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RECOGNIZING SELF-CLIQUE GRAPHS
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Abstract

The clique graph K (G) of a graph G is the intersection graph of all the
(maximal) cliques of G. A connected graph G is self-clique if G = K(QG).
Self-clique graphs have been studied since 1973. We proposed recently
a hierarchy of self-clique graphs: Type 3 C Type 2 C Type 1 C Type 0.
Here we study the computational complexity of the corresponding recog-
nition problems. We show that recognizing graphs of Type 0 and Type 1
is polynomially equivalent to the graph isomorphism problem. Partial
results for Types 2 and 3 are also presented.

1 Preliminaries

Self-clique graphs, discovered by Escalante in [7], have also been studied in
[1,4,6,11-13]. Hedman [10] asked if such graphs can be characterized. We
refer to [15] for the bibliography on clique graphs. We learned recently that
Balconi [2] also has related results. Our few undefined terms and symbols are
standard and can be found in [5,8,9].

If G is a (finite, simple) graph and X C V(G), we denote by G[X] the
subgraph of G induced by X, and we usually identify X with G[X]. In particular
we often write z € G instead of z € V(G), and identify the cliques of G (which
are maximal complete subgraphs) with their vertex sets.

We denote the distance between two vertices z,y € G by d(z,y) or dg(z,y).
The disk of radius r centered at z in G is denoted by DL(z) = {y € G :
d(z,y) <r}. When r = 1, D§(x) = Ng[z] is the closed neighbourhood of x. On
the other hand, the neighbourhood Ng(z) is the set of all neighbours of z in G.
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We say that a vertex v € G is dominated (by w) if Ng[v] C Ng[w] for some
w # v in G. For instance, in a triangleless graph, dominated means terminal.
The n-th power graph G™ has V(G") = V(G), E(G") = {{z,y} : da(z,y) < n}.

A family F of subsets of a set X # @& is Helly if NS # @ for any pairwise
intersecting subfamily § C F. A graph G is Helly if the family of cliques of G
is Helly. For instance, every triangleless graph is Helly.

The vertez-clique bipartite graph (see [18]) BK(G) of G has V(BK(G))
V(G)UV(K(Q)) and E(BK(G)) = {{z,Q} : € Q}. The neighbourhoods in
BK(G) are as follows: N(Q) = Q C V(G) for Q € K(G) and N(v) = v* C
V(K(G)) for v € G. Here v* = {Q € K(G) : v € Q} is the star of v.

Let’s recall the hierarchy of self-clique graphs studied in [11]. A graph G is
of Type 0 if it is self-clique: connected and G = K(G). A graph G is of Type 1
if it is a Helly self-clique graph. The distinction between Helly and non-Helly

self-clique graphs was already made by Escalante in [7]. A connected graph
G is involutive or of Type 2 if B = BK(G) has a part-switching involution,
that is, B has an automorphism ¢ : B — B such that ¢(V(G)) = V(K(G)),
e(V(K(G@))) = V(G) and ¢? = id. It was shown in [11] that all previously
published graphs of Type 1 were indeed of Type 2. Finally, a connected graph
G is said to be clique-disk or of Type 8 if G does not have dominated vertices
and there is a graph R such that G = R? and the cliques of G are precisely the
disks of radius 1 of R, in symbols: V(K(G)) = L.JzeG{NR[:c]}.

In this paper we are interested in the time complexity of recognizing whether
a given graph G is of Type N for N = 0, 1, 2, 3. We shall use the following tags
for the indicated decision problems:

e ISO: Graph isomorphism problem.

e SELF: Self-clique graph recognition.

e HSELF: Helly self-clique graph recognition.

e INVO: Involutive graph recognition.

e CDISK: Clique-disk graph recognition.

Our graphs are usually loopless, but for auxiliary purposes we also use pos-
sibly loopy graphs (always called H) that are allowed to have at most one loop
at each vertex. Notice that under these circumstances, x € Ny(z) iff H has
a loop at . For such a possibly loopy graph we define the strict square H!%
as the (loopless) graph that has the same vertex set as H and in which two
vertices x, y are adjacent iff they can be joined by two distinct edges {z,u} and
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{u,y} of H (here a loop counts as an edge).

We say that a possibly loopy graph H is good iff the family of neighbourhoods
{Ng(z) : x € H} is Helly and no neighbourhood is contained in another one:
Ny(z) € Ny(y) = z = y. We shall use the following theorems proved in [11]:

Theorem 1.1 [11] BK(G) is good if and only if G is Helly without dominated
vertices.

Theorem 1.2 [11] A graph G is involutive if and only if G = HP! for some
possibly loopy, good, connected, non-bipartite graph H.

