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Abstract

The response to resonant and near-resonant forcing is studied in a
simple model for nonlinear energy cascades. The model is the forced in-
viscid Burgers equation u; + (“72) = f. The nonlinear term represents
simultaneously energy transfer andxdissipation mechanisms in more com-
plex systems. The force f is tuned to mimic resonant, near resonant or
far from resonant forcing, due either to sources external to the system, or
to nonlinear interaction with degrees of freedom not represented by the
variable u. A rich phenomenology is found as f switches from resonant to
non-resonant, including sharp phase transitions and intermittent events
associated with enhanced energy transfer.

1 Introduction

Large systems in Nature, such as the Ocean and the Atmosphere, have their
energy content distributed among many internal degrees of freedom or modes,
such as waves and eddies. Energy typically flows into the system from external
sources, which act preferably on some of its degrees of freedom, gets distributed
throughout the system via nonlinear interactions, and is eventually dissipated,
often through nonlinear mechanisms, such as breaking waves and turbulence.
Thus the system can be said to be in a statistically steady state, though not
one of thermodynamical equilibrium, but rather one characterized by permanent
energy transfer among scales.

*partially supported by SECYT-UNC 00/ Agencia Cordoba Ciencia
tpartially supported by NSF grant DMS-9802713
tpartially supported by NSF grant DMS-9701751
Spartially supported by SECYT-UNC 00/ Agencia Cordoba Ciencia


http://doi.org/10.21711/231766362002/rmc237
https://orcid.org/0000-0003-0522-8955
https://orcid.org/0000-0002-7162-2910

108 F. MENZAQUE E. TABAK R. ROSALES C. TURNER

The description of such forced and dissipated systems involves a number of
mathematical challenges. A significant one is our incomplete understanding of
resonant energy exchange. When a set of modes has various linear frequencies
of oscillation, its modes can exchange energy efficiently only if the subsets of
modes providing energy and those receiving it have approximately equal com-
bined frequencies. Otherwise, their relative phase would oscillate rapidly, and
the effective energy exchange would be greatly diminished. Perfect frequency
match is denoted resonance; near-resonance and non-resonance are defined ac-
cordingly.

Two problems appear though: that the boundary between near-resonant
and non-resonant behavior is somewhat vague —and dependent on the level of
nonlinearity present—, and that the combined effect of many near-resonances is
hard to evaluate. In this work, we describe a simple model where these issues
can be explored in depth, and use it to show that the way a system responds
to near-resonant forcing can be far from trivial. The model that we shall use

is the forced inviscid Burgers equation:

ug + (% u2>z = f(z, t), (1)

where f = f(z, t) is a smooth given function, periodic (of period 27) in space
and vanishing mean, and the solution v = u(z, ¢) is also periodic and has zero
mean.

Here the dependent variable u(x,t) represents a mode (or set of modes) with
linear frequency w = 0 (as follows from the zero mean condition.) On the other
hand, the externally imposed force f(x,t) represents other modes of the system,
which (depending on the scale of their dependence on time) will be close or far
from resonance with w.

The nonlinear term in (1) has two combined functions: to transfer energy
among the various (Fourier) components of u, and to dissipate energy at shocks.
Thus the “inertial cascade” of large nonlinear systems and their nonlinear dis-
sipation are modeled by a single term. This not only implies a big gain in
simplicity, but could also in fact be a rather realistic model for fluid systems,
whose dissipation is almost invariably associated with some form of wave break-
ing.

The plan of this paper is the following. In section 2, we introduce the
model, show its relation to real systems, and discuss some of its elementary
properties. In section 3, we study the behavior of the solutions when the force
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f is unimodal; in particular, we show that a sharp boundary divides resonant
from non-resonant behavior, a boundary that can be characterized as a phase
transition. Finally, in section 4, we study bimodal forcings; here the dominant
feature is the appearance of intermittent events, that we denote “storms”, where
energy transfer is highly enhanced.

The tone of this paper is mostly descriptive, with the emphasis placed on the
relevance of the striking behavior of our simple model to more general systems.
For the proofs of many of its results, as well as for a more detailed account of

the numerics, we refer the reader to [2].

