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REPRODUCTIVE WEAK SOLUTIONS FOR
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EXTERIOR DOMAINS *
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M. Drina Rojas-Medar

Abstract

We established the existence of reprodutive weak solutions of a gen-
eralized Boussinesq model for thermally driven convection in an exterior
domain.

1 Introduction

The Boussinesq system of hydrodynamics equations ( see Joseph [7], Chan-
drassenkhar [1]) arise from zero order approximation to the coupling between the
Navier-Stokes equation and the thermodynamic equation. Usually it is assumed
that the viscosity and the thermal conductivity are positive constants. There
are some physical motivations for considering fluid equations with viscosity and
thermal conductivity which are temperature dependent. For instance, the ex-
periments done by von Tippelkirch [29] confirmed these facts. A mathematical
model for the case that the viscosity and heat conductivity are temperature
dependent are given by Drazin and Reid [2]. Such a mathematical model reads:
Find the field u :Q2 x (0, 00) — IR?, the scalar functions (0, p) : 2 x (0, 00) — IR?
which satisfy the system of equations:

((93_1; —divw(0)Vu) +u-Vu—afg+Vp = 0, in O
diva = 0, in O (1)

a0 . LA

5% div(k(0)VO) +u-V6 = 0, in Q
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where,

- Q = Qx (0,00), u(z,t) € IR? denotes the velocity of the fluid at point
z € Q2 and time ¢ € [0, 00);

- O(x,t) € IR, denotes the temperatura;

- p(x,t) € IR denotes the hydrostatic pressure;
- g(t,r) € IR? is a gravitational field;

- v(-) is the kinematic viscosity;

- k(-) is thermal conductivity;

- «a > 0is a positive constant associated to the coefficient of volume expan-
sion.

Without loss of generality, we have considered the reference temperature as
Z€ero.

The symbols V, A and div denote the gradient, Laplacian and divergence

ou

5 by u;. The i component of u- Vu

iS given by [(u 3 V)u]z — Z’U,J% and u- VH = ZUJSTH
i ! g '

operators, respectively.We also denote

The first equation in problem (1) corresponds to the balance of linear mo-
mentum; the second one says that fluid is incompressible and the third equation
is the balance of temperature.

This model was considered by Lorca and Boldrini in bounded domains with
Dirichlet boundary conditions. In [15] is studied the stationary model associated
to (1). In [13], [14] the evolution model is considered, here they showed the
existence of weak, strong and uniqueness of solutions. The argument used is the
spectral Galerkin method, and the results obtained are similary to the classical
Navier-Stokes equations. In [20] is given a new proof of the strong solutions for
the problem (1), but an interative argument is used. In [21] are given results
of the existence weak solutions for the stationary model in exterior domains.
The authors used the embedding method due to Ladyzhenskaya [11] (see also
Heywood [4]).

A study of problem (1) in exterior domains not has been done. Thus, our
main purpose in this work is to show the existence of weak solutions in exterior
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domains. More precisely, we consider the following situation: The study of
the dynamics of the generalized Boussinesq model in an exterior domain plays
an important and useful role. We often find physical structures in which a
bounded body or obstacle produces perturbation in the surrounding medium
and the spatial volume of the external environment, namely the exterior domain,
is extensively much larger than the obstacle. From the modeling point of view,
the obstacle may be regarded as a compact domain located in all of IR3. Let
K denote this compact subset, and let Q denote its complement in IR?, that is,
Q = K¢ We assume that the following boundary conditions holds

u(z,t) = 0, zel, t€]0,00) (2)
O(z,t) = pu>0,zel, tel0,00), (3)

where u(-,-) is a given function on I
To complete the system of equations, we prescribe the behaviour of the
solutions at infinity. More, precisely, we consider the classical homogeneous
decay
lim u(z,¢) =0, lim 6(z,t) =0, Vi>0. 4)

|| o0 2|00
Let (u,0) be a weak solution of problem (1)-(4) (the precise definition will
be given later on). Given T > 0, if there exits (ug,6p) such that functions u
and 6 satisfy
u(z,T) =uy, 0(x,T) =6, a.ein . (5)

Then, we call (u,0) a reproductive weak solution of the problem (1)-(4) at
time 7. We say that the problem (1)-(4) has the reproductive property if it is
reproductive at every T > 0 (see Kaniel and Shinbrot [8] or Takeshita [27], for
the case of the Navier-Stokes equations). We observe that the above property
is a generalization of the notion of periodicity in the sense that any peridoc
solution (in time) is a reproductive solution, but the converse is not necessary
true, unless if we have the uniqueness of solution.

