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FIFTY YEARS OF LOCAL SOLVABILITY

J. Hounie *®

Abstract

This is an updated version of a lecture presented ten years ago in
Cérdoba, Argentina, delivered on the occasion of the X ELAM [27] to
describe part of the outstanding progress carried out by several mathe-
maticians to address the problem of telling apart solvable from non solv-
able equations after the considerable surprise caused in 1957 by Lewy’s
celebrated example. We have added a description of the progress achieved
in the last decade, notably the solution of Treves’s conjecture on the local
solvability of systems of co-rank one.

1  Where it all begins

The most primitive question one can ask concerning a partial differential equa-
tion is whether there exists a solution, at least locally, and not subjected to
any additional condition. For ordinary differential equations, very satisfactory
theorems stating local existence of solutions under very mild hypotheses of reg-
ularity had been known since long ago, and it came as a surprise when Hans
Lewy published in 1956 his now famous example of a first-order linear equation
whose coefficients are polynomials of degree at most one, failing to have local
solutions. Indeed, if f € C*°(R?) is conveniently chosen, the equation

(Op +1i0y — (z +iy)0)u = f, (z,y,2) € R,

does not have distribution solutions in any open subset of R® ([39]).

For elliptic equations local solvability was known and Hérmander had proved
in his thesis that linear operators of real principal type were locally solvable.
Let us recall some definitions and notation. A linear partial differential operator
in an open subset 2 of R” has the form

P(z,D)u = Z o (2) D%, u € CF(Q), (1)
o <m

*Work supported in part by CNPq, FINEP and FAPESP.



http://doi.org/10.21711/231766362002/rmc231
https://orcid.org/0000-0002-3525-7178

2 J. HOUNIE

where o = (q1,...,0,) € Z7 denotes a multi-index, |a] = a3 + -+ + ay its
length, D* = D" --- D% and D; = 0/i0x;. The principal symbol of P(z, D)
is the function

(@)= Y w(@)e®,  zeQ,  EeR-

|lal=m

Here, £* = &M - - - €2, If we interpret p,(z, £) as defined on the cotangent bun-
dle T*(92) rather than on the modest cartesian product 2 x R, the principal
symbol becomes invariantly defined under change of coordinates. A linear par-
tial differential operator is elliptic if its principal part has no real zeros & # 0 (of
course, pp,,(z,0) =0, z € Q, because it is a homogeneous polynomial in &, but
these zeros, being trivial, do not count). The main difficulty in finding a right
inverse for a linear PDE comes from the real nontrivial zeros of the principal
part. In the elliptic case those zeros simply do not occur. The best thing next

to no zeros is simple zeros. An operator is said to be of principal type if

Pm(2,8) =0, &€R"\ {0}, implies Vpn(z,§&) #0.
At this point it is convenient to introduce a formal definition.

Definition 1 A partial differential operator P(x, D) in Q C R™ is locally solv-
able if every point o € Q has a neighborhood U C ) such that the equation

P(z,D)yu=f (2)
can be solved in D'(U) for every f € CZ(U).

If the coefficients of p,, are real then the operator is said to be of real principal
type and by the theorems of Hérmander [20] it is locally solvable. Notice that
Lewy’s operator 0, + 0, — (x + iy)0, is of principal type but does not have
real coefficients. A few years later Hormander ([21], [22]) generalized Lewy’s
example in the following way. Denote by P(z, D) the operator obtained from
P(z, D) by replacing each coefficient by its complex conjugate and consider the

commutator

C(x,D) = [P(z,D),P(z,D)]
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which is an operator of order 2m — 1 with principal symbol com—1(z, ). If
P(z, D) is locally solvable in € then coy,_1(z, &) must vanish at every zero of
Pm(x,€) in Q x R*. An operator satisfying the latter condition will be said
to satisfy condition (). For the Lewy operator condition (%) is violated at
every point. If the coefficients of P(z, D) are real or constant cop—1(z, ) van-
ishes identically. This was a most remarkable advance because it explained a
phenomenon that had appeared as an isolated example in terms of very gen-
eral geometric properties of the symbol, an invariantly defined object. In spite
of this success, it turned out that condition (#) was not accurate enough to
discriminate the solvable operators from the nonsolvable ones among some ex-
amples considered by Mizohata [41], which we now describe. Let & be a positive
integer and consider the operator in R? defined by

