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Abstract

We discuss several questions related to parabolic evolution equations
in moving or non-cylindrical domains. We consider space-time domains
such that, for all £ > 0, their cross section at ¢ can be transformed into
a reference domain 2, by means of a C?-diffeomorphism 7;: Q — Q.
The reference domain is assumed to be a bounded open set of R” with
boundary I of class C?. We also assume a C'! dependence of the domain
Q; with respect to time. We investigate the existence and uniqueness
of strong, weak and ultra weak solutions in the sense of transposition.
The problem of controllability is also discussed both in the context of
approximate and null controllability.

1 Introduction

In this article we consider linear parabolic problems in domains which are mov-
ing in time. Given a time T > 0, the equation is assumed to be posed in an
open set Q of R* x (0,T) C R+ = R?” x R, that is the union for 0 < ¢ < T of
open sets €, of R* that can be mapped into a reference domain €y by means
of a C?-diffeomorphism 7;: Q — €;. On the other hand, the diffeomorphisms
7; are assumed to depend on ¢t in a C! way. We also assume that, without loss
of generality, 2 = €0y so that 7y is the identity map.
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To be more precise, the points in the reference domain €2 are denoted by
Yy = (Y1, .-, Yn), while those in €; are denoted by = = 7(y): = € € if and only
if y € Q. We shall also use the notation 7(y,t) for 7(y). We denote by Q the
noncylindrical domain of R**! defined by

Q= U {ux{1}.

0<t<T

The boundary of €, is represented by I'; and the lateral boundary of @ is

S = U {Ts % {t} }-

0<t<T

represented by X:

Let @ be the cylinder based on the reference domain €2, i. e. @ = Q2% (0,7).
We have a natural diffeomorphism between () and @

W) eEQ— (1) €Q, (z,t)=(n),t)=((1,1)1).
We assume that
Foral0<t<T, r, isa C?— diffeomorphism from Q to Q;. (1)

We also assume that
7(y,t) € CH([0,T]; C°(V)). (2)

To simplify the presentation the reference domain §2 is assumed to be bounded
and of class C?, although most of the results we present here hold when  is
Lipschitz continuous and unbounded. The regularity assumptions on the dif-
feomorphism 7; may also be weakened. However, the minimal assumptions on
the reference domain 2 and the transformation 7; will depend very much on the
notion of solution and the type of control problem under consideration.

Concerning the class of domains @ we are considering, it is important to
point out that the assumptions above are not very restrictive. For instance,
the condition (2) that 7; depends in a C* way on time (that, in practice, can
be often replaced by a Lipschitz dependence) indicates that the domain does
not evolve in time too roughly but allows all kind of deformations on its shape.
But, the condition that €; can be mapped into the reference domain €, at every
t, by means of a C? diffeomorphism, imposes the topology of Q; not to change
as time evolves. This is the main restriction we impose on the geometry of the
space-time domain @ under consideration. In particular, we do not address here
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problems in which holes appear or disappear in €); as time increases. This type
of situation requires a separate analysis since solutions may develop singularities
at those points where the topology of £2; changes.

In order to simplify the presentation we shall consider the constant coefficient
heat equation in the domain @7 although our results extend to more general
equations with variable coefficients under suitable regularity assumptions, and
also to semilinear equations under natural conditions on the nonlinearity. Also,
we consider Dirichlet boundary conditions, but similar results hold for other
ones.

We are interested both in the existence and uniqueness of solutions and its
controllability properties. We shall discuss strong and weak solutions and also
the solutions defined by transposition, also referred to as uwltra weak solutions.

Thus, this paper is devoted to the following boundary value problem for the
heat equation in the non-cylindrical domain @:

W —Au=f for (x,t)€ @
u=0 for (z,t)eX (3)
u(z,0) = up(z) for zeQ.

Here and in the sequel ' stands for the time derivative 0; = 0/0t.

In the following section we discuss the problem of the existence and unique-
ness of solutions, distinguishing the various notions of solutions. In section 3
we discuss the controllability problem, both in the case of approximate and null
controllability. In section 4 we comment on some possible extensions of the
results of this paper.