It is known that certain dynamical system may not have periodic solutions
because there exist many orbits, or branches of bifurcations, that can be ran-
domly reached by the solution ( e.g. see [17]). However, several of these systems
are still of the reproductive type, in the sense that there exist at leats two difer-
ent times where the solution takes the same value. We observe that the problem
of the existence of periodic (in time) solutions to (1) not has been studied. In
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fact, this question is not easy because the presence of the nonlinear operators
div(v(€)Vu) and div(k(#)V0), the arguments used in the classical Navier-Stokes
equations are not can directly applied, because is necessary to guarantee the
existence of periodic solution for the Galerkin system, in the case of the classical
Navier-Stokes equations that is easily done, because in the ordinary differential
system the operator is independent of ¢, see more details in [9] or in [16].

We would like to say that the arguments that we will use in the proof work
for bounded domains and also to prove the existence of weak solutions of the

initial boundary value problem in exterior domains.

When v and k are positive constants, the reduced model was discussed by
many authors, see for instance Korenev [10], Rojas-Medar and Lorca [25], [26]
(in a bounded domain), Morimoto [19], Hishida [6], Oeda [22], [23], [24] (in
exterior domain), Moretti et al [18] (in unbounded domains).

This paper is organized as follows. In Section 2, we gave the preliminaries
results used throughout the paper and we stablished the main result of this
work. In Section3, we studied an auxiliary problem. Finally, in Section 4, we
gave the proof of our main result.

2 Preliminaries

The functions in this paper are either IR or IR? valued, and we will not dis-
tinguish these two situations in our notation, since that will be clear from the
context. The extending domain method was introduced by Ladyzhenskaya [11]
to study the Navier-Stokes equations in unbounded domains. As observed by
Heywood [4] the method is useful in certain class of unbounded domains. Cer-
tainly, our domain is in this class. The basic idea is the following: The exterior
domain €2 can be approximated by bounded domains $2,, = B,, N (), where
B,, is a ball with radius m and center at 0, as m — oo. In each bounded do-
main €,,, we will prove the existence of a weak solution, by using the Galerkin
method together with the Brouwer’s fixed point theorem as in Heywood [4].
Next, by using the estimates given in Ladyzhenskaya’s book [11] together with
diagonal argument and Rellich’s compactness theorem, we obtain a desirable
weak solution to problem (1) satisfying conditions (2) through (5).

Let D denote Q or Q,,, D = D x [0, 7] and DUT = (DUT) x [0,T]. And,
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consider the following notation

W™ (D) = {u; D% € LP(D),|a| <},
WgP(D) = Completion of C§(D) in W™(D),
Con(D) = {vely(D); divv =0},
J(D) = Completion of Cg;, (D) in norm [|V¢||,
H(D) = Completion of Cg5 (D) in norm ||¢]|,
Wo(D) = {peC(D);div o =0},
W(D) = {¥€CFDUT); ¢(I) =0},
Wor(D) = {p€C3(D); ¢(@,T) = p(a,0)},
WD) = {weW(D); ¢(z,T) = u(x,0)},

LP(0,7;J(2%)) = {ue LE(0,T;J(%)); u(z,T) =u(x,0) z € Q4 ae.},
IP(0,T; Hy (%)) = {w € L2(0,T; Hy(%)); w(z,T) =w(z,0) z € Q ae.},
L2(0,T; L8 (%)) = {f € L2(0,T; Lé(W)); f(z,T) = f(x,0) z € O a.e.}.

