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NONLINEAR WAVE EQUATION WITH A

NONLINEAR BOUNDARY DAMPING IN A
NONCYLINDRICAL DOMAIN

Nickolai A. Lar’kin *® Madrcio H. Simoées |

Abstract

The mixed problem for a nonlinear wave equation in a domain with
a moving boundary is considered. On the moving boundary a nonlin-
ear Neumann type condition is given. Existence, uniqueness and the
exponential decay of the energy are proved.

1 Introduction

In the last years there appeared a number of papers where solvability of mixed
problems for hyperbolic equations in noncylindrical domains was studied [4, 11,
16]. It must be noted that the Goursat and Darboux problems much used in
the theory of mixed type equations and known more than hundred years are
maybe first mixed problems studied in nonrectangular characteristic domains.
There is a lot of differences between hyperbolic problems in cylindrical domains
and noncylindrical ones.

A type of a mixed problem in a noncylindrical domain depends on the type
of the lateral surface: it may be the mixed problem or the Cauchy problem
depending on the inclination of the lateral surface, see Kozhanov, Lar’kin [9],
Cooper, Medeiros [2].

To construct solutions for nonlinear hyperbolic problems in noncylindrical
domains one can use either continuation of equations into a cylindrical domain
or smooth hyperbolic transformations into hyperbolic problems in a cylinder.
Then in a cylinder the Galerkin method or semigroup theory are available.

Continuation of hyperbolic equations into a cylinder by means of the penalty
method was proposed by J-L. Lions [13] and realized by Medeiros [15], see also
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[14, 16]. Unfortunately, this continuation is not smooth and gives only weak
solutions.

If the lateral surface of a noncylindrical domain is constructed by charac-
teristic surfaces, it is possible to continue a hyperbolic operator smoothly into
a cylinder and to prove the existence of strong solutions, Lar’kin [11].

On the other hand, exploiting hyperbolic diffeomorphisms, one can try to
transform a domain into a cylinder taking into account that the transformed
equation becomes more complex [4, 5, 6, 7, 9, 10, 12].

Most papers cited above studied the Dirichlet condition on the lateral sur-
face. In the present work we consider a nonlinear damping that includes the
normal and tangential derivatives on the moving boundary. We transform our
domain into a rectangle, then we use the Galerkin method to construct a unique
strong solution and, finally, prove the exponential decay of the energy. It must
be noted that the diffeomorphism leads to a nonlinear hyperbolic equation with
the mixed derivative. This type of equations was not studied earlier when
boundary damping was used in order to prove the decay of the energy [8]. To
treat this case, we exploited a double regularization of the energy that helped
to prove the exponential decay of it.

2 Formulation of the problem

Let
Or ={(z,t) e R%a(t) <z <1;0<t < T}

DT:QTﬁ{T:t},

where «(t) is a given function.
We consider the following mixed problem

Uy — k*Uge + ®(u) = f(z,t) in Or, (2.1)
u(z,0) = up(z), wue(z,0) =wui(z) in Dy, (2.2)
U lg=1=0, uy — h(us) =0, t>0. (2.3)

r=a(t)

Here us = us + o/ (t)uz, k is a given constant; uo(z), ui(z), ®(uw), h(us) and
f(z,t) are given functions.
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We use standard functional spaces, see [14]; some special notations will be
defined such as

V(D)) ={9€ H'(Dy), ¢(1,t)=0,¢t>0},
(u,v)(t) = /Dt u(z, tyo(z, t)dz, |lu)|? = (u,u)(t).
Assumptions 1
11 & e CYR): F(u) = /qu»(s)ds >0, ®(0)=0.

1.2 heCHR), h(0)=0, |h(us)| < hi(1+ |us"),
B (us) > ho(us + |us|?), p>0.