Theorem 1.3 (The Hierarchy Theorem [11]) The following proper containment

relations among the classes of self-clique graphs hold:

Type 3 C Type 2 C Type 1 C Type 0

2 Self-Clique Graphs

Let G be a graph, with p vertices, ¢ edges and p maximal independent sets.
Tsukiyama, Ide, Ariyoshi and Shirakawa [17] presented an algorithm (which we
shall call the TIAS algorithm) that can compute all the maximal independent
sets of G in O(pgu) time. Indeed this algorithm computes a new maximal
independent set within every O(pq) time interval.

Since we can complement a graph in O(p?) time, it follows that we can
compute a polynomial number of cliques in polynomial time. In particular,
given a graph G we can determine if it has exactly |G| cliques (and compute
them) in O(p*(p® — ¢)) time. Thus, in order to decide whether G is self-clique
or not, we can compute K(G) (or stop with answer “no” if |K(GQ)| # |G]) in
polynomial time and then apply an isomorphism test. It follows that SELF is
polynomially reducible to ISO. Since we know by Szwarcfiter [16] that Hellyness
is polynomially verifiable, it is clear that HSELF is also polynomially reducible
to ISO. We shall see here that the converses also hold.

We subdivide a graph G by replacing each edge by a new path of length 2.
If G is the subdivision of G, then G is bipartite and has a natural bipartition
{X,Y} = {old vertices, new vertices}. If G is connected so is G and its bipar-
tition is unique, so given G and the fact that the part X contains an old vertex
(hence all) one recovers G by G = GI/[X]. Note that, since every new vertex
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in G has degree 2, whenever G is connected and not a cycle it is quite easy to
see which part contains the old vertices.

Let G; and G2 be any two disjoint graphs. Take G; and add three extra
vertices {z1,y1, 21}, make z; adjacent to every vertex in Gy U{y1, 21} and make
y1 adjacent to every vertex in Gy U {z1,21}. Call the resulting graph G|. Now
subdivide G} to obtain GY. Do the same to G, with three other extra vertices
{22, y2, 22} to obtain G% and then subdivide to get G5. Then G and G} are
connected, triangleless (therefore Helly) and without dominated (i.e. terminal)
vertices. We also have that G} and Gf are isomorphic iff G; and G2 are so:
Indeed, the only maximal-degree vertices in G are the extra vertices z; and
Yi, SO any isomorphism GY — G induces an isomorphism G} — G and so
G = Gs.

Now define a new graph G by V(G12) = V(G))UV(K(GY)) and E(G12) =
E(G))UE(K(GY))U {{z,Q} : Q@ € K(GY) and 2z, € Q}. This is just the
disjoint union of G} and K (G%) plus 2 specific edges.

Theorem 2.1 Given any two graphs Giand G, construct Gyo as above. Then
the following conditions are equivalent:

1. Gy and Gy are isomorphic.
2. Giq 1s involutive.

3. G1g is Helly self-clique.

4. Gio is self-clique.

Proof: (1)=(2): If G; & Gy, there is an isomorphism 7 : G| — G} satisfying
7(z1) = 29. Then 7 : K(GY) — K(GY), defined by 7x(Q) = {7(z) : z € Q},
is also an isomorphism. We know by 1.1 that BK(GY) is good. Now attach a
loop at z; to BK(GY) to obtain H. It is easy to check that H is still good, and
it is clearly connected and non-bipartite. Since H? & G\, via the isomorphism
defined by ¢(z) = z for z € G} and p(Q) = 7x(Q) for Q € K(GY), G2 is
involutive by 1.2.

(2)= (3) = (4): This follows from the Hierarchy Theorem 1.3.

(4)=(1): Define Go; by V(Ga1) = V(G UV (K(GY)) and E(G2) = E(GH)U
E(K(G))U{{#,Q}: Q € K(G]) and z; € Q}. It is a routine verification to
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check that Ga1 & K (G12) via the isomorphism defined by ¢(z2) = {Q € K(GY) :
20 € QYU {z1}, () ={Q € K(GY) : z € Q} for x # 23, v € Gy C Goy and
Q) = Q for Q € K(GY) C Gan.

Now, assuming that G5 & K(G1s), there is an isomorphism 7 : G5 — Go.
By construction, G{ and G% do not have cutpoints. Since the cliques of GY
are its edges, also K(G') and K(GY%) are cutpoint-free. Then z; (resp. 2z2) is
the only cutpoint of Gy2 (resp. Ga1). Now 7(z1) = 22, so G} C G12 must be
mapped by 7 onto G§ C Goy or onto K(GY) U {22} C Ga1. Since G and Gj
are triangleless but K(GY) U {2} is not, 7(GY) = G4. Thus G} and G are
isomorphic, and so are G; and Gs.

O

Since Gf has |E(GY)| = 2|E(G2)| + 4|V (G2)| + 6 cliques, we can construct
K (GY) and hence Gi2 in polynomial time. Then we have proved the following:

Theorem 2.2 IS0 is polynomially reducible to SELF, HSELF and INVO. Fur-
thermore, SELF and HSELF are polynomially equivalent to 1SO.