The norm || - || is the L*-norm and || - ||, denotes the LP-norm for 1 < p < oo.
We observe that J(D) is equivalent to

{¢ € Wl’Z(D) 5 ¢‘6Q = 0: le¢ = 0}7

as was proved by Heywood[5]. When p = 2, as it usual, we denote W™ (D) =
H"(D) and W§*(D) = Hj(D). We make use of some inequalities with constants
that depend only on the dimension and are independent of the domain (see [11]
chapter I).

Lemma 1 Suppose the space dimension is 3, with D bounded or unbounded.
Then

(a) For u € Wy*(D) (or J(D) or H}(D)), we have
llullzspy < Crl|Vullz2(p)
where Oy, = (48)/6.
(b) (Holder’s inequality). If each integral makes sense. Then we have

141
[((w- V)v, w)| <37 |ullo(o) V¥l o)W

L7(D)

where p, ¢, 70 and%—f—%—i—%:l.
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Lemma 2 Suppose that D is a bounded domain in IR™ and its boundary OS2 is
of class C*. Let us take an orthonormal basis {w’}32, of L*(D). Then for any

€ > 0, there exists a number N, such that

NE
[ull2) < ) (w,09)? + &llul [}y, for all u € W™ (D), (6)
j=1

where mf—& (n>2), m>1(n=1) and N, is independent of u. The following

assumptions will be needed throughout this paper.

(A1) wo C K (wo is a neighborhood of the origin 0) and K C B = B(0,d)
which is a ball with radius d and center at 0.

(A2) 90 =T = 9K € C2.

(A3) g(z) is a bounded and continuous vector function in IR*\w,. Moreover
g€ LP(Q) for p > 6/5.

(A4) p € C*(T x [0,00)) and is periodic with respect to ¢ with period 7.

We assume that the functions v(-) and x(-) satisfy

0 < w<v(r) <w,
0 < Ko <K(T) <Ky

for all 7 € IR, where vy, 11, Ky and k; are constants, and v(-) and k(-) are
continuous functions. To transform the boundary conditions on 6 to a homo-
geneous boundary condition, we introduce an auxiliar function S (see Gilbarg
and Trudinger [3] pp. 137).

Lemma 3 There exists a function S which satisfies the following properties
(i) S=ponT x[0,00),
(ii) S € CZ(IR?%) for any fixed ¢ and S, S; are continuous for ¢ € [0, 7,

(iii) S is periodic in ¢ with period T,

(iv) Ve > 0 and p > 1, we can redefine S, if necessary, such that
suprefo 150w <€
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Now, making ¢ = 6§ — S we obtain

0
L div(v(p + S)Vu)+u-Vu—apg —aSg+Vp = 0,

ot
divu = 0, (1)

0
a—‘f — div(s(p + S)Ve) + u - Vi — div(k(p + S)VS) +
oS
u-VS+ E =i 0,
in €, with boundary conditions
u=0and ¢ =0 on 09,
lim u(t,z) =0; lim ¢(t,z) =0. (8)
|z|—o0 |z|—o00

In what follows, we will concentrate our analysis on (7)-(8), instead (1)-(4).

Now, we can define precisely the notion of a reproductive weak solution for
the whole system (7)-(8).

Definition 1 Let T > 0. We say that the dupla of functions (u,p), defined
on Q x (0,T), is a reproductive weak solution of (7)-(8) at time T if and only
if there exists (ug,p0) € H(Q) x L*() such that

i) u(z, T) = up(x), o(z,T) = @o(x) a.e. in €,
ii) u e L2(0,T; J()) N L2(0,T; L8(%2)),
i) € 12(0, T; HY(®) N L2(0, T3 1),

iv) u and ¢ satisfy the variational equations:

/O {(u,v¢) + (v(¢ + S)Vu,Vv) + B(u,v,u) —
Od((pg, V) - a(ng V)}dt = 0,
| 0+ (et + )90, T) + b v.0) +

(k{0 + S)VS, Vib) + b(u, ¥, 5) + (%—f,w)}dt ~ 0
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for all v € D, ,(Q) and all ¥ € D, (Q). Where