To close this section we also mention some basic references on the anal-
ysis on Partial Differential Equations in non-cylindrical domains. There is
an extensive literature and the following works are worth mentioning among
many others: Lions [18], Cooper and Bardos [9], Medeiros [26], Inoue [17], Ra-
bello [33], Nakao and Narazaki [31] and Cannarsa, Da Prato and Zolésio [5]
for nonlinear wave equations, Acquistapace [1], Bernardi, Bonfonti and Lut-
teroti [2] for Schrodinger equations, Cheng-He and Ling Hsiano [7] for the Eu-
ler equation, Miranda and Limaco [30] for the Navier-Stokes equations, Chen
and Frid [6] for hyperbolic systems of conservation laws. The particular case
where 1(y) = K(t)y for K(t), t > 0, has been analyzed in Miranda and
Medeiros [29] and Miranda and Limaco [30] and the more general case in which
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7:(y) = K(t)y + h(t), with K(t) as above and h(t) a vector of R* in Bernardi,
Bonfanti and Lutteroti [2].

2 Existence and uniqueness of solutions

This section is devoted to the analysis of the existence and uniqueness of solu-
tions of system (3). We distinguish three different classes of solutions: strong,
weak and ultra weak solutions defined by transposition.

2.1 Strong Solutions

A function u = u(z,t) defined in @ is said to be a strong solution for problem
(3) if

u € C([OvT]a Hé(Qt)) n L2(07T; H2 N H&(Qt)) n HI(O,T; LZ(Qt))v (4)

and the three equations in (3) are satisfied almost everywhere in their corre-
sponding domains.

We have the following result on the existence and uniqueness of strong so-
lutions:

Theorem 2.1 Assume that the non-cylindrical domain @ satisfies the geomet-
ric conditions of section 2 above. Then, ifug € H§(Qo) and f € L*(0,T; L*(Y)),
problem (3) has a unique strong solution u in the class (4).

Moreover, there ezists a positive constant C' (depending on @ but independet
of ug and f) such that

||u||L°°(O,T;Hé(Qg)) + HUIHL?(Q) + ||U‘|L2(0,T;H2(Qz))

(5)
< Clllwol |y + 1£11 20

and
[l Lo m3 00y + 1wl L2(0,75m2(00))

(6)

< Cllluoll gzay + I1f1| L2072 20 -

Proof. We use a classical idea consisting in transforming the heat equation in
the non-cylindrical domain @7 into a variable coefficient parabolic equation in
the reference cylinder @ by means of the diffeomosphism: (z,t) = (7:(y),t) =
(1(y,t),t), for x € Qu,y € 0 <t < T, i e. for (z,t) € Q and (y,t) € Q.
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In fact, set
v(y,t) = u(n(y),t) = u(r(y,t),t) for yeQ, 0<t<T,
or, equivalently,
u(z, t) = v(7H(x),t) = v(p(z,t),t) for 2€Q,0<t<T.

Here and in the sequel Tt_l denotes the inverse of 7;, which, according to as-
sumption (1), is a C2-map from €, to 2, for all 0 < ¢ < T. This map will be
denoted by p;. We shall also use the notation p(z,t) = pi(z).

We have,

ula, 1)/t = (z,1) = 22 (p(a, 1),1) + Vyo(p(a, 1),1) - (e, 1))/,
where - denotes the scalar product in R*. In other words,

v

Ou(z,t)/0t = u'(z,t) = o

(y: t) Es VyU(y, t) . b(y: t)v

where b denotes the vector field
b(y, t) = 9(p(z,1)/0t.
Note that, according to assumption (2),
be CYQ).
On the other hand,
Oziu(2,t) = Vyo(y, 1) - 0y (p(2, 1)),
and
0*u(w,t)/0xF =< Dyv(y, )9, (p(2, 1)), Ou; (p(x, 1)) > +Vyu(y,1)-0*(p(z, 1)) /02,

where DZU denotes the Hessian matrix of v in the space variable y and (Dzv-, )
the corresponding bilinear form.
Taking this into account, system (3) may be rewritten in the following equiv-

alent way:
v+ Av+b-Vyo=f for (y,t)€Q
u=0 for (y,t)€X (7)
v(y,0) = uo(y) for ye .
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Here and in the sequel, the operator A; is defined as follows:

n

[Al(y) = — 3 1< D20()d (ol 1), 85, (p(z, 1)) > +V,0(y)-8(p(a, 1)) /0.

i=1

System (7) is a variable coefficient parabolic equation in the cylindrical domain
Q.

