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HOMOGENIZATION AND CORRECTOR RESULTS
FOR A NONLINEAR REACTION-DIFFUSION
EQUATION IN DOMAINS WITH SMALL HOLES

Joel Souza Airton Kist ®

Abstract

This paper is mainly devoted to the homogenization for a nonlinear
reaction-diffusion equation with homogeneous Dirichlet boundary condi-
tion in a domain containing tiny holes periodically distributed in each
direction of the axis. For holes within a critical size (for example, in the
three dimensional case, the obstacles have a size of €* and are located
at the nodes of a regular mesh of size ¢), the proofs are performed in
the abstract framework introduced by D. Cioranescu and F. Murat for
the study of homogenization of elliptic problems in domains with tiny
holes. This is based on the use of suitable test functions adapted to the
geometry of the problem.

1 Introduction

In this paper, we study the homogenization and corrector for a nonlinear reaction-
diffusion equation with homogeneous Dirichlet boundary condition in a domain
containing “tiny” holes periodically distributed in each direction of the axis.
Let Q be a fixed bounded domain of RY (N > 2). Denote by €2, the domain
N(e)
obtained by removing from Q a set S = |J S? of N(¢) tiny closed subsets of
i=1
N(E) z
2, namely, Q. = Q — |J S!. Here, € > 0 denotes a parameter which takes its
=1
values in a sequence which tends to zero while N (¢) tends to infinity. Finally, let

T > 0 be fixed. We consider the following nonlinear reaction-diffusion equation

ul — BAue + |uelfue + Pu, = f. in Q.= Q x (0,7T),
ue =0 on X, =08 x (0,7), (1.1)
ug(x,0) = ul(x) it K
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where 8 and p are positive constants and o € R.
The study of this equation is motivated by the reaction-diffusion equation
that appears in Brezis [3],

u — MAu= f(u) in Qx(0,7)
+ Boundary conditions and initial data,

where u(z,t) is a vector with N components, M is a N x N diagonal square
matrix and f : RY — R¥ is a nonlinear application.

We are considering a decoupled vector equation, thus, it suffices to study
the equation with only one component, i.e., in the scalar form. Such reaction-
diffusion equations model phenomena that appear in several fields of the science
such that: chemistry, biology, neurofisilogy, epidemiology, combustion, genetics
of population, etc.

The work that we develop here follows from [9] and is essentially based on
[7]. The homogenization of the reaction-diffusion equation is also studied here
by using some techniques established since 1977, by Luc Tartar (see [18]).

In the whole paper, the sets €2, satisfy the conditions of the abstract frame-
work introduced by Doina Cioranescu and Frangois Murat [9] (see hypothesis
(2.1)). The study of the homogenization of elliptic problems in perforated do-
mains with “tiny” holes, with homogeneous Dirichlet boundary conditions.

The model case to our study is provided by a periodically perforated domain
(with a period 2¢ in the direction of each coordinative axis) with holes of size
agi, where ag: is asymptotically equal to the “critical size” a.. This critical size

ae is given by

(1.2)

€

[ b.exp(—Cy/e?) for N =2,
T CpeN -2 for N > 3,

where Cy > 0 is fixed and £2logd. — 0, where ¢ — 0 (see [7], Section 2).

This condition is fundamental in the construction of the abstract framework
of hypotheses about the holes. The proofs given in this paper are based on the
existence of such an abstract framework of hypotheses.

We observe that the main difficulty of our work is that, due to the hypotheses
about the data of the problem, we only obtain weak convergence of the term
Au,. This motivates us to use the abstract framework (2.1) about the holes.
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Thus, it will be possible the passage to the limit in this term in the variational
formulation. We still observe that for the treatment of this problem other
techniques would be possible, such as compensated compactness or the Bloch-
Waves Method (see [10]).

This paper is only concerned with homogeneous Dirichlet boundary data.
We observe that the case of homogeneous Neumann boundary conditions gives
completely different results, with “critical” size being a. = ¢ (c.f. [6], for the
homogenization of this problem).

The present paper is organized as follows:

In §2, we recall the abstract framework of [9] on the geometry of the holes.
We present the main result of this paper in §3, which gives us the convergence of
the homogenization process of the nonlinear reaction-diffusion equation. Lower
semicontinuity of the corresponding energy is also demonstrated. In §4, we still
present the corrector result for the nonlinear reaction-diffusion equation in a
perforated domain. At last, in §5, we present similar results in the case where
the size of the holes is smaller than the critical one.