Bu,v,w) = (u-Vv,w)= /Q > u;(t, x)(0vi/0;) (¢, )wi(t, z) dx ,

ij=1
3
b(u7 @, w) = (u . V(Pa w) = / Z U’j(tv fﬂ)(a%/afcj)(t7 x)w'i(t> ZE) dz.
Q=1
Remark 1 [t is important to note that:

i) We obtain in the proof of the theorem more regularity of the solution. In

fact, we prove that
(up) € L2 (0, T; H(Q)) x L(0,T; L*(9Q)).
ii)As u(-,t) € J(Q) and (-, t) € H} () a.e. in (0,T), we have

ulsn =0; ¢laa =0, a.ein (0,7).
iii) By part (a) of Lemma 1,
lim u(z,t) =0, lim ¢(z,t) =0a.e. in (0,7T).

|z|—o00 |z]—o00
iv) We also see that the pressure is recovered by a standar application of De
Rham’s Theorem.

Theorem 1 (Ezistence) Under Assumptions (A1), (A2), (A3) and (A4), there
exists a weak reproductive solution for problem (7) and (8).

3 Auxiliary problem.

Following the extending domain method, we first present a lemma which ensures
the existence of weak solutions for interior problems in domains €2, = B,, N €.
A interior problem, P,,, is stated as follows:

%—:—div(V(n-l—S)Vv)+V-Vv—ang—a5g+vl7 =0,
divv = 0,

on . . oS
5~ W (k@ + V) +v-Vn— div (k(n +5)VS) +v-VS+ = = 0,

v = 0, on 09, =002 NJIB,,
n = 0on 09, =00NJB,,

’7T) = V('70)a 77(‘7T) = 77('70)'

2
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Definition 2 (v,7) € (L*(0,T; J(Qm))NL2(0,T; L8(2))) x (L2(0, T; H} () X
L2(0,T; L%(2))) is called a reproductive weak solution for (Py,) if it satisfies

/0 {(v,we) + (#(n + S)Vv, Yw) + B(v, w,v) -
a(ng,w)—a(Sg,w)}dt = 07

/O (. 60) + (5(n + S)V, Vi) + b(v, 1, 1) + (k(n + S)VS, Vap) +
b(V, 57 w) I (57 wt)}dt

I
o

for allw € ﬁaﬂr(ﬁm), and for all 1 € Dy (Qy).

Lemma 4 Under Assumptions (A1), (A2), and (A3) there exists a weak solu-
tion (@™, ™) of (Pn).

To prove the existence of reproductive weak solutions for the system (Pp,)
we use the Galerkin method together with Brouwer’s fixed point theorem as in
Lions [12](see also Heywood [4]). First, we prove the a priori estimates for weak
solutions of (Pp,).

Lemma 5 Let (v, n™) a weak solution of (Py,). Then, they satisfy the follow-

ing estimate
d s o - Y 9C? - k =
— (V™1 + ™17 + 5 (v = = ISIDNIVY™ P + A V0™ < £, (9)
dt 2 ko 2

where v = 1 — 3aC%/\/k01/0||gHé and f(t) = 9C%/kol|S||? + k3/ko||VS||? +
9a2C1 2w g1 S|13-

Proof. Multiplying (Py); and (Pp):; by v™ and n™, respectively, after on
integrate on €, we get

d
d—t||Vm||2 + @™+ )V, V") = (an™g,v") + (aSg,v"),

d
%”nm”2 + (k(nm Gl S)Vnma Vnm) = _(vm ) VS7 nm) - (St777m) -
(k(n™ + S)VS, Vi™). (10)
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Now, we estimate the right-hand sides of the above equalities by using the

Lemma 1
(an™g,v™) < 3allgllslln™[ls[v™ s,
(aSg,v™) < 3olgllllSlslv™lle,
™V = (v*-Vn™,S) < 3|VTlslVaTllllSlls, (11)
(Se;n™) < 3lSilslln™[ls,
(k(n™ +S)VS, V™) < ki[[Va™[|[[VS]].