In order to apply the existent classical results, it is important to observe
that the operators A; are uniformly coercive. Indeed, let us represent by J;(y)
the Jacobian of the transformation Q; = 7:(2). By the assumptions (1)-(2) on
7; it follows that there exists ¢ > 0 such that |Ji(y)| > ¢ > 0 in Q. Thus,

/Q Al (v)r()dy > ¢ / A](v)o(®)|v) dy

>c | —Au(@)u(r)dr = [ |Vu(z)|’dz > c’/ |V, v|*dy

o o Q
for all v € H2 N H§(Q) (which is equivalent to saying that u € H2 N Hg (),
since 7; is a C2-diffeomorphism). Moreover, the coefficients in the principal part
of the elliptic operator A, are in C' and those of the first order term involving
Vv are continuous.

Then, classical results on parabolic equations (see Lions and Magenes [23])
guarantee that system (7) admits a unique strong solution v € C([0,T; H (2))N
L*(0,T; H*(Q)) N HY(0,T; L?(Q)). Undoing the change of variables  — ¥, we
deduce the existence of an unique strong solution u of system (3). At this
point we underline that, under assumptions (1)-(2), the transformation y — =
does indeed map the space of functions C([0,T]; H}(R2)) N L*(0,T; H*(Q)) N
HY(0,T; L*(Q)) into C([0,T); Hi (%)) N L2(0,T; H2(Q:)) N HY(0,T; L2(S2))-

In order to prove the estimate (5), we first establish the classical energy
estimate. Multiplying in (3) by » and integrating with respect to z € €, and ¢,
we get

t
Oy + | IV a0y ds = ol o
0

t
+/ / fudzds < ||uo|[f2(q o
0 J

+ C||f] ‘%Q(O,T,H—l(nl)) + E||u||%2(0,T,Hé(Qt))a

for any € > 0 for a suitable constant C. independent of the solution.
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ot
ot

Here we have used in a fundamental way the fact that, since u vanishes on
the lateral boundary ¥ of @), we have (see Duvaut [11], p. 26)

/ /(;t wu'drdt = / /Qt 3|ui2d dt = %[/Qt w?(x, t)dx — /ng(aj)dx]

We now use the fact that Poincaré’s inequality is satisfied uniformly in the

domains €2 for all 0 < ¢t < T. This is again a consequence of assumptions
(1)-(2). Then, in view of (8) we have

1 t
10O By + 5 | 17606 By ds < Il

+ 0 ‘f“%Q(O,T,H*l(Qt)p

)

for a suitable C' > 0. In particular, strong solutions satisfy the energy estimate

HUH%“’(O,T;LZ(QQ) + HuH%ﬂ(O,T;Hé(Qt))

p 5 (10)
< Cfluollz2(y + 11 f 11220, 1-1020)
with C' > 0 independent of the solution.
We now multiply (3) by —Au. We then have
—/ u'Audz + [ |Au|®’dz =— | fAudz= [ Vf-Vudz. (11)
Q Q Q Q

Moreover,
—/ wAudr = | Vu-Vu'de = i/ |Vu|2d93—/ |Vul?w - nydo,  (12)
o o dt Ja, T,

where n; denotes the unit outward normal vector to §2; and w is the velocity
field w = [0y7](p(x,t)) (see Duvaut [11], p. 26). Note that, according to (1)-
(2), by uniform (with respect to t) elliptic regularity, classical trace results and

interpolation, we have

|/ |Vu|2w-ntda[§0/ \Vu|2da§0a[/ |Au|2da:]a[/ Vulda]' " (13)
I b Q Q4

for all o > 1/2.
Combining (12)-(13) and the Cauchy-Schwarz’ inequality we deduce that

dt |VU|2d$ < - —/ |AU\2d-Z' + HVfH[} QHHVUH[} Q) (14)