1.3 a€C?0,00); 0<ap<1l—a)<Ly<oo, Vte][0o00);
a(0) =0; sup{[l/ (D) + [l @) + lle” (DI} < Ly < oo
>0

1.4 o) >0, k2—|d@®)|*> ko >0, vt >0,
where kg, g, Lo, L1, ho, b1 are positive constants.
Definition 1 A function u(x,t):

u € L®(0,T; H*(D,) NV (D,)),

U € LOO(O, T, V(Dt)), U € LOO(O7 ,I’7 L2(Dt))

is called a strong solution to (2.1)-(2.3) if for any finite T it satisfies equation
(2.1), initial data (2.2) and boundary conditions (2.3).

To prove the existence of a strong solution we transform the problem (2.1) —
(2.3) into a problem in the rectangle (0,1) x (0,7) = Q.
2.1 Transformed problem

It is easy to see that due to Assumptions 1.3, 1.4 the diffeomorphism (z,t) <
(y,7) defined by

7=t vy, 1) =uz(y,T1),7) (2.4)
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with the consequential change from 7 to ¢ reduces (2.1)-(2.3) to the following
hyperbolic problem

Vg — a1 (Y, D) Vyy — 2a2(y, D)vye + b1 (y, D)oy + B(v) = fi(y,t) in Q, (2.5)

) ) - )@ =) 1 @Y
v(1,t) =0, vy —y()h(ve) a 0, t>0. (2.7)
Here, .
v(t) :1—%(15); b
() = L,
oy = (=00 28)
Y3(t)
b t)=—Z5 A0 = a0,

From (2.4) and Definition 1, it follows that if u(z,t) is a strong solution to
(2.1)-(2.3), then

U(yv t) = u(x(y, t)’t)§
v € L*®(0,T; H*(0,1) N V(0,1));

v, € L®(0,T;V(0,1)), vy € L°(0,T; L%(0,1))
is a strong solution to (2.5)-(2.7), and vice versa.
We can aplly the Galerkin method in order to prove solvability of (2.5)-
(2.7). To simplity calculations and to spare the time and space, we start from
the homogeneous initial data.

3 Existence and uniqueness results

Theorem 1 Let vo(y) = vi(y) = 0 and Assumptions 1 hold. Then for any
finite T and each fi € HY(0,T; L*(0,1)) there exists a unique strong solution to

(2.5)-(2.7).
Proof. Let {w;(y)} be a basis in V(0,1) orthonormal in L*(0,1). We construct
approximate solutions to (2.5)-(2.7) in the form

¥ (1) =D g7 (s (),
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where unknown g; N(t) will be sought as solutions to the following Cauchy prob-

lem

(vﬁ, wj) &)+ (alyv;’, wj) ®)+ (alvév, wjy) (t)—2 (awyt, 'LU]‘) &)+ (blvév, wj) (t)+

+(2(™), ;) (1) + @10, 07 OR( O,0)ws(0) = (frow;) ®,  (3.)

9} (0)=g3(0)=0, j=1,...,N. (3.2)
By Caratheodory’s theorem, (3.1)-(3.2) has solutions on some interval (0, T ),
and we need an appropriate a priori estimate in order to prolong these solutions
to any (0,7") and to pass to the limit as N — oo.

3.1 Estimate I

Replacing in (3.1) w; by 20} and dropping the index N, we come to the equality
d
ZEO+ 2([a1y + bilvy, vt) (t) + 2(a2y, u?) (t) - (alt, y) (t)+

K —o(t), o (1)
(8) 7*(2)

where E(t) = |lv(t)]|? + (al,vj)(t) - QfOIF(v(y,t))dy. Taking into account
Assumptions 1, we reduce (3.3) to the inequality

2 B0, 1)ue(0, 1) + 255 20 (0,8) = 2(fi0) (1), (33)

@B+ Co(u0,0) + [u(0,)P*) < C{IAOIP + B},

where Cjy, C' are positive constants. By the Lemma of Gronwall, we get
t
2
BN (t) + Co/O {v7 (0, 7) + |o7 (0, 7)["**}dr < Ol fillZ2()s (3.4)

and the constants Cy, C' do not depend on N, ¢ € (0,7"). Here and in the sequel,
by C we denote any positive constant which does not depend on ¢t € (0,7), N
Since EN(t) < C, then |[v™(t)|lv(0,1) < C, that is,

sup max [v"(y,t)| < C. (3.5)
t€(0,T) Y€[0,1]
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3.2 Estimate 2