Observe that

w(n™ + S)Vv™, Vv'™)
(k(n™+ S)Vn™, Vn™)

vl [ Vv,

2
> kol Vo™ |I?, (12)

the estimates (10) and (11) plus the inequalities (12) imply

d
IV P+ wll Vv < 3allgllylin™ lsllv™ s + 3adigllISlslv™ s

N

< 3Iv™llel V™ ISz + 3l[Sillelln™ lls + Kl [Va™ IV S]-

d m||2 2
kol| V™

)2+ koll 9|

The estimate (a) in Lemma 1 implies

d
T UV [l 1) + vo | VY™ |12 + ko[ V™ 1

3ozCL ko 2 W oy, @R g e
< T o m
% \/—II glls (S IVa™ " + S Vv™l )+—2y0 Iell*l1S]l5
- 9C? i 3k n
4-5||VV 1+ LIISII IVv™|* + OIIV 12
9C3 k1 .
+k—o||5t||g + k—0||VS|| :
Thus,
d o b 17 3aCL 9C’L B
_ m m . 1 _ m
g VI =+ 1™ 117 + 5 ( \/—II glls — —=IISIDNIVV™|* +
k() 30[02 m 2
= T
9C? k? PUNE ' /- R—
< ZEISls + 2IVSIE + 25 LIPSl
aC? c2 0262
We put v =1~ f’/,m—yllglls and f(t) = T [1Sile + IIVSII2 + 252k gl 1S13.

This proves Lemma, 5.
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Proof of the Lemma 5 Now, we prove the existence of the solution (v™,n™)
for (Py). Let m be arbitrarily fixed. Let {e*(z)}:2, C C§% (n) (respec. {¢'(z)}2,
C§°(Qm)) be a sequence of functions orthonormal in L?(2,,,) and total in J ()

(respec. H} (). As k' approximate solution of (P,,), we choose the functions

Vk(t7.1’) = chj(t)ej(x)v nk(tv :C) = dej(t)qu(‘r) .

which satisfy the equations

(ve, ") + (w(n* + S)VvF, V?) +
+B(v*,v*, ¢’) — a(n'g, ¢’) — o(Sg, ¢’)

mfF, &) + (x(n* + S)Vi*, V') + b(v*, 7", ¢7) +
+(k(n* + S)VS, V) +b(vF, S,¢%) = 0,

I
S

for 1 < j < k. Note that the solutions (v*, n¥) must satisfy the estimate (9).
Thus, we have

d
VP + I 117) + MAVVHP + 197F17) < £(2),

where o2 "
. W
M = min 2y = 2SI, 3.

Let d,;, be the diameter of 2,,,. Making use of Poincaré inequality, we obtain
d
T IV 11" + A (VAN + 1 11%) < £(2)

where A, = 23, Or equivalently,

d
S (VAP + %) < e £ (1),

Integrating from 0 to T, we get
T
AT (VHDIP + I ()P < IVFO)I” + W(O)II”/0 et f(t)dt.  (13)

We denote by 2*(t) the vector (v¥, n¥) and ||2%(2)||2 = ||[v* () ||>+ ||n* ()]|*>. With
this notation, the above inequality is rewritten as

(D)) < |Z"(0)||2+/T e f(t)dt.
0
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Now, let us define the mapping L* : [0,7] — IR* as
Lk(t) = (Clk(t), oy Ckk(t), dlk(t), o dkk(t))

where ¢ (t), di(t) ,7 =1, ..., k are respectively the coefficient of the expansion

of v¥(t) and n*(t), as defined before.
Keeping on mind that

IL* (@)l = 1), (14)
since we have chosen the basis {ef(z)}2, and {¢*(z)}$2, to be orthonormal in
(2@

Now, we define the mapping ® : IR?* — IR?* as follows: given L, € IR*
and define ®*(Ly) = L*(T) , where L*(t) corresponds to the solution of problem
finito-dimensional (Galerkin system) with initial value corresponding to Lg. It
is easy to see that ®* is continuous. We want to prove that ®* has a fixed point.
As a consequence of fixed point theorem of Brouwer, it is enough to prove that
for any A € [0, 1], a possible solution of the equation

Lg(A) = A®*(L5(N)) (15)
is bounded independent by A. Since Lf(0) = 0, by (15), it is enough to prove

this fact for A € (0,1]. In this case, (15) is equivalent to ®*(LE(X)) = LE(N)/ .
By definition of ®* and condition (14), inequality (13) implies that

T
LGN /M Fear < 1L (W) e +/ e f(t)dt,
0

which yields
fy i@t _

15O e < 05O _
since A € (0,1]. This bound is independent of A € [0,1] and, therefore, ®*
has a fixed point L§(1) satisfying the same bound as (16). This corresponds to
the existence of a solution v¥(t),n*(t)) of (P) satisfying v¥(0) = v*(T), and
n*(0) = n*(T), that is a reproductive approximated solution.