We have the following result.

Theorem 1.1 (Ezistence and uniqueness) Assume Q. as above and that the
functions f. and u? satisfy the following hypotheses

ud € HE(Q), fl e LY0,T;L*(S)), f-(0)€ L*(Q.),
p - any real number, when N =2, and p < N9 when N > 3. 1.3)
Then, there exists only one function u. : Q. — R such that
ue € L°(0,T; HY (), (1.4)
u, € L*(0,T; Hy () N L®(0, T; L*()), (1.5)

and

ul — BAU + |uc|Pue + Pu. = f. on Q. = Qe x (0,7),
ue(,0) = ud(z) on ., (1.6)
ue € CO([0,T7; HA(S2))-

Proof. Standard (see, for example, [16], pg. 8).
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Remark 1.1 Applying the Faedo-Galerkin method, we obtain that the approzi-

mate solution ., satisfies

Um0 rsz2(020)) < C and  |Jugyllzaomaie.y) < C, (1.7)

where
C =C (1£:00) 200, 1ellazeny 1oz )

is independent of m, for each € > 0 fized. Thus, from (1.3)1, (1.7) and Lemma
1.1 of Temam [19], pg. 250, we obtain

[temllcogo,rym3 @) < Cs (1.8)
independent of m, for each ¢ > 0 fized (see also [16], pg. 8).

2 Preliminary results

2.1 GEOMETRIC SETTING

Instead of making direct geometric assumptions on the holes S¢, we adopt here
the abstract framework introduced by D. Cioranescu and F. Murat (c.f.,[9])
where the assumption on the geometry of the holes is made by assuming the

existence of a suitable family of test functions. Precisely we will assume that
( there exists a sequence of functions (w., pe, 7.) such that
() w. € HY(S) N L®(Q), [wllzeo) < Mo,
where M, is a fixed positive constant.
(%) w.=0on S,
(i4i) we — 1, weakly in H*(Q2), and a.e. in Q,
(v) —Aw, = p, — 7., where y., 7. € H(Q),
1. — i, strongly in H=1(Q), and
(Ye, Veda =0, for any v, € H}(Q), such that v, = 0 on S,.

(2.1)

In (2.1) and henceforth, (- , -)q denotes the duality pairing between H ()
and H}(Q), while (-, -)q, will denote the duality pairing between H~!(€2.) and
Hi ().

Remark 2.1 Ezamples, where the hypothesis (2.1) is satisfied, are provided in
[7], Section 2.1; [9], Example model 2.1; and [14], Chapter 1.
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From the abstract framework of hypothesis (2.1) the following result can be
proved

Lemma 2.1 If (2.1) holds true, the distribution u € H=(Q), which appears in
(1v), is given by

0 P = lim [ @lVucfda, ¥ o € DE) (22)

Thus, u is a positive Radon’s measure as well as an element of H~1({2); moreover
1(£2) is finite.
Proof. See [9], Chapter 1, and [15], Paragraph 2.
O
We now present a result of 1950s, due to J. Deny and included in [4], that
is fundamental for what we desire.

Theorem 2.1 Let Q be an open set of RN and p a positive Radon’s measure
such that p € H1(Q). Let v € H} (), then one has that v € L' (2, dp) and

(1, v)a = / v, (2.3)

This allows one to define, without ambiguity, the space

V = HY(Q) N LX(Q, dy) (2.4)

as a Hilbert space with the scalar product

a(u,v)z/Vu-Vvda: + /uvdu. (2.5)
Q Q

Finally, for any v € L?(£2.), we define ¥ as the extension of v, which is zero
outside €2, i.e.,

s ={3 158 oo

Based on [9] and [15], we recall the following result about lower semiconti-
nuity of the energy concerning the homogenization of elliptic problems.
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Theorem 2.2 Assume that (2.1) holds true and consider a sequence z. such
that

z € H} (),
ze =0 on S, (2.7)
ze — z, weakly in H(Q).