Taking t = 0 in (3.1), we get
(vt 3) ©) = = (@0}’ w3, ) 0) = (@sy0y’ ;) ) = (@(0™), w5) (0)+
+2(a2v$,wj) (0) — (blvév,wj) (0) + (fl, wj) (0)—

~a1(0,0)7(0)h(v;" (0, 0))w;(o)- (3.6)
Since vV (y, 0) = v (y,0) = 0, then

— (@l wiy) (0) = ([asefy + 03] w;) (0) = 0, A(vY (0,0)) =
Substituting v} (0) = w; in (3.6), we obtain
lvit O)II < 1 £2(0)]]- (3.7

Differentiating (3.1), substituting w; by 2v}} and omitting the index N, we
come to the equality

{||Utt )? + (al, “ty) (t) + 2(%%, Uty) (t)} .y 2([a1yt + butlvy, Utt) (t)-
-3 (au, Zi) (t)—2 (alttvy, Uyt) (1) +2 ([aly — 209 + by, vtt) (t)+2 (agy, vft) (t)
+2(<1>'(u)w, U“) (t) + 2a2(£)02 (0, £) + 2%{a1 (0, t)v(t)}h(vt(o, )0 (0, )+

+201 0, VY (YR (01(0, £))03,(0, ) = 2( fuer e ) (0,8). (3.8)
We estimate the boundary terms as follows
I = 2a1 (0, )y (OR (w0, 1)v3(0,2) > 4w (0,8) (1 + [0, )),  (3.9)

where a positive constant Ag is defined by Assumptions 1.2 - 1.4.
Taking into account Assumptions 1.2 - 1.4, we get

L= zi{al(o, (2) (w1 (0, 5w (0, )
< C(1+ |ve(0, ¢7+) o (0, 2)| (3.10)

(1 + v(0,)]7) v (0,2) + C(e) (1 + v (0, 2)[P72),
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where € is an arbitrary positive number. By Assumption 1.1 and (3.5), we
obtain

I = | (@ @)u,va) (8)] < Clloe®)lva®)]- (3.11)

Taking into account (3.9)-(3.11), using the Young inequality with a small

positive parameter and choosing an appropriate € > 0, we reduce (3.8) to the

inequality
%{Hvtt(tﬂl? + (01,03, ) @)+ 2( @100y, 000 ) ()} + Co (14 0,01 ) (0, )
= C{Ilfu(t)||2 +lla@I + oy O + [l @17+

Hlog O + w0, (L + Nlue (0, t)ll”)}- (3.12)
Introducing
Ex(t) = lou()IP + (o,02 ) (8),
integrating (3.12) and taking into account Assumption 1.2 and estimates (3.4)
and (3.7), we obtain

t
Ey(t) < O{EQ(O) + [{IA@P+ 1Al + Eﬂr)}m}.
0
By the Gronwall lemma
E'(t) < C{E2(O) + HfH%Il(O,T;LZ(O,l))}7Vt € (0,T). (3.13)
Returning to (3.12), we have
T 2
/ ol (O,t){l 3 |vtN(0,t)|"}dt <C. (3.14)
0
Combining estimates (3.4), (3.13), (3.14), we obtain
o™ Nl o.sv0,1)) + 107" Il 013w 0,1+
+1v2 (0, )] F0 (0, ) |01y + v = 07322000 < C

uniformly in N. Hence, there exists a function v(y,t) such that
vV — v weakly —x in L*(0,7;V(0,1)),
vV —=v; weakly —x in L*(0,T;V(0,1)),
(3.15)
vl — vy weakly —x in  L*®(0,T;L?(0,1)),

vN(0,t) — v:(0,¢) in C(0,T).
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This allows us to pass to the limit as N — oo in (3.1) and rewrite the

result in the form

(10,00 ) () + (o100 0) (&) + @10,y (h(w1(0, 1) 0(0) =

({£: = v + arvey — @(0) — b}, 0) () = (G,0) (1), (3.16)
where ¢(y) is an arbitrary function from V(0,1). It means that a.e. in (0,7),
v € L*(0,7;V(0,1)) is a solution to the following elliptic problem