+ CHVUHL?(m)-
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Solving this differential inequality we deduce the existence of a constant C' that
only depends on @ such that

HuHim(O,T;Hé(Qt)) + ||U||%2(0,T;H2(Qt)) = C[||u0||§{$(ﬂ)

(15)
+ 110, my 0 -
A slight variation in this argument allows also to get
HUH%w(o,T;Hg(m)) £h ||u’||2L2(O,T;H2(Qg)) < C[HUOH?—I&(Q) (16)

2
£ ||f”L2(Q)]

Indeed, for getting (16) instead of (15) it is sufficient to estimate the term
fﬂt fAudz as follows

fAudz < %[/ﬂt(|f|2 + |Aul?)dz].

Q¢
This completes the proof of the estimates (5) and (6) of the Theorem.

O

Remark. Note that we could also have obtained these estimates using the

existing results for the variable coefficient parabolic equation satisfied by v and

then undoing the change of variable x — y. But we have prefered to work

directly on system (3) to see how the non-cylindrical structure of the domain
afects the estimates.

O
2.2  Weak Solutions
We say that u is a weak solution of (3) if
u € C°([0, T); L*()) N L*([0, T]; Hy (1)) (17)
and
T T
—/ / u ' dzdt — / ug(z)¢(z,0)dx +/ Vau - Vo dadt
0 Q 9] 0 Q4 (18)

T
= / fodxdt
o Ja,

for all p € L2(0,T; H} (%)) N C*([0,T]; L*()) such that ¢(T) = 0.
The following holds:
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Theorem 2.2 Given uy € L?(Qy) and f € L*(0,T; H-'()) there exists a
unique weak solution of (3).

Moreover, there exists a constant C (dependending on @ but independent of
the data ug and f) such that

l[ul|zo(oriz2@ + [[VUllpa@) < Cllluollza@) + [ fllz2omm-100)]- (19)

A similar argument allows to replace the assumption f € L*(0,T; H1(%)) by
f € LY0,T;L*(y)) and to obtain the estimate

|[ullLeeo,riz2@0) + VUl 2@y < Cllluollza@) + 1 llerorir2@i]- (20)

Proof: We proceed in two steps.
Step 1. Existence. Let ugp, € H} () and fn, € L*(Q) be a sequence of
regularized initial data and right hand side terms respectively such that

Uom — Uy strongly in  L*(Qy), f. — f strongly in L*(0,T; H*(%)).

Then, for each m € N, let us consider the unique strong solution u,, of (3) with
initial data wug,, and right hand side f,, i.e. of system

U, — Ay, = f ae.in Q
Up=0 on X (21)
um(0) = up, in Q.

Thus, for any n, k € N, we have

(un - uk)l - A(un - uk) =fu—fr ae in Q\
Uy, —ur =0 on X (22)
(un — ug)(0) = ug, —ugr, in

Using the energy estimate (10) we obtain that u,, is a Cauchy sequence in the
space C°([0, T]; L%(€%)) N L2([0, T); H3(€%)). Thus, it converges, as n — oo, to
a limit u € C°([0,T]; L2()) N L2([0, T); H3 (Q))-

It is easy to see that the limit u is a weak solution of (3) satisfying (18)
and the estimate (19). Indeed, for every n, u, is a strong solution. Multiplying
the equation satisfied by u, by a test function ¢ and integrating by parts we
deduce that u, satisfies also the weak formulation (18). The convergence in the
space C°([0,T]; L2(%)) N L2([0,T); H3 (%)) of u, towards u allows to pass to
the limit in the weak formulation to deduce that u satisfies (18), too.
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Step 2. Uniqueness. Uniqueness can be proved by a classical argument.
Assume that system (3) admits two weak solutions v and v satisfying (18).
Introduce w = u — v. Then, w € C°([0, T]; L*(X%)) N L2([0, T); H; (%)) satisfies

4 T
/ / w' dzdt — / Vew - Ve dzdt = 0,
0 Qt 0 J

for all test function ¢. In order to conclude that w = 0 it is sufficient to use
¢ = w as test function. Of course, one can not do it directly, since w does not
belong to the admissible class of test functions but this choice may be justified
using a classical regularization and cut-off argument.