Then,
z€V,

liminf/ \Vz5|2dx2/|Vz|2dx+/\z|2du.
e—0 Q Q Q

Moreover, when z. also satisfies

/\VZE\2LZ$—>/|Vz|2dx+/|z|2du, (2.9)
Q Q Q

Ze = W2 + 7T,
{ re = 0, strongly in Wol’l(Q). (2.10)

(2.8)

one has

Finally, if z belongs to H}(2) N C°(Q), the convergence of r. in (2.10) takes
place in the strong topology of H} ().
g

2.2 Compactness results

Now, we recall some compactness results. When X and Y are two reflexive
Banach spaces, and X C Y with compact and dense embedding, we have the

following results:

Proposition 2.1 Assume that

ve = v, weakly in L*(0,T; X), (211)
vl =, weakly in L*(0,T;Y). :
Then,
ve — v, strongly in C°([0,T];Y). (2.12)

Proposition 2.2 Assume that (2.1) holds true and consider a sequence of func-
tions v, in L*®(0,T; H (Q)) N WH=(0,T; L?()) satisfying

(2.13)

T
X
UE

U 2 v,  weakly-star in L>(0,T; Hy(2)),
o', weakly-star in  L®(0,T; L*(12)).
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Then,
0,9-(-))a = (8,v(-))q, strongly in C°([0,T)), (2.14)

for any 6 € H~1(Q2), and, on the other hand,
v € L=(0,T; V) NnWh*(0, T; L*(Q)).

The proofs of these results are classical and can be found in [7] and [17].

3 The homogenization result

After we have obtained a solution of the nonlinear reaction-diffusion equation
in the domain €., for each € > 0, fixed, we will obtain in this section a solution
of this equation in the whole domain €. For this, we will make ¢ — 0. This
is what we call the homogenization result, which is presented in the following
Theorem.

Theorem 3.1 Assume that (2.1) holds true and consider a sequence of data
which satisfy

w0 — w0, weakly in HL(),
fe— £, strongly in L'(0,T; L*(2)),

= 3.1
with f. and f.(0) uniformly bounded, respectively, in 3.1)
LY(0,T; L%(Q)) and L?(9).
Then, the sequence of solutions u. of (1.1) satisfies
. —u,  strongly in  C°([0,T]; L*()),
'125 =y,  weakly-star in L>®(0,T; H} (), (32)

u. = o', weakly-star in  L®(0,T; L*()),

u. =, weaklyin  L*(0,T; H(R)),

where u = u(x,t) is the unique solution of the homogenized nonlinear reaction-
diffusion equation

U — BAu+ Buu+ |[ulfu+ou=f in Q=0Qx(0,T),

=0 in ¥=0Qx(0,7),
Z(z, 0) = u%(z) ZZ Q, (33)
u € C°[0,T); V),

where V.= H(Q)NL*(Q,dy) and u is a Radon measure given by Lemma (2.1).



168 J. SOUZA A. KIST

Remark 3.1 In view of definition (2.5) of the scalar product a(-,-) in V, the
variational formulation of the reaction-diffusion equation (3.3); is

d
- / (e, Dl + Baluldlym / o, B3P Bl
+ a2/ u(z, t)v(z)de = / f(z,t)v(z)dz, inD'(0,T), YoeV
Q Q
u € L®(0, T; V) N WL (0, T; L*(Q)).
Note that, according to Theorem 2.2, the function u® (which is the weak limit
in H}(Q) of functions u vanishing on the holes S.) belongs to V, so there is
no contradiction between the two assertions u(z,0) = u® and u € C°([0,T]; V).

Proof. We proceed in four steps.
First step - A priori estimates

From (1.7) and (1.8), making use of Banach-Steinhaus’ Theorem, it follows
that there exists a subsequence, still denoted by the same symbol, such that

U, * u, weakly-star in  L*(0,T; Hy(2)),
T, u', weakly-star in L*®(0,T; L*()), (3.4)
u.—u, weaklyin  L?(0,T; H}(Q)).

Now, from (3.4) and Proposition 2.1, considering X = H} (), and Y = L?(Q),

we have

U, — u, strongly in C°([0,T]; L*(R)), (3.5)

and from Lions’ Lemma, making use of the limitation of |u;|[u. in L?(Q), we
have that

|te| P — |u|Pu, weakly in L2(0,T; L?(52)). (3.6)

On the other hand, in view of Proposition 2.2, we have

u € L=(0,T; V) N WbH=(0,T; L*(Q)) n WH(0, T; Hy (). (3.7)

Second step - Passage to the limit in the equation (1.1),
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Using the test function ¢ (¢)w.(x)¢(z), with ¢ € D(0,T), ¢ € D(Q2) and w,
of the abstract framework (2.1), we obtain

(ue, O (B)we(2)0(2)) Q. + (=BAue, Y(t)we (2)9(2))q. + (|uel us, Y()we(2)p(2))q.