2 The Model and its Elementary Properties.
When linearized, equation (1) becomes
u = f(z, t). (2)

Then the force f may be said to be resonant when it has a nonzero temporal
mean, and hence makes u grow secularly. If, for concreteness, we consider
forcings of the form

flz,t) = Acos(kx —wt), (3)

then f is resonant when w = 0, near-resonant when w is small, and non-
resonant when w is large. We shall see below that the apparently tenuous
distinction between near-resonant and far-from-resonant behavior can be made
quite sharp for the model in (1).

It may appear that near-resonant behavior can be characterized at least
asymptotically, through the introduction of a small parameter € measuring the

departure from resonance. The resulting equation should be

U + <% uz>ac = & f(z, e, (4)

The reason for the factor €2 in front of the forcing term follows from considering

a quasi—steady approximation to the solution to (4), namely:

u(x) %EWIQ/Zf(s, et) ds.

This indicates that a slow forcing of size O(€?) generally induces a response of
amplitude ¢ in u. Hence any force stronger than €* in (4) would render its own
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time modulation irrelevant, since the induced nonlinearity would act on a much
faster time scale, thus effectively freezing f from a dynamical perspective.
However, the €’s in (4) can be scaled out by the simple transformation = €t,
u = eti. Hence near-resonances in (1) cannot be defined as an asymptotic limit
involving a small parameter e; if there is a distinction between near resonant
and nonresonant forces, it will have to arise from a finite bifurcation in the
behavior of the solutions to (1) — which in fact occurs, as we will show below.
Equation (1) develops shocks, which move at speed s = 1 (u™ +u~) and

satisfy the entropy condition u™ — u~ < 0. Hence the energy
2r 1
E(t) = / 2 (z, t)dz
0o 2

has typically a source given by the forcing and a sink at shocks; its dynamics
is given by ,
™

- () = [ et st de, (5)

where the sum on the left is over all the shocks in the solution. Here and

throughout this paper, brackets stand for the jump across the shock of the

enclosed expression.
Throughout this paper, we shall only consider forces of zero mean; for these,

equation (1) preserves the mean of u, that we take always zero (since a non—
vanishing mean can be absorbed by a Galilean change of coordinates).

3 A Single Forcing Mode.

In this section, we study the effect of unimodal forcings in (1) For concreteness,
we shall consider forces of the form

f(z,t) = sin(z — wi) (6)

(More general unimodal forcings have been considered in [2].) Interestingly,
equation (1) then admits traveling wave solutions of the form

u(z,t) =w=+ \/2 (D — cos(z — wt)), (7)

where D(w) > 1 and the sign of the square root follow from the condition on

the mean:

2w
/0 u(z,t)dz=0.
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Instead of writing a closed expression for D(w), it is actually easier to write w
as a function of D:

w=w(D) = / \/2(D —cosz)dz, where D>1. (8)

Notice that w(D) is a growing function of D, which takes its minimum value
when D = 1. This minimum value w,, can be calculated in closed form; it is
given by

Wer = — -
™

For values of w smaller than w,,, the traveling wave solution develops a shock,
(7) freezes at D = 1, and becomes

—wt
u(z,t) =w+2 -

sin(

)|- ©

In each period (say 0 < z < 27) there is a continuous switch from the minus to
the plus sign as z = x — wt crosses z = 0, and a discontinuous switch from the
plus to the minus sign across a shock at some position z = s. The position of
this shock follows from the zero mean condition

0 —/ G (z dz—i—/ 2)dz = 2nw — 8 cos(s/2), (10)
where GT = w + 2sin(z/2)[, and G~ = w — 2 |sin(z/2)|. Thus
s = 2arccos (%w) , with 0<s<27. (11)

Notice that, at the critical value w = w,., the solution has no shock, but
a corner instead. Similar solutions with corners at the threshold between dis-
sipative and non—dissipative behavior seem to be a common feature of forced
systems that dissipate energy through shocks [3],[1], [5], [4], [6]. Figure 1 dis-
plays the three kinds of traveling wave solutions above: smooth, critical and
discontinuous.