In this way we end up getting the energy estimate for w that guarantess
that

t
[0+ | 19005 Erayds <0
Obviously, this implies that w = 0.

Step 3. Estimate (20). Estimate (20) can be proved easily. It suffices to
change the way of estimaing the term fQ‘ fudz in the classical energy estimate
leading to (10). More precisely, it suffices to use the upper bound

T
/ [2 Ju dfﬂdt‘ < |If lzromze@e 14l Lo o,r;L2(@0)) -
0 ¢
o
2.3 Ultra Weak Solutions by the Transposition Method

In this section we address the question of finding solutions u of

v —Au=0 in Q for 0<t<T
u=0 on Iy for 0<t<T (23)
u(0) =uy in Q

where ug is given in H71(Q).

When the domain where the equation holds is cylindrical, i. e. when Q; = Q
for all 0 < ¢t < T, the problem can be easily reduced to that of weak or strong
solutions. Indeed, in that case, u solves (23) if and only if v = (—A)"*u
satisfies the same equation with initial data vy = (—A) *ug. Here —A denotes
the Dirichlet laplacian in Q. By taking s = 1/2 we then have vy € L?(Q2) and
v turns out to be a weak solution. When s = 1, vy € H} () and v is then a
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strong solution. In any case, when the domain is cylindrical, there is a one to
one correspondence between weak, strong and ultra weak solutions.

In the present case, where the domain €); does depend on time, this argument
does not apply directly. Then it is better to use the method of transposition
(see Lions and Magenes [23]).

A function u = u(z,t) is said to be an ultra weak solution of (23) or solution
by transposition if

ue C([0,T]; H () N L*(0,T; L*()) (24)
and "
| [ 0560 dodt = (w0, 000, 1 € 2Q)
0 Q4
where ¢ is the unique solution of the adjoint system

¢ —Ap=f in Q for 0<t<T
v=0 on I} for 0<t<T (25)
oz, T)=0 in Q.
Here (-, -) denotes the duality pairing between H~!(Q2) and H{ ().
According to Theorem 2.1 system (25) admits an unique strong solution ¢.
Thus, this definition makes sense.
In order to prove the existence and uniqueness of a ultra weak solution u it
is sufficient to observe that there exists a constant C' > 0, which is independent
of f, such that the strong solution ¢ satisfies the following estimates

||(:0||L°°(0,T;Hé(m)) < CHfHLZ(@)v (26)

and

el Looorsmicen)) < ClFlLrozmi@u) (27)
These estimates were proved in Theorem 2.1. Indeed, it is sufficient to make
the change of variable ¢ — T — ¢ to reduce system (25) to (3).

Then, by duality or, more precisely, as a consequence Riesz-Frechet theorem,
we deduce that there exists a unique ultra weak solution in the class (24). To
be more precise, in view of (26), we deduce the existence of an unique solution
u € L*(Q) and the second estimate (27) provides the additional regularity
u € L®(0,T; H~*(Q)). Moreover, one deduces the existence of a constant,
independent of ug, such that

|[ullzeoo,rsm-1(20)) + [[tll L2y < Clluollr-1)- (28)
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In order to show that u € C([0,7]; H~(€)) we use a classical density argument.
When ug is smooth enough, u is a weak (or even strong) solution, and therefore u
is indeed continuous with respect to time with values in H~!(£;). According to
(28), by density, we deduce that u € C([0, T]; H~*(%)) whenever ug € H~(Q).

O

Remark. It is easy to see that, when the datum wug is more smooth so that
weak and/or strong solutions exist, they coincide with the ultra weak solution.
For, it is sufficient to integrate by parts in the strong formulation of system (3)
or in its weak formulation, depending on wether we are dealing with strong or

weak solutions.

3 Controllability

In this section we discuss the controllability properties of solutions of the parabolic
equation (3) in the non-cylindrical domain Q.