+{@ue, Y(t)w:(2) (7)) q. = (fer V() we(2)p(2)) q.
(3.8)

where (-, -)g. will henceforth denote the duality pairing L'(0,7; H(€.)) and
10, T; H)(2.)).
Integrating by parts the second term of (3.8), with respect to the variable

T, we obtain

(—Aug, Yw.p)g, = Vu - YVw.odzdt + Vue - pwVopdrdt.  (3.9)
QE QE
On the other hand, we also have

Vu, - pVwepdzdt = (—Aw,, Yup)g. — / Vw, - puVdzdt.  (3.10)
QE QE

Thus, combining (3.8)-(3.10), we arrive at

<uIE) ww£@>Qe I <_ﬁAw£7 1/}UE<IO>Q5 - ﬁ wa ° Q/JUEV(pdl‘dt
Qe

+8 / Ve - pweVipdadt + {[ue] e, $(0)we (2)0(2)) e,
Qe
+<042u5, wwd@)Qa = <f€7 WUESD)QE-

(3.11)

Next, we are going to analyze only the convergence of the 274, 4" and 5t
terms of the equation (3.11), since the convergence of the others terms don’t
offer any difficulty.

T
2"d term. Now, consider the function U, € H{(Q) defined by U, = / Yu.dt.
0

The convergence (3.4); implies that the sequence U, satisfies

T
{ U(z) = / Yudt, weakly in H} () and strongly in L?(Q) (3.12)

0
U.(z) =0, on T,.
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In view of the hypothesis (2.1)(iv), —Aw, = p. — 7., and applying Fubini’s
Theorem, we have:

<_Aw571/]“'5€0>Q5 = (ke ; Ye) PUeP)qQ.

= (e = 72)5 (/ erdt) @)H*I(Q),Hé(ﬂ) = <NE)UE‘P>H*1(Q),H6(Q)7
0
(3.13)

since <7€7u590>H’1(Q),H6(Q) =0.
Thus, from (3.12) and hypothesis (2.1)(4v), we obtain the following conver-
gence in (3.13)

T
(—Awe, Yucp)g. — (K, (/ Wbdt) @) u-1(0),H3(9)- (3.14)
0

4*h term. Applying Fubini’s Theorem, we obtain

T
Ve - Yw.Vodrdt = / w V-V (/ wuNEdt> dz. (3.15)
0

Qe Q

From (3.12);, for a subsequence still denoted by the same symbol, we see that

\Y (/OT wa;dt) s v (/OT wudt) , weakly in [L2(Q)]". (3.16)

But, from the hypothesis (2.1)(4%), and Relich-Kondrachoff’s Theorem, for a
subsequence, still denoted by the same symbol, we have

w, — 1, strongly in L?*(Q). (3.17)

Thus, from (3.16) and (3.17), we obtain the following convergence in (3.15)

T
Vu, - Yw.Vodzdt — / Ve -V (/ wudt) dz. (3.18)
Qe Q 0

5" term. Analogously applying Fubini’s Theorem, we obtain

Ve
P e, = / i ( / w|a;|ﬂa;dt) i (3.19)
Q 0

From the convergence (3.6), for a subsequence still denoted by the same symbol,
we see that

T T
/ w|u~5|"u~gdt4/ Y|ulfudt, weakly in L*(£2). (3.20)
0 0
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Thus, from (3.20) and (3.17), we obtain the following convergence in (3.19)

T
(et it i, — /ﬂ " ( /0 1/1u|"udt> . (3.21)

It is now easy to pass to the limit in each term of (3.11). Using Fubini’s
Theorem and Deny’s Theorems (see Theorem (2.1)), we obtain

</ﬂ UI@ dz, ) D01t <ﬂ/ﬂu<ﬂ du, w>’D’,D(O,T)
+<5/ﬂ Vu - Vo dz, ¥)p por) + </ |ulue dz, ¥)p pom) (3.22)
+<a2 /Q up dz, w)D',D(O,T) = </Q fe d$>¢>v’,D(O,T)~
Since 1 € D(0,T) is arbitrary, we have that

/u'godx+5/u<pdu+,3/Vu-V<pda:+/|u]”u<pda:
) Q Q Q

+a? / upde = | fodz,
Q Q

(3.23)

for any ¢ € D(Q).

In view of (3.7), and the density of D(Q2) in V (see [7], Appendix) we have
that (3.23) allows one to extend to every function v € V. Thus, we have proved
(3.3); in the weak sense.