o .0

M, = — — iyt~
=5y " Yoz

If £ = 1 condition (H) is violated at all points of the z axis so, in particular,
M is not locally solvable at the origin. For k£ > 2 condition (#) is satisfied
everywhere. On the other hand, it turns out by relatively simple arguments
that M}, is locally solvable at the origin if and only if & is even ([16], [15]). The
principal symbol of My is m; = —i(n — iy*¢). The crucial difference between
k odd and k even is that in the first case the function y* changes sign and
in the second case it doesn’t. Nirenberg and Treves [46] elaborated over these
examples and identified a property that turned out to be the right condition
for local solvability of operators of principal type. Let’s write the principal
symbol in terms of real and imaginary parts, pn,,(z,€) = a(z, &) +ib(z,£). A null
bicharacteristic of a(x, ) is a curve satisfying the system of ordinary differential
equations
& = Vea(z,§), z(0) =z
{ €= -V,a(z,€), £(0) =&,

with initial conditions verifying a(zg,&) = 0. The operator (1) satisfies condi-
tion (P) if b(x, £) does not change sign along any null bicharacteristic of a(z, &)
(if the projection of the bicharacteristic into €2 is singular one has to inter-
change the roles of @ and b which amounts to multiplying P(z, D) by ). This
formulation is invariant by coordinate changes. When condition (#) is vio-
lated the change of sign occurs at a simple zero of the function of one variable
t — b(x(t), y(t)), where (z(t), y(t)) denotes some null bicharacteristic, while (P)
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detects changes of sign at zeros of higher order, as in the Mizohata operators
My, for k > 1 and odd, including zeros of infinite order. For first-order operators
of principal type with real analytic coefficients in the principal part they proved
that (P) is equivalent to local solvability. That was in 1963 and seven years later
they were able to extend the same result to operators of arbitrary order m [47].
The proof of the sufficiency involved a microlocalization used to split the opera-
tor as a finite sum of simpler operators. Each simpler operator could be further
reduced by factoring out an elliptic operator of order m — 1. The remaining
factor had order one and still verified condition (P). It should be said, however,
that the new operators introduced by microlocalization were no longer differen-
tial but pseudo-differential operators. Each first-order pseudo-differential factor
was again simplified by conjugation with a Fourier integral operator. Property
(P) can be used at this stage to obtain @ priori estimates. They are sufficiently
strong to survive the microlocalization and can be patched together to obtain
a local estimate for the original operators. This implies that the transpose of
P(x, D) is locally solvable (interchanging the roles of P(z, D) and its transpose
one proves that P(z, D) itself is locally solvable). Three years later R. Beals and
C. Fefferman [2] proved that smooth coefficients were enough to show that (P)
implies local solvability. They started from the reduced operators of Nirenberg
and Treves and introduced a finer calculus of pseudo-differential operators that
included the Calderén-Vaillancourt result that a pseudo-differential operator
with symbol in the class S}, , , is bounded in L? [12].

Concerning the necessity of (P) Moyer [42] removed in 1978 the analytic-
ity hypothesis for operators in two variables and his technique was applied by
Hérmander [23] to extend the result for operators in any number of variables
with smooth coefficients. Finally, the conjecture of Nirenberg and Treves that
(P) was equivalent to local solvability for operators with smooth coefficients
had been proved over a span of 15 years. The technique of Nirenberg-Treves
and Beals-Fefferman actually gave more than solvability in the class of distribu-
tions: if one takes f € H!(U) in (2), s € R, then one can choose v in H*Tm~1,
where H® denotes the L?-based Sobolev space of order s. This is not enough
to furnish smooth solutions when f € C®(U) because, due to technical rea-
sons, the diameter of U shrinks as s grows in the proofs. On the other hand,
Hoérmander [24] gave a different proof by studying the propagation of singulari-
ties of operators that verify (P), which allowed to obtain semi-global solutions,
i.e., solutions defined on a full compact set under the geometric assumption that
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bicharacteristics do not get trapped in the given compact set. Furthermore, the
solutions can be taken smooth if f is smooth.