G(Z/v t) 2
p— ( L ]. =
Vyy a; (y7 t) (Oa )7

v(1) =0, vy(0) = ~()A(v:(0,2))-

It follows from the theory of elliptic problems that

v e L®(0,T; H*(0,1) N V(0,1)),
hence, (3.16) can be rewritten as follows
Vgt — A1V — 2090y + Doy + ®(v) = f1, ae. in Q,

vy — 7(t)h(ve) - 0, w(1,t)=0,
U(O7 y) = Ut(ovy) =0.

This proves the existence part of Theorem 1.

3.3 Uniqueness

If there exist two distinct solutions v1,vs to (2.1)-(2.3), then z = v; — vy is a

strong solution to the following problem

Zu — 12y — 2092y + D12y + O(v1) — P(v2) = 0, (3.17)
2(0,8) = YO { h(02(0,) = heu(0,2) } = 0, (3.18)
2(0,7) =0, 2(0,y) = 2z(0,y) = 0. (3.19)

Multiplying (3.17) by 2z and integrating over (0, 1) X (0, ¢), we come, taking
into account (3.18), (3.19), to the equality
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@) + (al,z;) (t) + /Ot 2a5(0, 7)22(0, 7)dr
. /Ot 210, 7)) {017 (0,7)) = h(e2r (0,7) } (010 (0,7) = v, (0, 7) )7

= _/0 {Q(CLZ;Z‘%) (1) + ([<I>(U1) = @(vz)]vzf)('r) + (blzy,zT)(r)}dr. (3.20)
By Assumption 1.1 and (3.5)

|(fe() - @), =) (1)] < Cllz@lll= @]

and, due to Assumption 1.2, h(v;) is a monotonic function. This allows us to
reduce (3.20) to the inequality

E(t)gc/o B(r)dr, B(t) = 2@l + (a1, 2) 1)

By the Gronwall lemma, F(t) = 0,Vt € (0,T), whence, z(y,t) = 0in Q
which implies that z(y,¢) = 0. This completes the proof of Theorem 1.
O
Theorem 2 Let Assumptions 1 hold; vo € H?(0,1) NV (0,1), v € V(0,1)
and v}(0) — y(t)h(v1(0)) = 0. Then for each fi € H'(0,T; L?(0,1)) there exists
a unique strong solution to the problem (2.5) - (2.7).

Proof. The change of the unknown function

2(y,t) = v(y,t) — voly) — tvi(y)

transforms (2.5)-(2.7) into a problem with homogeneous initial data and with a
slightly different right hand side, ®(z +vo(y) +tv1(y)) and boundary conditions
at y = 0, but this is not an obstacle to obtain necessary a priori estimates and
to prove Theorem 2. For details see [9,10].

Remark 1 Ezploiting the arguments of F. Browder, [1], we can prove that
v € L5, (0,00, V(0,1) N H?(0,1)),

v € LR (0,00;V(0,1)), wy € LL(0,00; L2(0,1)).

loc loc
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As a direct consequence of Theorem 2, we have

Theorem 3 Let Assumptions 1 hold; ug € V(0,1) N H%(0,1), w; € V(0,1)
and uog — h(uy(0) + o/ (0)uo,(0)) = 0. Then for each f € H'(0,T; L*(D,)) there
exists a unique strong solution to the problem (2.1)-(2.8).

4 Energy decay

In this chapter, using the method of double perturbation of the energy (the
mixed derivative, —aqv,:, implies double regularization) we prove the expo-
nential decay of the energy for the problem (2.5)-(2.7), and consequently, for
the original problem (2.1)-(2.3). Due to Remark 1, we consider (2.5)-(2.7) in

Q =(0,1) x (0, 00).
Assumptions 2
21 0<ap<y(t)<L<oo VieR .

22 a€C?0,00), supo{ld/(t)|+[a”(t)]+]a" ()]} < Ly, &/(t) 2 0.
For each € > 0 there exists T, > 0 such that |/ (t)| + [&"(t)| < €,Vt > T..