Third step - Passing to the limit in the initial data
From Proposition 2.2 we deduce that
<§071’LV53(')>H*1(Q),H6(Q) - <§07u(')>H*1(Q),H6(Q)a strongly in CO([O.T]), (3.24)

for any ¢ € H-1(Q). Since %.(0) = u? tends to u°, weakly in H}(Q), from
uniqueness of the limit, we obtain

u(z,0) = u’.

Fourth step - End of the proof

In conclusion, we proved that, up to the extraction of a subsequence still
denoted by {u.}, the subsequence {u.} satisfies (3.2), where the limit

u € L=(0,T; V) nWh=(0,T; L*(Q)) n W(0, T; Hy(Q))
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and satisfies (3.3); — (3.3)3 in the weak sense.
The uniqueness of the solution of (3.3) allows us to deduce that the whole
sequence satisfies (3.3)4. This completes the proof of Theorem 3.1.

g
Now, we will make some observations.
Remark 3.2 We can rewrite the equation (1.1); in the form
uL — BAu, + o*u. = ge, (3.25)

where g. = f. — |uc|Pue is bounded in L>(0,T; L*(Q)), since |uc|’ue is bounded
in L*°(0,T; L?(2)) and f. is bounded in L°°(0, T; L*()) due to the assumption
(3.1)3.

We also have that g. = fl — (p+ 1)|ue|Pul. Thus, from the Sobolev’s embed-
ding, using that % + % =1, by the Holder’s inequality, we obtain

2 2

iy q
Jbuif = [ ucigion < ([ petar)” ( f i) <oo
QE QE € QE

(3.26)
because pN < q what implies H} (Q) < L1(Q) — LN (Q,). So, from (3.26),
(1.4) and (1.5), we conclude |u|Pu. € L2(0,T;L*.)). Therefore,
gL € L'(0,T; L*(Q)).

In the same way, the homogenized equation takes the following form
v — BAu+ Buu + o’u =g, (3.27)

where g = f — |ulPu, with g € LY(0,T; L*(Q)) and ¢' € L'(0,T; L*(Q)).

4 Energy and corrector results

This section is dedicated to the establishment of the corrector result for the
nonlinear reaction-diffusion equation, using the article of D. Cioranescu et al.,
[7]. An important result in this section is the strong convergence of the energy
in C°[0,T]). However, before we state the strong convergence of the energy we
establish the pointwise convergence in time and lower semi-continuity property
of the energy.
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Proposition 4.1 Assume that the hypotheses of Theorem 3.1 are satisfied.

Then, for all fized t € [0,T], we have

Ue(t) = u(t), weakly in H}(Q), (4.1)

/\u(x,t)|2d:1: = lim/ u.(z, t)|2dz, (4.2)
Q e—0 Q-

// [Vu(z, 5) deds + // e e (1.3)

¢
< liminf |Vue(z, 5)*dzds,
e—0 0o Ja.

B(t) < lim inf B, (t), (4.4)

where the energy E.(-), associated to the equation (8.25)), is defined by

1 t t
E.(t) = §|Ue(t)|%2(ﬂs) . /3/0 Ve (s) [fr2gq, v ds + 042/0 |ue (5)[ 720, s,

and the energy E(-), associated to the equation (3.27)), is defined by

1 t
B(O) = 5/ut)fiaw + B [ 19u6) e

t t
8 / () 230,y + 0 / [14(5) 2 .

Proof. The convergence (4.1) has been proved in the third step of the proof of
Theorem 3.1 (see (3.24)). Thus, since Hg(€2) is compactly embedded in L?(£2),
we obtain (4.2). Now, in order to obtain (4.3), it is sufficient to apply Theorem
2.2, since u.(t), for any ¢ € [0,T], satisfies the hypotheses of this theorem.
Then, we integrate on (0,t), employing Fatou’s Lemma. From (4.2) and (4.3),
we immediately obtain (4.4).
O
Now, we state the following proposition about the strong convergence of the
energy. For this, due to Remark 3.2, we have that {g:}. is uniformly bounded
in L*(0,T; L*(Q)).