2 Nonlinear equations
A fully nonlinear operator of order m acting on functions u is of the form
u(x) = F(z,0%(z)), la| < m. (3)

Two different situations arise. If F'(z,() is a function defined in Q C R* x RY
(where N is the number of a’s € Z7 such that || < m), only real functions
u are allowed in (3). On the other hand, if @ C R* x C and F(z,¢) is a
holomorphic function of ¢, the natural functions u(z) in (3) are complex valued.
At any rate, the linearization of a nonlinear operator F'(u) at a function u is
the linear differential operator F”(u) defined by

d
1 _
F'(u)v = th(u + tv) o

In general, an equation such as F'(z, 0%u(z)) = f(z) may fail to have a solution
by very simple reasons: if the set of values of F' and the set of values of f are
disjoint (for instance, if F' > 0 and f < 0), there can be no solution. So a
better problem is the following: given ug and setting fo(z) = F(z, 0%ug(x)), try
solving

F(z,0%(z)) = f(z) 4)
for f sufficiently close to f, in some topology, if possible, with u close to uy.
Now this is an implicit function problem and a very powerful tool to handle it
is the Nash-Moser implicit function theorem [45], [43], [19], [30]. In order to
apply it one has to construct an operator ((u)v acting on some tame scale of
spaces (typically, the scale of Sobolev spaces H*) such that

F'(u)Q(u)v = v, ve H’ s> s, (5)

1Q)vlls < Calllullssrllvllso + llullsollvllssr) w0 € H. (6)

There are also other hypotheses in the Nash-Moser theorem but they are almost
automatic when dealing with differential operators like (3). Note that (5) states
that the linear differential operator F'(u) has a right inverse, so if F'(u) is locally
solvable for each u we might be able to construct some right inverse Q(u). It is
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with condition (6) that the trouble really comes: the coefficients of the linear
operator F'(u) depend on u and the norm of Q(u) must grow in a specific
way (tamely). In order to obtain tame estimates one usually needs explicit
expressions, involving pseudo-differential and Fourier integral operators (the
usual techniques to get a priori energy estimates do not seem useful when it
comes to obtaining tame estimates). Fortunately, there exists a tame calculus
for pseudo-differential and Fourier integral operators that makes of them an
appropriate tool for the task when they can be used ([18], [1]). In the important
case in which F' is smooth in all arguments and F’(u) is of real principal type
for every w, this approach seems the natural one to solve (4) locally with u
smooth if f is smooth, which would have interesting applications, particularly
to nonlinear equations arising in Riemannian geometry, however the widely
circulated preprint [18] was never published.

For the case of complex equations little is known. There are results only
for two variables [14], [1] and the assumptions on F’(u) are considerably more
stringent than simply assuming that it is locally solvable. For instance, if b(z, t)
is a smooth real function in R? such that ¢ — b(x,t) does not change sign, then
L = 0, +ib(z,t)0, is linear and verifies (P) but it does not seem to be known if
there exists a right inverse @ for L such that |Qf||s < Cs|| f]|s+r for any positive
s and f smooth and supported in a fized neighborhood unless b(z, ) does not
change sign at all ([1]). In the general case, the parametrices constructed by the
methods of Treves [48], [49] or even those which are valid in a more restricted
set-up [1], [26], seem to verify only the weaker estimates ||Qf]|s < Csl| f|l2s+r
which are not enough to guarantee the convergence of the Nash-Moser scheme.
For the time being, general local solvability results are only known for semilinear
equations and we describe them now.

Consider the semilinear equation
P(z,D)u = f(z,u,...,D%,...) = f(z,Du), |a]<m—1, )

where P(z, D) is a linear partial differential operator of order m with smooth
(i.e. C°°) complex coefficients defined on R" f(x,() is a smooth complex func-
tion and the right hand side in (5) only involves derivatives of order < m — 1.
Assume that the linear part P(z, D) satisfies the Nirenberg-Treves condition
(P). Hence, if f has the special form f(z, () = ¢(x) + L(z)¢ where ¢ — L(z)¢
is linear, the local existence theorem of Beals-Fefferman establishes that there
exist local solutions of (7) with arbitrarily high finite regularity. More generally,
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the result of Beals and Fefferman can be extended to arbitrary smooth functions
f, as shown by Santiago and Hounie ([32]) using a fixed point argument. This

extends previous results of Dehman, Gramchev and Popivanov.