The work per unit time W done by the external force f on the exact solution
above must agree with the energy E, dissipated at the shock (since the traveling
wave has constant energy), so we have:

o 2% 3/2
Wf:/o fudszd:—%[u]‘?:?{l—(%)} . (12)
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Traveling wave solutionu =u(x -0 t).

15
0 =-2.00
1 01=-0
cr
05 =-0.70 1
cr
0
us
4
15
2
25} e g
) 1 2 3 4 5 6

Figure 1: Examples of traveling waves for the equation u;+ (0.5 u?), = sin(z—wt).

For the smooth solutions (7) corresponding to w > w,,, on the other hand, there
are no shocks, hence no dissipation, and therefore no net work by the forcing.
In other words, there is a sharp transition at w = w, between near—resonant
behavior, corresponding to energy input from the force into the system, to non—
resonant behavior, with the solution and forcing in quadrature, and no energy
exchange between them. This corresponds to a third order phase transition,
with the solution switching from a dissipative (with shocks) to a non-dissipative
(smooth) configuration. The work done by the forcing as a function of w is

shown in figure 2.

Energy dissipated as a function of [I .

Figure 2: Energy dissipated (as a function of w) by the traveling waves.

One may wonder whether the behavior of this family of exact traveling wave
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solutions is exceptional, or it represents the general dynamics of the model (1)
subject to unimodal forcing. The latter possibility turns out to hold. In fact,
it can be proved that all solutions to (1) with forcing given by (6) converge
to the traveling wave solutions above. The proof, for which we refer the in-
terested reader to [4], involves a rather unusual combination of a Hamiltonian
formulation for the model written in characteristic form, a Hamiltonian and a
pseudo-Hamiltonian formulation for the model in its original PDE form, and
the dissipative dynamics of shocks. Figure 3 displays a numerical experiment
showing convergence of an arbitrarily chosen initial data to the exact solution
with shocks in (9).
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3} Dashed line: steady solution envelope 3|

2.5] e 25|
2 T 2|

1.5] 15

k| 2 i AR
0.5«

0|

o5t A
3 4
05
A

05
4 - -
15 15

0 1 2 3 4 5 6 [ 1 2 3 4 5 6
x x
Solution for time: t=0.100 (20/0 ), withl [ =2 Solution for time: t =0.500 (20/0 ), withl 0 =2
3} Dashed line: steady solution envelope 3} Dashed line: steady solution envelope
2.5 LEmmR DR R 25F T

2
1.5]
1
0.5]

2|
1.5
1 ‘\\ ;.
ot 4L
L
-05
-4

u u

-5

0 1 2 3 4 5 6 0 1 2 3 4 5 6
x

Figure 3: Forcing f = sin z in the equation, with z = z—wt and w = w,, /2 = 2/7.

4 Two Forcing Modes.

In this section, we study the solutions to equation (1) when the forcing term is
the sum of two traveling waves of different speeds. For concreteness, we shall
specifically look at a typical example, where the force f has the form

f(z,t) = sin(z) + 2 sin(2(z — Q1)) (13)
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We are particularly interested in the behavior of u(z,t) when the frequency
shift €) is small. The motivation for this choice is two—fold: on the one hand, it
addresses the general question of the effects of the superposition of more than
one near-resonant interaction acting on the same mode of a general system. On
the other, it is an example of unimodal forcings similar to the one studied in the
previous section, but modulated over a long time—scale. In real systems, such
modulations are typically brought about by nonlinear effects, or by conditions
external to the system. As we shall see, such slow modulations may have highly
nontrivial consequences in systems where the mechanisms for energy dissipation
are nonlinear.