The authors of [4] have recently informed us that they also independently
proved that ISO and SELF are polynomially equivalent.

Problem 2.3 Determine the time complezity of INVO and CDISK.

3 Clique-Disk Graphs

By the previous section we only know that INVO is (up to a polynomial transfor-
mation) at least as difficult as ISO. But we know even less about the clique-disk
recognition problem: We know nothing, apart from the obvious CDISK € NP.
Motwani and Sudan [14] showed that computing square roots of graphs is
NP-hard, which seems to suggest that CDISK could be N'P-complete. How-
ever, all the graphs constructed by Motwani and Sudan in their proof have
exponentially many cliques, so those graphs are “highly non self-clique”, very
far from our domain.

In [4], Bondy, Durédn, Lin and Szwarcfiter introduced an important and large
subclass of Type 3 (which indeed motivated the definition of Type 3 in [11]).
The purpose of this section is to prove that the graphs in this subclass (which
we shall call BDLS graphs) are recognizable in polynomial time.
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A connected graph G is a BDLS graph if G = R?* for some graph R with
0(R) > 2, g(R) > 6k+ 1 and k > 1. Here g(R) is the girth of R.

Theorem 3.1 Let G be a graph. For each vertex x € G define recursively the
sets Fy D F1 D Fy D --- by:

>
=
S
B
[

={Q € K(G):z €Q}
{@eFa@: @ UE-@\ab}-

If G = R* is a BDLS graph, then for all 7 > 0 and x € G we have

o
5
S—
|

Fy(x) = {Dk(y) -y € Dy’ (2)}-
Thus: Fy_1(z) = {D%(y) : y € Ng[x]}, Fr(z) = {D%(2)} and Fisi(z) = 2.

Proof: Let G = R? be a BDLS graph. Recall from [4] (see also [3,11]) that:
The cliques of G are precisely the disks of radius k of R, the rule z — D (z) is
an isomorphism from G to K(G) and each D%(z) induces in R a tree of radius
k with all the leaves at distance k£ from the center x.

Since x € D%(y) if and only if y € D%(z), we have Fy(z) = {Dk(y) 1 y €
D%(z)} as required for j = 0.

By induction, assume that Fj(z) = {D%(y) : y € D% 7(z)} for some j.

The set D% 7(z) induces a tree T}, in R, and a vertex y € R is a leaf of T},
if and only if dg(y,z) = k — j. Now y € Dl 77" (z) & Ngly] C T & Dhi(y) C
U{D%(2) : 2 € NrlylN Ty , 2 # y} & Di(y) € Fjii().

O

Therefore, if G = R%*: is a BDLS graph, R and k are determined by G.
Indeed: £ is the number for which |Fi(x)| = 1 for all (or just one) z € G
and we can reconstruct R by V(R) = V(G) and {z,y} € F(R) iff z # y and
Fi(y) C Fi-1(z).

Now assume we want to determine whether a graph G is a BDLS graph.
Thanks to the TIAS algorithm [17], we can construct each Fy(x) in polynomial
time (or determine that G does not have exactly |V (G)| cliques, thus answering
“no” and stopping computation). Then, as described above, we can also recon-
struct k£ and R (or determine that there are no such k and R) in polynomial
time: Since we always have Fj(z) = Fj4i(z) for some j < |V(G)| we only have
to compute (at worst) |V (G)|? of the Fj(z)’s. Finally, we just have to check that
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G = R?% (equality, not isomorphism!) §(R) > 2, g(R) > 6k + 1 and that R is
connected. It is clear that all these operations can be carried out in polynomial
time, so we have proved:

Theorem 3.2 BDLS graphs are recognizable in polynomial time.

4 Final Remarks

Given two graphs A and B, the strong product AKX B is the loopless graph with
vertex set V(AKX B) = V(A) x V(B) where {(ai,b1), (az,b2)} € E(AX B) iff
a; and ay are adjacent or equal AND b; and b, are adjacent or equal.

Now, take m,n > 7 and P = C,, X C,, (here C, is a cycle of length n). A
direct verification shows that G = P? satisfies K(G) = {Np[v] : v € P}, so it
is clique-disk. If we try our BDLS graph recognizing algorithm on this one, we
get that for all v € G:

Fo(v) = {Nplv+a]:ae{-1,0,1} x {-1,0,1}},
Fi(v) = {Nplv+q]:ae€{(0,1),(0,-1),(0,0),(1,0),(—1,0)}} and
F(v) = {Np[v]}.

Then we define R by V(R) = V(G) = V(P) and {u,v} € E(R) if and only
if u—wv € {(0,1),(0,-1),(1,0),(—1,0)}. Since k should be 2, we observe that
§(R)=4>2,but g(R)=4<6k+1=13 and G # R*.