Moreover, [|[v¥(0)[| + [|7*(0)[|* = ||L&(1)[|52« < IV, which is also independent

of £ . On the other hand, from (9) we have

(16)

IV @)1 + ||71’“(75)||2+M/0 (VV5, VvE) + a(Vrf, Vi) ds

IN

/0 F@dt+ VO + I (0)11* (17)
N(f)+N,

IN
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for k > 1, where N(f) = fOT f(t)dt. Moreover, the sequence (v*,n*) is bounded
in L2(0,T; J () X L2(0, T; Hy () and in L(0, T'; H () X LE(0, T5 L2 () -
Since J(Q,) (respectively H}(y,)) is compactly embedded in H(€2,,) (respec-
tively L?(€,,)) we can choose subsequences, which we again denote by (v¥, 7*),
and elements ™ € L%(0,T; J(Qn)), 7™ € L2(0,T; H} () such that

vE — @™ weakly in L*(0,T; J(Qy)) and weakly* in L=(0,T; H(Qm)),

" — 7™ weakly in L*(0,T; Hy (%)) and weakly* in L*(0,T; L*(Q,))-

Furthermore, by using the Lemma 2 and (17) we see that

vk — @™ strongly in L*(0,T; H(Qy)),
n® — 7™ strongly in L2(0,T; L*(Qy)).

Now, it is enough to take the limit & — oo in (P,). Therefore, (@™, 7™) is a

required weak solution to problem (P,).

Lemma 6 Let (U™, ™) be a weak solution for (Py) obtained in Lemma 5. Put

- _fam(te) if zeQy,
uhe) = {0 if 2 € 2\ 2,
i _ 7 (t,x) if © € Qp,
) = {0 it & € O\ .

Then it follows that
u™ € L2(0,T;J(Q)) N L2(0, T; L°(Y)),
@™ e L*(0,T; Hy()) N L2(0,T; L°())

and,
T T
[ vemp<e, [ivene<e,
0 0

(> 95
2 m||2
| ey <6, [ hemBae <o

where /;, £, are taken uniformly in m.
Proof. From (9), we have, integrating in [0, T

M/O (Vv @I + V" @)117)dt < N(f), (18)
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since v¥(t), n*(t) are reproductive with period 7. Consequently, if we take k —
oo in (18),then we obtain by the lower semicontinuity of the norm with respect

to the weak convergence
T
M/O (Iva™ @O + IVt @)|I*)dt < N(f). (19)

On the other hand, the equality u™(7T) = u™(0) in L?(f,,) implies u™(T) =

u™(0) for a.e. T € Oy, and by using the Lemma 1 we obtain 0™ (¢) € L%(y),

therefore we find T™(T) = w"(0) as elements of L%(f2,). Thus, we obtain

u™ e L2(0,T; L%(2,)). Analogously, we show that 7™ € L2(0,T; L5(Qy)).
From this and (19) , it follows that for all m > 1,

" € L*(0,T; J () N L3(0, T; L(2)),
7™ € L*(0,T; Hy () N L2(0,T; L°(5Y)),

and

1
Cr
/0 (Ivam @I + Iva™ @)% dt (20)
1

< UON(f)'

T
/0 (™ @)1y + 7™ 1oy )t

IN

4 Proof of Theorem 4

According to the uniform estimate (20), we can choose subsequences u™ and
¢™ and u € L%(0,T;J(R)) N L2(0,T;L5(Q)) and ¢ € L2(0,T; H}(N)) N
L2(0,T; L%(£2)) such that

u™  — u weakly in L*(0,T; J(Q)) and weakly in L2(0,T; L8(Q)),

©™  — @ weakly in L*(0,T; H}(Q)) and weakly in L2(0,T; L5(Q))

as m' — +o0.