23 ai(y,t) >ao >0 in Q=[0,1] x [0,00).
2.4 h()’l)t S h(Ut) S hl‘vt|-

25 ®eC'(R), ®(0)=0, F(v)= [, ®(s)ds>0; and there exist
constants 61,0 € (0,1) such that 0D(v)v > (2 + 61)F(v).

2.6 [l > CreX,

where oy, L, L1, ag, ho, h, Cy, x are positive constants.

It is clear that Assumptions 2 imply also Assumptions 1, hence, it follows
from Theorem 2 and Remark 1 that for all finite 7 > 0 there exists a unique
strong solution to (2.5)-(2.7). It means that we can start from ¢ = T, of As-
sumption 2.2. The value of € will be chosen later. Using Assumptions 2.1 - 2.4,
it is easy to verify that

2aaphg + 2as >6> 0, Vi >T,. (41)
y=0
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As earlier,
1
E(t) = ||ve|* + (mw;) )+ 2/ F(v(t, y))dy. (4.2)
0
Multiplying (2.5) by 2v;, we come to the equality

%E(t) o+ 2( a2y, 07 ) (£) + 201 (0, )Y (Dh(w1 (0, 1)1 0, 1) + 200, (0, )

—(a1,02) (t) +2([oy + biJoy, 0 (6) = 2( fr, ) ().

Taking into account Assumptions 2.3, 2.4 and (4.1), we transform it to the

inequality

B (t)+5u2(0,2) < 2(fu, Ut) 1)+ (e, U;) ()-2 (o +bilu, Ut) (t)-2 a2y, uz) ().

(4.3)
4.1 Perturbations of E(t)
We define for each n € (0, 1] and @ from Assumption 2.5
E(t) = B() — 20((y - Dz v2) (1) (1.4)
and
E,(t) = E(t) +np(1), (4.5)
where

plt) = o)+ 0p20); o)) =2((r = Doysu) @ pal) = (v,0) (). (46)
Proposition 1 There is such Ty(€) that for all t > Ty(¢)
d(y,t) = a1 (y,t) — 25(y — Daa(y, t) > % =dy>0, in Q. (4.7)

Proof. Easily follows from Assumptions 2.2, 2.3 and from the structure of
(lz(y, t)

Simple calculations show that by (4.7)

E(t)>0, ¥t>Ti(e)
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and for sufficiently small n > 0 there exist positive constants Cy, Cy, Cs, Cy such
that
E(t) < E(t) < C1E(t), CuEy(t) < E(t) < C3Ey(t). (4.8)

Substituting (4.4) into (4.3) and using the Young’s inequality, we get

B0 +007(0.8) < 25 (= D) @)+ ({22 o))
+({2lan) +lay + 1]+ ¢},07) (6 + <A (4.9)

Taking into account the structures of a;(y, t), az(y, t),b1(y, 1), it easy to see
that Assumptions 2.1 - 2.3 imply

|a1e(y, 1)| + lasy (y, )] + lay (y, £)[ + [ba(y, 1)| < Cse, for ¢ >Te,  (4.10)

where the constant C5 does not depend on ¢, t.
Having (4.10), we reduce (4.9) to the form

%E(t) +502(0,1) < —zni((y — 1)az, v2)(t)+

+Cse{(ar, v) (1) + [lo(B)]1*} + —||f1(t)||2 (4.11)
where Cg is positive constant.
Now we calculate

EL(t) = E'(t) + n(6h(6) + 90} (8))- (4.12)

Lemma 1 Fort > T,
pL(0) < 20 (r=1)az,3) ()42 (F ), 1) ()= (a0, ()= e 0P+ Corf (0, 1)+
+0se(a,2) () + A O, (1.13)

where Cr,Cg are positive constants.