Proposition 4.2 Assume that the hypotheses of Theorem 3.1 are satisfied, then

E.(t) = E(t), strongly in C°([0,T]). (4.5)
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Proof. We have the following energy identities

Ee(t) = EE(O) +/O / gs(‘r7 5)“5(:’37 s)dxds, (46)

¢
E(t) = E(0) +/ /g(x,s)u(z, s)dxds, (4.7)
o Ja
with i i
E.(0) = 5\”2 12, and B(0) = §|U’O|%‘Z(Q)'

In view of (3.5) and from the fact that, in particular, g. — g, in L'(0,T; L%(Q)),
we have

/Ot/ 9:(x, $)ue(z, s)dxds — /Ot /Q g(z, s)u(z, s)dxds, (4.8)
for any ¢ € [0,T]. On the other hand, (4.2) implies that
E.(0) — E(0) (4.9)
Therefore,
E.(t) = E(t), for anyt€[0,T], (4.10)

which is a pointwise convergence in time.

In order to obtain the uniform convergence of the energy, we apply the
Ascoli-Arzela’s Theorem. Thus, we need to show that the family of energies
{E:(t)}e>0 Is equicontinuous. In fact, given any ¢ € [0,7], and h > 0 small

t+h
/ / gE(:’v7$)ag(«T} S)dl‘ds
t Q

t+h
< “gc‘”L‘X’(O,T;L'Z(Q)) ||Us(3)||L2(Q)d8.
t

enough, we have

‘EIE(t + h) - Es(t)| —

Since g. is bounded in L*>(0,7;L?()) and since, in particular, u. converges
strongly in L'(0,T; L*(£2)), this implies that

|E.(t+ h)— E.(t)] =0, as h—0, (4.11)

uniformly on &, which proves that the family of functions { E (¢) }¢o is equicon-
tinuous.

Thus, from (4.10), (4.11) and Ascoli-Arzela’s Theorem, it follows the uniform
convergence of the energy (4.5). O
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Now we define,

1 t t
ec(0)(®) = 510 Oltsay + 8 [ (V0(6) gy +0? [ 1o(6) s
(4.12)
for v € C°([0,T); H} (%)), and

1 2 ¢ 2
()= 5Ol +8 | IV0(e) s
t t
48 [ G, v(s)ads + o [ (o),

for v € C°([0,T; V).
From these definitions, we present the following result

(4.13)

Proposition 4.3 Assume that the hypotheses of Proposition 4.2 are satisfied.
Then,

ec(ue — wep)(-) — e(u — @)(-), strongly in C°([0,T]) (4.14)
for every ¢ € D(0,T; D()).
Proof. We have

ee(ua - we@)(t) = es(us)(t) S ea(wsgp)(t) - /Qﬂs(x,t)wg(x)ga(a:, t)diE

-2 /Ot/QVﬂE(:E,s) - V(we(x)p(z, 8))dzds

t
—2a2/ / Ue(x, s)we (x)p(z, $)dzds.
0 Ja
(4.15)
We will pass successively to the limit in each term on the right hand side of
(4.15).

First term. Since e, (u.)(t) = E.(t), we have from Proposition 4.2 that

e (ue)(+) — e(u)(+), strongly in  C°([0,T]). (4.16)

Second term. Differentiating in time, one shows that the function |wE<p(-)|%2(Qe)
is bounded in W>(0,T) < C°([0,T]) with compact embedding, from Rellich-
Kondrachov’s Theorem. Thus, using (2.1)(i7), we obtain

|wep()Ta(0,) = [0 ()lfa) = |0l72q), stromgly in C°([0,T]),  (4.17)
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and also that
1 t
/\wggo(s)\%z(ﬂe)ds—)/ |<p(s)|%2(mds, strongly in  C°([0,T]).  (4.18)
0 0

On the other hand,

/ 9 (w(5)) s, ]Nds_/ 19 (wep(5)) Py s
= /(Awssﬂ( ), ws¢(8)>nd8—2/ /Vw6 V(s)wep(s)dzds

/ / Ag(s)wePeo(s)dads

Still, in view of (2.1)(4i¢) and (iv), we can pass to the limit in each term on
the right hand side and observe that each term is bounded in WH*(0,T). As

a result, we obtain

/ / gl se|Baal )t — / / Ap(s)ola)deds, stronglyin GO(0,T]).
(4.19)

and
2 /Ot/ﬂVwe - Vo(s)w.p(s)dzds — 0, strongly in  C°([0,T)). (4.20)
Using (2.1)(iv), we have that
(—Aw.p(s), wp(5))a = (ke, wep?(8))a = (1, P*(s))a, strongly in C°([0, T)).