We denote by 7 an open, non-empty subset of @ We also denote by w; its
cross section at any 0 < ¢ < T and by x4 the characteristic set of 7.

We consider the heat equation

v —Au=hxz; in Q
u=0 on X (29)
u(z,0) = up(z) in €.

Here the function h = h(z,t) plays the role of the control that acts on the
system through the subset §.

The initial data, to fix ideas, is taken to be in L*(Q2). The control function
h is assumed to be in L2(0,T; L*(;)). Under these conditions, from Section 2

we know that problem (29) has a unique weak solution u with the regularity
u € C([0, T]; L*()) N L*(0, T; Hy ().

The control problem we address is the following: Can we describe the set of
reachable states at time t =T when h varies in Lz(@) ¢ and, more precisely, is
this set dense in L*(Qr)? Does it contain the equilibrium state u =07

The density of the range of solutions of (29) at time ¢ = T is referred to
as the approximate controllability property, while the property of guaranteeing
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that the zero equilibrium state is reachable is referred to as null controllability.
These two properties are analyzed in the following two sections.

3.1 Approximate controllability

The property of approximate controllability may be formulated as follows:
Given uy € L*(€), u; € L*(Qr) and ¢ > 0 to find a control h € L?*(q)
such that the solution of (29) satisfies

[[u(T) = u1]| L2 < € (30)

In [35] the following (apparently) stronger notion of controllability was intro-
duced, the so called approzimate-finite controllability property: Given ug €
L%(Q), u; € L*(Qr), € > 0 and a finite-dimensional subspace F of L?(Q27), to

~

find a control h € L?(Q), such that the solution u of (29) satisfies

|U(T) =i u1‘L2(QT) <e

meu(T) = g (ur). (31)

Here and in the sequel 7 : L?(Q7) — E denotes the orthogonal projection from
L*(Qr) into E.

In [35] this property of approximate-finite controllability was analyzed for
the semilinear heat equation in a cylinder. It was proved that, essentially, the
methods introduced in [18] and developed in [12] suffice to show that, when
the nonlinearity is globally Lipschitz, approximate-finite controllability holds.
Later, in [25], it was proved that, in the context of general linear systems,
approximate controllability implies approximate-finite controllability.

The following result shows that this property is still true for the heat equa-
tion in the non-cylindrical domain @

Theorem 3.1 For any T > 0, up € L?(Q),u; € L*(Qr), € > 0 and E, finite-
dimensional subspace of L*(Qr), there exists a control h € L?(§) such that the
corresponding solution of (29) satisfies (31).

In other words, system (29) is approzimate-finite controllable in any time
T>0.

Proof: Taking into account that the equation (29) is linear, it is sufficient to
consider the case where ug = 0. Thus, in the sequel, we shall assume that
ug = 0.
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According to the abstract result in [25], the problem of approximate-finite
controllability can be reduced to that of approximate controllability. However,
for the sake of completeness, we proceed as in [35], where a constructive ap-
proach for building the approximate-finite control is presented.

Let us consider the adjoint system:

—¢'—Ap=0 in Q

=0 on 3 (32)

o(T)=¢° in Qp
for ¢° € L?(Qr). From Theorem 2.2 (it is sufficient to apply it after reversing the
sense of time) the solution ¢ of (32) has the regularity ¢ € C([0,T]; L*(€%)) N
L%0,T; H(Q4)). We define the functional

1
J(QOO) = 5[@2 d:vdt-i—EH(I = '/TE)QOOHLZ(QT) —/Q Uy (pO da:, (33)
q T

where ¢ is the solution of (32) corresponding to .
It is easy to see that the functional J satisfies the conditions:

(i) J is continuous in L?(Qr),
(ii) J is coercive,
(iii) J is strictly convex.

Indeed:

(i) The continuity of J is a direct consequence of the well-posedness proper-
ties of the adjoint system (32) and, more precisely, of the continuous dependence
of weak solutions of (32) with respect to the initial data ¢° in L?(Qr).

(ii) To prove the coercivity it is sufficient to show that

J 0
lim inf #
1e°llz2apy =00 [1€°]|L2(0)
We argue as in [12] and [35].