We conclude that the BDLS class is properly contained in Type 3, and that
the final verifications in our algorithm are not superfluous (at least these two:
g(R) > 6k +1 and G = R%).

On the other hand we note that, in this case, computing Fy(v) = {Np[v]}
gives us the isomorphism v <> Np[v] between G and K (G). If this were always
the case for a clique-disk graph, we would have a polynomial time algorithm
for CDISK. Unfortunately this is not so, since the clique-disk graph G = (Rsg)?
(see Fig. 1) has

{Ngg[v] : v € {ai_1, ai, aiy1, Tiz1, i, bi }},
{Ngy[v] : v € {ai, zi—1, 2, b} },

= {Ng,[ai], Ngy[bi]} and

@ = Fy(a;) = Fs(a;)) = -+ -

a;

(@)
(ai)
(a:)
(@)

R

a;
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bo by b2 b3 by bs bs by bo

Figure 1: The graph Ry (identify vertices with same labels).

Acknowlegments. The authors thank the referee who pointed out a mistake.

References

[1] Balakrishnan, R.; Paulraja, P., Self-cliqgue graphs and diameters of iterated
clique graphs, Utilitas Math. 29 (1986) 263-268.

[2] Balconi, G., Matriz characterizations of self-dual graphs, Istit. Lombardo
Accad. Sci. Lett. Rend. A 113 (1979) 360-365 (1981).

[3] Bondy, A.; Durdn, G.; Lin, M. C.; Szwarcfiter, J. L., On self-
clique graphs and permutation matrices, Submitted. Available from:
www.dc.uba.ar/people/profesores/willy /publicaciones.html.

[4] Bondy, A.; Durdn, G.; Lin, M. C.; Szwarcfiter, J. L., A sufficient condition
for self-clique graphs, Electronic Notes on Discrete Mathematics 7 (2001)
19-23.

[6] Bondy, J. A.; Murty, U. S. R., Graph theory with applications, American
Elsevier Publishing Co., Inc., New York, 1976.

[6] Chia, G. L., On self-clique graphs with given clique sizes, Discrete Math.
212 (2000) 185-189. Combinatorics and applications (Tianjin, 1996).

[7] Escalante, F., Uber iterierte Clique-Graphen, Abh. Math. Sem. Univ.
Hamburg 39 (1973) 59-68.

[8] Garey, M. R.; Johnson, D. S., Computers and intractability, W. H. Free-
man and Co., San Francisco, Calif., 1979. A guide to the theory of NP-
completeness, A Series of Books in the Mathematical Sciences.

[9] Harary, F., Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-
Menlo Park, Calif.-London, 19609.



RECOGNIZING SELF-CLIQUE GRAPHS 133

[10] Hedman, B., Diameters of iterated clique graphs, Hadronic J. 9 (1986)
273-276.

[11] Larrién, F.; Neumann-Lara, V.; Pizafia, M. A.; Porter, T. D., A hierarchy
of self-clique graphs, Submitted.

[12] Larrién, F.; Neumann-Lara, V.; Pizaha, M. A.; Porter, T. D., Self clique
graphs with prescribed clique-sizes, Submitted.

[13] Lim, C. K.; Peng, Y. H., On graphs without multicliqual edges, J. Graph
Theory 5 (1981) 443-451.

[14] Motwani, R.; Sudan, M., Computing roots of graphs is hard, Discrete Appl.
Math. 54 (1994) 81-88.

[15] Szwarcfiter, J. L., A survey on clique graphs, In Recent Advances in
Algorithms and Combinatorics. C. Linhares and B. Reed, eds., Springer-
Verlag. To appear.

[16] Szwarcfiter, J. L., Recognizing clique-Helly graphs, Ars Combin. 45 (1997)
29-32.

[17] Tsukiyama, S.; Ide, M.; Ariyoshi, H.; Shirakawa, I., A new algorithm for
generating all the mazimal independent sets, SIAM J. Comput. 6 (1977)
505-517.

[18] Wallis, W. D.; Wu, J. L., Squares, clique graphs and chordality, J. Graph
Theory 20 (1995) 37-45.

F. Larrién and V. Neumann-Lara T. D. Porter

Instituto de Matematicas, U.N.A.M. Department of Mathematics
Circuito Exterior, C.U. Southern Illinois University
México 04510 D.F. México Carbondale, IL 62901-4408 USA

E-mail: {paco, neumann}@matem.unam.mx  E-mail: tporter@math.siu.edu

M. A. Pizana

Universidad Auténoma Metropolitana

Depto. de Ingenieria Eléctrica

Av. Michoacdn y Purisima s/n

México 09340 D.F. México

E-mail: map@xanum.uam.mx , http://xamanek.uam.mx/map