Therefore,

t
/(Awgp( ), we(s))ads — / (i, 0*(s))ads, strongly in C°([0,T]).
0
(4.21)
Now, combining (4.17)-(4.21), we obtain that

e-(w.(-)) — e(p)(-), strongly in C°([0,T]). (4.22)

Third term. Since U, is bounded in W1H(0,T; L3(R)) (see (3.2)), the function

tr—>/nﬁg(:c7t)w5(a:)gp(x,t)d9:
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is bounded in W1 (0, T), thus relatively compact in C°([0,T]). This implies
that

/Qﬂs(m,t)ws(x)go(x,t)dx—)/Qu(x,t)go(x,t)d;r, strongly in  C°([0, 7).
(4.23)

Fourth term. We have
/ /VuE z,8) - V(we(z)p(z, s))dzds = /( Aw,(z)o(x, 8), e (2, 8))ads

—2/ /us(x s)Vuw,(z) - Vo(z, s)dasds—/ /us z, s)we (z)Ap(z, s)dzds.
0 Ja

(4.24)
Now we consider the funtion

¢ ¢
t— —2/ / te(z, 8)Vwe(z) - Vo(z, s)dzds — / / Ue(x, s)weAp(z, s)dzds.
0 Jo 0 Ja

From (3.2), 4. is bounded in W1(0,T; L*(Q2)). Thus, this family of functions
is bounded in W1*°(0,7T) and therefore is relatively compact in C°([0,T]), due
to the compact embedding of W1°°(0,T) in C°([0,T]). This implies that

¢ ¢
—2/ /ﬂs(:ms)VwE(a:) -Vo(z, s)dxds—/ /ﬂs(ms)wsAgo(x,s)dxds
o Ja | Jo Ja

— —/ / u(z, s)Ap(z, s)dzds = / / Vu(z, s) - Vo(z, s)dzds,
0 Ja 0 Ja
(4.25)
strongly in C°([0, 7).
Consider now the remaining term (—Aw;, %.(t)¢(t))o. We have from (2.1)(iv),
that

<_Aw5; as(t)(p(t»ﬂ = <N57 ﬂe(t)w(t»n,

since u.(t) = 0 on S..
On the other hand, using the fact that W12(0,T) < C°([0, T]) with compact
embedding, we have that

(—Awe, U () (t)a = (u, u(t)p(t))a, strongly in C°([0,T]).  (4.26)

Therefore,

/(—Awg,ﬂs(s)(p(s))gds—>/(u(p(s),u(s))gds, strongly in  C°([0, 7).
’ ’ (4.27)
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Fifth term. Considering the last term in (4.15), from (4.23), it immediately
follows that

/Ot/nﬂg(x,S)wg(ar)go(a:,s)d:cds—> /Ot/Qu(a:,s)@(:c, s)dxds, (4.28)

strongly in C°([0, 7).
Furthermore, putting together, (4.15), (4.16), (4.22), (4.23),(4.25), (4.27)
and (4.28), we obtain (4.14). The proof of Proposition 4.3 is now complete.
a

We now present the corrector result.

Theorem 4.1 Assume that the hypotheses of Proposition 4.2 are satisfied. If u
denotes the unique solution of the homogenized problem (3.3), then the sequence
of solutions {uc}e>o of the problem (1.1) satisfies

% o, in CO(0,T]; LA(Q)), (4.29)
U = weu+r,, with (4.30)
re =0, strongly in L*(0,T; W, (Q)). (4.31)

Moreover, if u € C°([0,T]; C}(Q)), then
re = 0, strongly in L?(0,T; Hi(2)) N C°([0,T]; L*(2)). (4.32)

Proof. We now observe that due to (3.4) and the Proposition 2.1, we easily
obtain that
U, —u, strongly in C°([0,T]; L*(Q)),

and therefore (4.29) is shown. From Theorem 3.1, we know that, in particular,
u € C°([0,T]; H}(S2)). Then, let us consider a sequence ¢y in D(Q) such that

¢r — u, strongly in C°([0,T]; Hy(2)), as k — oo. (4.33)
From Proposition 4.3 we have
T
hf?_%lp {||u5 - ws(PkH%DO(O,T;L'Z(Q)) + Qﬁ/o |V (ue(s) — ws@k(s))\%z(n)ds