Let ¢} € L*(Qr) be such that ||¢||12(a,) — oo and ¢; be the corresponding

solutions of (32). We introduce the normalized data ¢9 = ¢}/||¢}l|L2(a,) and

>, e>0. (34)

the corresponding solutions ¢; = ©;//|¢9/12(ay)- Then

@) 1., . .
W =g #5112z /qA|Q0j|L2(QT) dxdt + €| |(I — 72)Pj| L2r) —

(35)
—/ U1 @2 dx.
Qr
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We have to distinguish two cases:

lim inf /|@j|2d$dt >0
”‘PO”L'Z(QT)_’OO q
or
lim inf /|gbj|2d:cdt = .
7

||‘P0||L2(QT)_>°°

In the first case property (34) is obvious since the first term on the right hand
side of (35) tends to infinity.

Let us now consider the second case. Then, there exists a subsequence of
(#;) (still represented by (¢;)) such that

[ |@;|* dzdt — 0. (36)
q

Taking into account that [|¢9]|r2(;) = 1, we also have (for another suitable

subsequence)
@)= ¢ weakly L*(Qp), wp@)—np@® strongly L*(Qr). (37)
Using the well-posedness properties of weak solutions of (32) we deduce that
®; — ¢ weakly in LQ((:?)7 (38)
where ¢ is the solution of (32) corresponding to ¢°. According to (36) we have
®=0 ae. in q
By Holmgren’s Uniqueness Theorem we deduce that

@ =0 a.e. in the horizontal component of g.

By backward uniqueness (see [24], [15] and [13]) we deduce that ¢(T) = ¢° =0
and therefore
$=0. (39)

Consequently, from (38)-(39) we obtain
(ﬁg — 0 weakly in L*(Qg) (40)

and
Tu$;(T) — 0 strongly in  L*(Qr). (41)
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Taking into account that Hgﬁ‘;H r2r) = 1, we deduce that
1 = 76)@5|z20r) — 1. (42)

According to (40) we deduce that fQT Uy @2— dx — 0 as j — oo. And this fact,
combined with (41), implies that (34) holds along the sequence ¢;.

This completes the proof of the coercivity.

(iii) The strict convexity of J is easy to prove taking into account its struc-
ture and the unique continuation property, consequence of Holmgren’s Unique-
ness Theorem and backward uniqueness, guaranteeing that if ¢ = 0 in g, then
¢ = 0 everywhere.

In view of properties (i)-(iii) that the functional J satisfies, it follows that
there exists a unique ¢° € L*(Qr) minimizing J in L?(Qr). Set ¢ the solution
of (32) corresponding to ¢°.

It is then easy to see, following the arguments in [12] and [35], that h = ¢
is the control we are looking for such that (31) holds.

3.2 Null controllability

In the previous section we have proved that the set of reachable states for system
(29) is dense in L?(Q7). But this property does not guarantee any particular
element of L?(27) to belong to the set of reachable states.

In this section we study a different notion of controllability, the so called
property of null controllability in which one wonders whether the zero state
belongs to the set of reachable states. In other words: Given uy € L*(Q2) and
T >0, is there h € L*(Q) such that the solution of (29) satisfies u(T) =07

This property, because of the backward uniqueness property, is stronger that
the approximate controllability one.

The following holds:

Theorem 3.2 Under assumptions (1)-(2), for any T > 0 and any open non-
empty subset q of @, system (29) is null-controllable.

Proof. It is sufficient to show that the following observability inequality holds
for the adjoint system (32): There exists a positive constant C' > 0 such that

6(0)] oy < / \p[2dudt (43)
q
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for every solution of the adjoint system (32).

Inequality (43) is a direct consequence of the results in [16]. Indeed, making
the change of variables z — y, the adjoint system (32) may be transformed into
a variable coefficient equation of the form

—¢'+Ap—b-Vyp=0 in Q
=0 on X (44)
P(T)=¢" in Q.