Since € is small, one can in principle think of the response u(z,t) to the
forcing in (13) as frozen in time near each value ¢t = tp. In order to implement
this idea, we propose the following simple asymptotic expansion in the small
parameter :

u(z, t) = up(z, 7) + Quy(z, 7) + O(Q?), (14)

where 7 =2t is a slow time variable. Then, at leading order, (1) becomes

O JTPTA

2
up(z, 7) = £4/2G(z, 7), (16)

where G = G(z, 7) is defined (for each 7) by
G =C(1) — (cos(z) + cos(2(z — 7)) , (17)

Thus

where C' = m;:tx(cos(:c) + cos(2(x — 7)). In each period 0 < x < 27 the solution
crosses (continuously) from the negative to the positive root at the point x =
Zm(7) where G = 0, and has a shock (jumping from the positive to the negative
root) at a position & = $(7), chosen so that the mean of u vanishes. Notice that
this quasi—steady solution is a very mild generalization of the steady one found
in section (3) when w = 0, with the only difference that the force is no longer
sinusoidal. In fact, the theorem of convergence of the solutions to traveling
waves proved in [2] applies to forcing terms with nearly arbitrary shape.

The solution (16) above works as long as G has a single minimum per period,
in which case z,, = z,,(7) and s = s(7) are well defined and depend smoothly
on 7. However, there are some special times,

@2n+1)7

t, = EETYoRE (18)
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at which this fails. At these times

G(z, Qt,) = = (1—4cos(z))?, (19)

Co| —

and
1
uo(z, Qt,) = =+ 2 |1 —4cos(z)]|, (20)

with two candidate crossings of zero.

At the critical times ¢,, there are two solutions ug(z) of the form (20), in
which vy switches from negative to positive at one of the zeros, has a corner
at the other, and switches once from positive to negative through a shock, at
a position determined by the condition that ug has a vanishing average. The
quasi-steady solution given by the asymptotic expansion in (14) approaches
one (or the other) of these two solutions as ¢ — ¢, from below (or above.)
The reason is that at almost all times G has several local minima, evolving
in time, with one of them smaller than all the others. The critical times occur
when two local minima exchange the property of being the global minimum. At
these times x,, ceases to be smooth, jumps discontinuously from one position
to another, and the expansion in (14) becomes inconsistent and fails. We call
the fast transitions occurring at the critical times “storms”

Figure 4 displays the numerical solution to equation (13), starting from
the asymptotic solution shortly before the critical time ¢, for a value of the
frequency € = 0.01. The dotted line gives the envelope for the asymptotic,
quasi-steady solution u(z, 7) (i.e.: the curves u = ++/2G.) In this figure we
can see the actual solution v = u(z, t) switching its upward crossing point from
one zero of G(z, Q1;) to the other, through a relatively fast transition, involving
the development, growth, travel and eventual disappearance of a second shock.
During this transition, the solution sticks very closely to the envelope of the
quasi-steady solution.

Figures 5 and 6 display the dissipation at the shocks and the work done by
the forcing respectively. Both show a marked spike during the storm, approxi-
mately duplicating the regular amount of work and dissipation. Such doubling
of the energy dissipation rate is due to the appearance of an extra shock during
a storm, of a size comparable to the regular one. The close agreement between
the energy dissipated and the work performed by the forcing, on the other hand,
has its origin in the relatively slow evolution of storms, faster than the regular
O(92t) rate, but clearly slower than a O(t) rate. It follows that, at any particular
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Figure 4: Asymptotic ¢ — oo solution to the equation u; + (5 u®), = sin(z) +
2sin(2 (z — Qt)), with Q = 0.01.
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Figure 5: Energy dissipation rate E; = Ey(t) for the ¢ — oo asymptotic solution
for the equation with double slow forcing.

time, the energy input and output need to be in balance to leading order, since
even during a storm the solution remains quasi-steady. In fact, the duration of
storms can be estimated quite precisely; it scales with the square-root of the
frequency Q [2].
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Figure 6: Work done by the forcing Wy = W(t) for the ¢ — oo asymptotic
solution for the equation with double slow forcing.

The fact that the effects caused by a storm scale with v/Q, not 2, may
have important consequences when considering the effects of a complex set of
near-resonances. The enhanced rate of energy exchange during storms hints
at the possibility that nonlinear systems may have regimes where the energy
exchange among modes is dominated by fast, intermittent events, involving
coherent phase and amplitude adjustments of the full spectrum, rather than by
the slow evolution of individual resonant sets. For this to be the case, the storms
need to be strong and frequent enough to overcome the regular means of energy
flux. We speculate that such strong intermittent events are likely occurrences
in complex systems, particularly those whose behavior has stochastic or chaotic
components.
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