T
+2a2/0 |ﬂs(8) — wswk(s)\iz(mds} S 3||e(u — @k)”Loo(O’T)’
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and thus,
T
T S sup{nug — oo + 28 [ V(5) — weon(5) s
0

k—oo 50
T
1207 / els) — wgwk(s)%z(mdg} 0.
0
(4.34)
On the other hand, we have

IV (e — weu)|| 20,7210

< C||V (@ — weipr)|| z20,m02(0)) + [ VW (06 = u)|l 220301 02))
+ [lweV(gr — u)||z20,1501(0))

< OV (@ — wepr) || 20,7522 (9)) + ClIVwelliz2 - lor — ullcogo,ryze(a))
+ Cst”Lz(ﬂ) Nler — U||C°([0,T];H3(Q)-
(4.35)

By (2.1), (4.33), (4.34) and (4.35) we conclude that
Vr. = V(u. — w.u) — 0, strongly in  L?(0,T; L'(Q)).
Thus, (4.31) is proved.
Now, if u € C°([0, T]; C*(R2)), then
re — 0, strongly in L*(0,T; Hy(2))

In fact, is such case, an approximating sequence @ may be also chosen to satisfy
the hypothesis

¢r —u, strongly in  C°([0,T]; C*(Q)).

In this case, we can estimate V(4. — w.u) in L?(0,7; L?(2)) and not only in
L0, T; L' (R)), as it was previously done in (4.35). In fact, we have

IV (we(pr — w) || 20,5220
< | Vwe(er — w)l|p20,;02(0)) + |weV(ok — u)| L2(0,m302(02))
< O Vwellizz@pw - llox — wllcogo,ry.comy)

+ Cllwell 2o - llox — u||C°([0,T];Cl(§))a
which is sufficient to obtain the result (4.32) above.
We also observe that we can similarly show the following convergence
re — 0, strongly in  C°([0, T]; L*(2)).
O
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5 The case of holes smaller than the critical

In this section we will consider the particular case where the holes are smaller
than the critical size. In this case, we assume that the function w, of the abstract
framework (2.1) strongly converges in H'({)), which implies that x = 0. And
thus, all the results of the Sections 3 and 4 hold true.
We assume that the holes S, are such that
there exists a sequence of test functions w, satisfying
(1) we € HY(Q), [lwellre(e) < Mo,
(17) we=0o0n S,
(117) w. — 1, strongly in H(Q).

(5.1)

Remark 5.1. The assumption (5.1) means that the size of the holes ag: is
smaller than the critical one given by (1.2), i.e. that

e’logagi = —o0, if N=2,
w — +o0, if N> 3. (82
agg
The main differences between the hypotheses in (2.1) and (5.1) is that, in
(5.1) (i), we assume the strong convergence of w,. In this case, (2.1)(iv) is
obviously satisfied with v, = 0, y. = —Aw, and p = 0.
Examples where the assumption (5.1) is satisfied can be found in [7].
Under the hypothesis (5.1), all the results of Sections 3 and 4 obviously hold
true, but the strong convergence of the data now implies strong convergence of

the solutions.

Theorem 5.1 Assume that (5.1) holds true and consider a sequence of data
that satisfy (3.1). Then the sequence u. of solutions of (1.1) satisfies

Ue = u, weakly-star in L*(0,T; Hi(Q)),
b, = u, weakly-star in L=(0,T; L*(Q)), (5.3)
ul =, weakly in  L?(0,T; H} (),

and
Ue(t) — u(t), weakly in H}(Q),

for all t € [0,T), where the limit u is the unique solution of

u — BAuU+ [ulfu+Pu=f in Q=Qx(0,T),
u=0 on ¥ =0Qx(0,T),
u(z,0) = u'(x in Q,

) (5.4)
u € CO([0, T); HL ().
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Moreover,

{ Ue —u strongly in  C°([0,T]; L2(2)), (5.5)

e — u  strongly in  L*(0,T; Hy ().

Proof. The first part of the theorem involves passing to the limit in (1.1)),
which is a mere rewriting of Theorems 3.1 and 3.2.

To prove (5.5), we proceed as in the proof of Theorem 4.1. Thus, let ¢ €
D(Q) be a sequence satisfying (4.33). We have

IV (e — u)l| 20,2y < IV (U — wer) [l L20,7522(0))
(5.6)
HIV((L = we) o)l L2o,mz2@) + IV (or — u)||z207;L20)-

Arguing as in the proof of Theorem 4.1, and using the strong convergence of
we to 1, in H'(£2), in the second term on the right side of inequality (5.6), we
obtain (5.5)s.

O
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