3 Operators with nonsmooth coefficients

If P(z, D) is a principal type differential operator of order m with smooth coef-
ficients satisfying condition (P), the Beals-Fefferman theorem allows to locally
solve the equation P(x, D)u = f, f € L?, with w € H™ !. This is the optimal
regularity one can expect of u if P(z, D) is not hypoelliptic. A natural ques-
tion is: how much regularity must one demand on the coefficients of P(z, D)
to obtain the same result, if they are not smooth? Counting on the fingers the
number of derivatives used in the known constructive proofs of solvability gives
a large number that grows with the dimension. This has the following explana-
tion. The microlocalization technique involves the continuity in Sobolev spaces
of pseudo-differential and Fourier integral operators and it is a fact of life that
the number of derivatives needed to control their norms grows proportionally
to the dimension n of the surrounding space.

Consider, however, a differential operator of order one with smooth complex
coefficients

0 ~ 0
§+;aj(x,t)87j+c(x,t) (8)

defined in a neighborhood of the origin of R**!. After alocal change of variables,
it can be put in the form

0 0
L= a+zj§:;bj(x,t)%j + ¢(z, 1) (9)

with b;(z,¢) smooth and real.

The solvability in L? (notice that m = 1 in this example) for the opera-
tor (9) verifying (P) holds if the coefficients in the principal part are Lipschitz
and c(z,t) is measurable [25], independently of n. Since the straightening of
bicharacteristics needed to put (8) into the form (9) consumes one derivative,
the former is locally solvable in L? if the coefficients of the principal part have
Lipschitz first-order derivatives. For operators in two variables, there is a way
around the straightening-up of the characteristic, and L? solvability holds as-
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suming that the coefficients of the principal part are just Lipschitz, as shown
by Hounie and M. E. Moraes Melo ([28]).

It is not known whether it is possible (or impossible) to bound the regularity
of the coefficients for higher order operators with a constant independent of n
in order to obtain solvability. A related question is to determine the mimimal
number of derivatives of a positive symbol (say classical of order one) needed to
guarantee that the corresponding pseudo-differential operator verifies a Garding

inequality.

4 Solvability in L?

Consider again a principal type differential operator P(z, D) of order m with
smooth coefficients satisfying condition (P). For a given 1 < p < co we say that
P(z, D) is locally solvable in L? if we may locally solve the equation P(z, D)u =
f, felP, withue H" ' = (I - A)=™=D/2[r Here A denotes Laplacian so
Hp'~! is the LP-based Sobolev space of order m — 1. This is true if p = 2 by
the Beals-Fefferman theorem but false, in general, for p # 2 [17] even if P(z, D)
is subelliptic. A standard duality argument shows that the local solvability in
L? of the operator P implies a local a priori estimate of the form ||u||p m-1 <
C||*Pul|,, for all test functions u supported in some neighborhood, where *P
indicates the formal transpose of P. On the other hand, Littman [40] showed
that an a priori estimate

[ullps < CllDullp,  uw e CF(R?)

cannot hold as long as p > 2n/(n — 1), if D denotes the wave operator (which
is of principal type and —having constant coefficients— satisfies (P)). Then,
Kenig and Tomas ([37], [38]) showed that the a priori estimate

lully < CI(D +a)ull,, e CP®)

holds if and only if p = 2. For local versions of these negative results see [36]
and the references given therein. Later P. Guan [17] considered the operator on
R; x R*
82
P=—og—0— e (10)
where A, is the Laplace operator acting on R? and k is a positive integer.
Then, given p > 2, one can choose n large enough, so that P given by (10) is

not solvable in LP.
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On the other hand, there is solvability in L? for operators in two variables
(any order) or of order one (any number of variables) satisfying (P). The case
of order one is due to Perdigao and Hounie, for smooth coefficients and to Maria
Euldlia Moraes Melo e Hounie for Lipschitz coefficients (to be precise: under
the same conditions that hold when p = 2) ([31], [29]).

The main “explanation” for this phenomena is technical. The reduction
technique of Nirenberg-Treves (present in some form in all proofs of solvability)
involves a Fourier integral operator which is bounded in L? but not necessarily
bounded in L? for p # 2. When the order is one or the number of variables is
two the use of Fourier integral operators can be avoided.