Now, we claim that there exist subsequences u™ and ¢™ such that for any
bounded ' C

u™ — ustrongly in L2(0,T; L*()),
¢™ — ¢ strongly in L2(0,T; L*(€)). (21)
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We put K; = QJ, then {K; } ° , asequence of compact sets such that K; C Ky C

.. = Q (j = 00). Here, for each K; we take a;(z) € C§°(S2) with the property
0<a<l, alej =1, and supp «; C ;1. We note that K; C supp ;. Here
and from now on, let us denote ||.|lo; = [.[|z2(;) and d; = diameter of €;.
Then we construct the desired {u™} as follows. First we consider a sequence
{aj(z)u™(z)}_;; this is a uniformly bounded sequence of L%(0,T; H}(S:)).
Indeed, noting that u™(I') = 0 and using Poincaré’s inequality on 2, we see

that ||oau™|lq, < [[u™]|q, < ?2||Vum||92. Hence we have by (20)

%[ e ra

. 2N ()

T
[ N o,
0

IN

IN

Moreover,
[V (eau™)llo, < [[(Var)u™[lo, + [lar (Vu™) ]I,
do -

< (GlIVaillzm@) + llaall=@) VU™ lg,-

Therefore, we have

/ IV (™) (O]13,dt < ( fuwlumz) + ol (a)? —N(f)
These estimates imply that {a;u™} is uniformly bounded in L?(0,7; H3(S22)).

Consequently, there exists a subsequence {ozlulp};’;l which converges weakly in
L%*(0,T; H}(Q3)). Furthermore, according to Lemma 2, we get

T le T
/ laru'™? — qyu'?||,dt < Z/ (1u'” — ayu', ™),
0 n=1v0
14
+8/0 loau' — aqu'|[§00,)dt (22)

le T
Z/ (qu' — aqu'?, e}, + 4eCq, N(f)
=170

where C,, depends on .||ai||e, ||V |l and is independent of p and ¢. Con-
sequently, if p,¢ — oo, we have in (22), since ¢ is arbitrary, the sequence
{aqu'?}52, converges strongly in L?(0,T; L*(€,)). This implies that {u'?}52,
converges strongly in L2(0,T; L?(K,)). Using the same reasoning as before, we
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obtain {u?}%°, (j =1,2,...). We choose diagonal components and denote them
by {u™}%_,, then it converges on all K; in L?(0,T; L*(K;)) sense. The proof
for {¢™ }29_,,can be done in a similar way. Once we obtain these convergence
and limit results, we can show that (u, ) is the desired reproductive weak so-
lution for (7)-(8). Indeed, let (v,%) be any arbitrary test function. Then we
find a bounded domain €' and ko, such that supp v, supp ¥ C Q' C Q C €,
for all k > ko. Moreover, by Lemma 1 and (20)

T
/ (u* - Vv, u¥) — (u- Vv, u)dt
0

T
2 A{ww—uw;wmﬁmmmvwmm)
+3[u” — u¥|[72 0 | Loy IV V| ooy Yt
T T
< MA|mhﬂmame%A|mW%@ﬁW%meﬂmm>

T T
40t = Byt (| [l de) 2 sup ¥
0 0

Using convergences (21) and the above estimate, we get
T
/ (u* - Vv,u*) — (u- Vv,u)dt — 0,
0

as k — 00. The other convergences are in the same way established. Thus,
(u,p) is a reproductive weak solution for problem (7)-(8).

Remark 2 We would like say that, we obtain the same level de results as in
Lorca and Boldrini [18]( for the weak solutions). The uniqueness of solution
to weak solutions is difficult, to more strong solution (for instance to the case
of initial boundary problem studied by Lorca and Boldrini, it is necessary that
ug € J1(Q) and oo € HX(Q) for n =2 or 3, see Pag 462 in [15]).

Acknowledgements. We are grateful to an anonymous referee for his
valuable remarks.
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