The operators A; and the coefficient b are as in section 2. Thus, in particular,
the coefficients in the principal part of A;, according to (1) and (2) are of class
C' and b is bounded. Thus, the observability inequalities in [16] guarantee that,
for every T > 0 and every open subset g of @, there exists a constant C' > 0
such that

[(0)] oy < C / [ 2ddt. (45)

This applies in particular to ¢ obtained from § by means of the change of
variables x — y. Estimate (43) can be easily obtained from (45) by undoing
this change of variables.

Once the observability inequality (31) holds the null controllability of The-
orem 3.2 is easy to prove. Indeed, given any ug in L2(£2) and & > 0 we consider
the functional

~ 1
) =L / & dods + |6 zxan) + / ws ol (46)
q Q

[\

where ¢ is the solution of (32) corresponding to °.

Following the arguments of the previous section it is easy to see that J has
a unique minimizer ¢° and that, by taking h. = ¢, where @, is the solution of
the adjoint system (32) with datum ¢?, then the solution of (29) satisfies

[[u(T)||z2r <& (47)

Moreover, the observability inequality (43) allows to show that the functional
fg are uniformly coercive as € tends to zero. This allows to show that the
controls h. are uniformly bounded. By letting € — 0 we obtain, as weak limit
of h., a control h such that, according to (47), the corresponding state u satisfies
u(T)=0.

This completes the proof of the Theorem.
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4 Further comments

4.1 On the assumptions (1)-(2)

The assumptions (1)-(2) are not needed for all the results in this paper. Indeed,
for instance, the C? regularity assumption of the domain and of the diffeomor-
phism 7; is necessary to establish the existence of strong solutions in the class (4)
but less regularity is required to prove the existence of weak solutions. For that,
it is sufficient the domain €2 and the diffeomorphism 7, to be of class C'. The
same can be said about the approximate controllability property. It is sufficient
to have enough regularity on the domain @ for the parabolic equation to be
well-posed to have also, immediately, the approximate controllability property.
Indeed, the approximate controllability property turns out to be equivalent to
the uniqueness or unique continuation property for the adjoint system and this
is true without regularity assumptions on @ since the equation has constant
coefficients and Holmgren’s uniqueness Theorem applies. The situation is dif-
ferent in what concerns the null-controllability property. Indeed, note that, in
that case, we have applied the observability inequalities in [16] to the adjoint
equation after the coordinate transformation x — y and this requires C* or
Lipschitz coefficients in the principal part. Thus, the geometric assumptions
(1)-(2) are almost necessary in this case to apply the existing results.

Note however that, as far as we know, there is no evidence in the literature
of parabolic equation with bounded and coercive coefficients for which the null-
controllability property fails. Thus, one can not exclude the null-controllability
to hold under much weaker assumptions than (1)-(2).

4.2 On the boundedness assumption on the domain €

All along this paper, to simplify the presentation, we have assumed the reference
domain € to be bounded. But this assumption is only necessary when dealing
with the null-controllability property. Indeed, as shown in [27], [28], the heat
equation in an unbounded domain may fail to be null-controllable if the set
which is left without control is also unbounded. However, whether the domain
Q) is bounded or not is irrelevant for approximate controllability.

The results in [27], [28] indicate that, in order for the null-controllability
property to hold it is natural to assume that the subdomain that is left without
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control is bounded. In that situation, in the context of cylindrical domains,
the null-controllability property was proved to be true in [4]. When @ is un-
bounded, combining the techniques of this paper and those in [4], under geo-
metric assumptions of the form (1)-(2), system (29) may indeed be proved to
be null-controllable if Q \ 7 is bounded.

4.3 Semilinear equations

The results of this paper extend easily to semilinear heat equations. Indeed,
in what concerns the well-posedness, it is sufficient to combine the results in
this paper with the classical fixed point arguments for semilinear evolution
equations. In what concerns controllability the results of this paper extend to
semilinear equations in the following situations:

a) Approximate-finite controllability for globally Lipschitz nonlinearities fol-
lowing the methods developed in [12], [14] and [35].

b) Null-controllability for nonlinearities of the form f = f(u) with f such
that

£()/Ishog(|s]) 0 as |s| —» o0

by the techniques in [14].
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