While it is true that for any locally solvable vector field L and 1 < p < oo the
equation Lg = f can locally be solved in L? if f isin L? ([31], [29]), this is false,
in general, for p = oo ([35]) This difficulty can be dealt with by introducing
the space X = L*°(R;; bmo(R,)) of measurable functions u(x,t) such that, for
almost every ¢t € R, z — u(z,t) € bmo(R) and [[u(t, )|y < C < oo for a.e.
t € R, where bmo(R) is a space of bounded mean oscillation functions, dual to
the semi-local Hardy space h*(R) of Goldberg. It was shown in [3] that for a
substantial subclass of the class of locally solvable vector fields L, the equation
Lu = f can be locally solved with u € X if f € L*. This result was recently
improved by Evandro da Silva in his Ph. D. thesis [13] by showing that for
any locally solvable vector field L the equation Lu = f can be locally solved
with © € X for any f € X. This can be regarded as an ersatz for p = oo of
the L? local solvability valid for 1 < p < co. While the original proof used
pseudo-differential operators and required smooth coefficients, using instead
other tools of harmonic analysis (singular integrals, commutators estimates,
dyadic decompositions) it is possible [33] to extend the solvability theorem to
vector fields L with C1*" coefficients, 0 < r < 1.

5 Nondetermined systems of vector fields

The solvability theorems valid for one equation of principal type can be extended
to determined systems (principal type for a system means that the determinant
of the matrix principal part has at most simple (nontrivial) real zeros). For
nondetermined systems the theory is at a primitive stage of development and
only special equations involving vector fields and related to the familiar gradi-
ent and divergence equations can be dealt with in some generality. Important
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classes of such equations arise naturally in the theory of holomorphic functions
of several variables (0 and 9, equations).

Let Lj, j = 1,...,n be linearly independent complex vector fields defined
on the open set 2 C RV, i.e.,

N
0
L= an@)y .  ax€C2®)
k=1

Lu; =0,
Uj(z,0) =z,

The basic question is to determine when an overdetermined or underdetermined

equations like

Liuw = fi,
Lou = f,
’ L P oo T 8 (D), (11)
Lnu . .fn7
or
L1U1 st Lnun = f7 f € COO(Q)v (12)

can be solved for any choice of the right hand side satisfying the proper com-
patibility conditions. For instance, if the vectors L; commute pairwise, the
compatibility conditions will be L; f, = Ly f; for the system (11) and void for
(12). In the case of a single vector field, (n = 1), (11) and (12) coincide and
the answer depends on condition (P) of Nirenberg and Treves ([46]). Since it is
possible to obtain equivalent equations by replacing each L; by a linear combi-
nation of the vectors L;, so that the corresponding matrix is non-singular, we
realize that the relevant geometric object will be the vector bundle £L C C®Q TS
generated by Li,..., L,. We say that a sub-bundle of £ C C® T2 is involutive
(or formally integrable) if it satisfies the Frobenius condition

[£,L] C L. (13)

In this case, if £ denotes the orthogonal of £ relative to the duality between
tangent vectors and differential forms of degree 1 (£* is a sub-bundle of the
complexified cotangent bundle), the exterior derivative defines, by passage to

the quotient, a complex of differential operators

p

EF 2 pPL p=0,1,...,n—1, (14)
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where we have written
EP =C*(,AP(C® T*Q/EL))

In local coordinates, equations dyu = f and d,_;u = f can be expressed in the
form (11) and (12) respectively.
The cohomology groups of the sequence (14)

HUQ, L), q=0,1,...,n

are called the cohomology groups associated to £ on {2 and a natural problem
of the theory is to determine when they vanish for a given structure £. The
localized problem is also relevant. If we fix a point A € 2 we may consider the

associated complex
C*®(A,ANP(CRT*Q/LY)) i) C*®(A,ANPTHC T/ L)), (15)

where 0 < p < n—1and C®(A4, AP(C®T*$/L')) denotes the space of germs of
sections of the vector bundle A?(C®T*/L")) at the point A. The cohomology
groups of (15) are denoted by

HI(A, L), qg=0,...,n. (16)

Results of a general nature are known only under the assumption that £ is locally
integrable, i.e., when L+ is locally generated by the differentials of m = N —n
functions of class C*. Little is known so far about the groups (16); there
are complete descriptions in the following cases: i) when £ defines an elliptic
structure ([50]), ii) when the structure £ is real analytic and the Levi form
is non degenerate ([52]), iii) when n = 1 ([46]), iv) when the structure £ is
real analytic, m = 1 and ¢ = 1 ([53]) or ¢ = n ([6]). The problem of finding
solutions to (12) with compact support is also of interest ([5], [34]) and related
to the extension property of Hartogs for solutions of the homogeneous equation
and may shed some light on the computation of cohomology groups for other
structures, like tubes ([51],[54]).