Proof. Straight calculations give

A0 = 2((y = D vy ) (8) + a1 0,020,8) — (a1,93) () = () P+

+02(0,8) + 2> ((y D)az, v2) (1) + z(F(U), 1) (6) - 2F (4(0,1))
= ((y — 1) {ay, +2(b1 + a2}, uj) (®). (4.14)

Using (4.10) and Assumptions 2.2, 2.5, we transform (4.14) into (4.13).
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Lemma 2 Fort > T,
B74(t) < 0Cs()3(0, 1) + 0C10e[(ar, v2)(t) + [[oe(®)]%] + Bllex (1)
~0(2(),v) () + Cu (A B (4.15)
Proof. By (4.6) and (2.1)
A(®) = (v,0) (8) + e ()1 = o2 = 010, 8)2, (0, 0(0,1)
—2a5(0,£)v,(0,£)v(0, £) — (al, ug) (t) - ({aly + b}y, v) (t) — 2 (am, uy) (1)
—2(avat,v) (1) - (CD(U),U) ®+( fl,v) (1). (4.16)

Taking into account that
1
00, < @I < (a9 ) (4.17)
0

boundary condition 2.7, Assumption 2.4 and (4.10), we find

I = —a1(0,t)vy(0,)v(0,t) — 2a2(0, t)v:(0, t)v (0, t)
< 2¢(a,2) (1) + Cua((0,). (418}
L = ’ ({aly + b1 }oy, v) )+ 2(a211t, ’Uy) (t) + Q(agyvt, 'U) (®) 15

< Cuse{(ar,v3) (t) + [lv. ()17}

Substituting (4.18), (4.19) into (4.16), we come to (4.15).
Now, using (4.11), (4.13) and (4.15), we transform (4.12) into the inequality

E, < —{6 = n[Cs + 6Cy(e)]}v2(0, 1) — n{e(cp(u), v) (t)

—2(F(1}), 1) (t)} — n{1 = [Co + 6Co)e} (al, o2 (¢)

—1{1 — [Cs + 8C1o)e — 8} [|os]|” + Cra() A ()%, (4.20)
where a positive constant Cy4(e) depends only on € > 0.
1-96 )
Putti = h = ———— we red 4.2
utting e 5(Co + 0Cr0) and then n 3(Cs 1 600’ we reduce (4.20)

to the form
Ej(t) < —Cis E(t) + Cis| 1B, (4.21)
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where Cig is a positive constant and

1-6
Cis = min {7751, 77’ 77( 5 )} > 0. (4.22)
Taking into account (4.8), we obtain from (4.21)
C CyC
& —iE(t) + Culli@I* < - 40115En(t) + Cis| L@

Solving this inequality, we get

t
Ey(t) < e { Ey(0) + Crge™ / i (7)Pdr |, (4.23)
0
C‘146‘15
h =245 5.
where A C >0

1
Taking into account (4.8), Assumption 2.6 and decreasing, if necessary, A >
0, we obtain
E@®) < Ce*“{l + E(o)}, (4.24)
with A defined by (4.22), (4.23) and inequality 0 < A < x. It means that we
have proved the following result.

Theorem 4 Let Assumptions 2 hold. Then there exist positive constant A, C
such that
E@t) < Ce"\t(l + E(O)).

From (4.24) we can obtain also decay of the energy for the problem (2.1) -
(2.3). Defining

E,(t) = /D (u? + ui) dz, E(1) = /01 {vf(y, T)+ al(y,T)vZ(y, T)}dy

and using transformation (z,t) < (y,7), we get
E,(t) = {u?(a:,t) o uz(x,t)}da: < CyE(r) (4.25)
D¢
and
E(0) < CLEL(0),

L? 92
here Cy = {1 21y L
where (y = max + o2 + . L%

tuting (4.24) into (4.25), we obtain

}, C, = max {2, k2 + 3\a'(0)|2}. Substi-

Eu(t) < Ce_)‘t{l + EU(O)}. (4.26)

Thus we prove the following theorem.
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Theorem 5 Let Assumptions 2 hold. Ifug € V(0,1)NH?(0,1), wu; € V(0,1)
and gz (0) — h(u1(0) + /(0)ueg(0)) = 0, then for each f € H'(0,00; L*(Dy)),
satisfying Assumptions 2.6, there ezists a unique strong solution to (2.1)-(2.3)

such that the energy decays exponentially in time.
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