p^r in H_{pn}^r . **Example** Let p = 5, r = 3, and (A_1, A_2, A_3) be the partition of $\{1, 2, 3, 4, 5\}$ with $A_1 = \{1, 2\}$, $A_2 = \{3, 5\}$, and $A_3 = \{4\}$. Consider the t-gen $(A_1, A_2, A_3)^3 = \{H_{5n}^3\}$ sequence. The graph for n = 3, i.e., $H_{(5)(3)}^3$ has $1!S(3,1)\binom{3}{1}+2!S(3,2)\binom{3}{2}+3!S(3,3)\binom{3}{3}=27$ induced K_5^3 's. An example of one of these cliques for t = 2 is as follows: with $(B_1, B_2) = (A_1 \cup A_3, A_2)$, let $(B_1, B_2) \to (\ell_{B_1}, \ell_{B_2}) = (3, 2)$ be a level-selection, giving $(\tilde{B}_1, \tilde{B}_2)$. Then the vertices in $V(H^3_{(5)(3)})$, namely, $\tilde{B}_1 \cup \tilde{B}_2 = \{(3,1), (3,2), (3,4), (2,3), (2,5)\}$, induce a K^3_5 in $H^3_{(5)(3)}$. K_{pn}^{r} is the complete r-uniform hypergraph on pn vertices. We end by showing, with the exception of $\{K^r_{pn}\}$, that for any K^r_p -removable sequence $\{H^r_{pn}\}$, with $p \geq r \geq 2$, any member H^r_{pn} of the sequence does not contain a K^r_{p+1} . So, e.g., for the case r=2, the clique number is always $\omega(H^2_{pn})=p$ for all n. We remark that the constructions given in this paper produce ways to generate K^r_p -removable sequences, we do not claim these are the only K^r_p -removable sequences. However, our final theorem applies to any K^r_p -removable sequence. **Theorem 2.3.** Suppose the n-th member H_{pn}^r of a K_p^r -removable sequence contains a K_{p+1}^r , then H_{pn}^r is K_{pn}^r . **Proof:** Suppose that H^r_{pn} contains a K^r_{p+1} . Without loss of generality, we assume $V(H^r_{pn})$ is partitioned into n K^r_p 's: L_1, L_2, \ldots, L_n , so that some vertex y in L_2 is such that $L_1 \cup \{y\}$ is an induced K^r_{p+1} in H^r_{pn} . Let x be any vertex in L_1 . Deleting the n-1 K^r_p 's: $L_3, L_4, \ldots, L_n, L_1 + \{y\} - \{x\}$, in this order, we obtain $L_2 + \{x\} - \{y\}$. Since $\{H^r_{pn}\}$ is K^r_p -removable, $L_2 + \{x\} - \{y\}$ is necessarily a K^r_p . Hence, $L_2 \cup \{x\}$ is a K^r_{p+1} , and the union of L_1 and L_2 is K^r_{2p} . Consequently the removal of any n-2 disjoint K^r_p 's must produce K^r_{2p} . This implies that the union of every two levels L_i and L_j induce a K^r_{2p} ; therefore, H^r_{pn} is K^r_{pn} . For other papers on graph sequences see Barefoot, Entringer, and Jackson [1], and its bibliography; see also Duchet, Tuza, and Vestergaard [2]. ## References - Barefoot, C. A.; Entringer, R. C.; Jackson, D. E., Graph theoretic modelling of cellular development II, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 65 (1988), 135–146. - [2] Duchet, P.; Tuza, Z.; Vestergaard, P. D., *Graphs in which all spanning sub-graphs with r fewer edges are isomorphic*, Proc. 19-th Southeastern Internat. - Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 67 (1988), 45–57. - [3] McSorley, J. P.; and Porter, T. D., K_p -removable sequences of graphs, to appear, Journal of Combinatorial Mathematics and Combinatorial Computing. - [4] McSorley, J. P.; Porter, T. D., Generating sequences of clique-symmetric graphs via Eulerian digraphs, to appear, Discrete Mathematics. - [5] West, D. B., *Introduction to Graph Theory*, 2nd Edition, (Prentice Hall, 2001). John P. McSorley Department of CCTM London Metropolitan University 100 Minories, London. EC3N 1JY E-mail: mcsorley60@hotmail.com Thomas D. Porter Department of Mathematics Southern Illinois University Carbondale. IL 62901-4408 E-mail: tporter@math.siu.edu