In the locally integrable case of co-rank one, i.e., when m = 1 and there is
smooth function defined in a neighborhood of A

Z:UA—)(C
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whose differential generates £1/U,, the solvability conjecture of Treves can be
stated as follows: Given 1 < ¢ < n, exactness at level q in the complex (15),

i.e.,
(®)g Ker 6, =Im 641,
is equivalent to:

(¥)g—1 Given any open neighborhood V' of A there is another open neighborhood
V' of A such that, for every reqular value zg € C of Z : V — C, either
Z Yz} NV'=F(20, V') = 0 or else the homomorphism

Hyt(F (20, V') — Hya(F (20, V)
induced by the inclusion map
F(zo, V') C F(z, V)
vanishes identically.

Several articles have been published towards the verification of this conjec-
ture. In [9] it is proved that (), = (),—1 for all ¢ =1,...,n while in [44] it is
proved that (x)o = (e); and in [7] that (x),_1 = (e),. If we furthermore make
the extra assumption that the structure £ is real-analytic then the work [4] gives
a complete proof that (x),—1 = (e), for all ¢ = 1,...,n, a result that had been
previously proved in the cases ¢ = 1 [48] and ¢ = n [6]. We also mention that
it is possible to give a meaning for hyperfunction solvability of the complex £
(which generalizes the natural concept within the real-analytic category) and to
prove that condition (x),_; is in fact equivalent to the hyperfunction solvability
at the origin in degree ¢, for every ¢ = 1,...,n. On this subject we refer to
[10] and [11]. Finally, the proof of (x),-1 = (e), for all ¢ = 1,...,n for the
C category was very recently proved in [8], thus completing the proof of the
Treves conjecture.

References

[1] Alvarez, J.; Hounie, J., Spectral invariance and tameness of pseudo-differentia.
operators on weighted Sobolev spaces, J. of Operator Theory, 30 (1993),
41-67.



FIFTY YEARS OF LOCAL SOLVABILITY 13

[2] Beals, R.; Fefferman, C. On local solvability of partial differential equations,
Ann. Math. 97 (1973), 552-571.

[3] Berhanu, S.; Hounie, J.; Santiago, P., A similarity principle for complex
vector fields and applications, Trans. Amer. Math. Soc. 353 (2001),
1661-1675

[4] Chanillo, S.; Treves, F., Local exactness in a class of differential complezes.
J. Amer. Math. Soc. 10(2), 1997, 393-426.

[5] Cordaro, P.; Hounie, J., Local solvability in CZ° of overdetermined systems
of vector fields, J. Funct. Anal., 87 (1989), 231-270.

(6] Cordaro, P.; Hounie, J., On local solvability of underdetermined systems of
vector fields, Amer. J. of Math., 112 (1990), 243-270.

[7] Cordaro, P.; Hounie, J., Local solvability for top degree forms in a class of
systems of vector fields, Amer. J. of Math., 121 (1999), 487-495.

[8] Cordaro, P.; Hounie, J., Local solvability for a class of differential complezes,
Acta Math., to appear.

[9] Cordaro, P.; Treves, F., Homology and cohomology in hypo-analytic struc-
tures of the hypersurface type. J. Geometric Analysis, 1, 1991, 39-70.

[10] Cordaro, P.; Treves, F., Hyperfunctions in hypo-analytic manifolds. An-
nals of Mathematics Studies 136, 1994, Princeton University Press.

[11] Cordaro, P.; Treves, F., Necessary and sufficient conditions for the local
solvability in hyperfunctions of a class of systems of complez vector fields.
Invent. Math., 120, 1995, 339-360.

[12] Calderdn, A. P.; Vaillancourt, R., A class of bounded pseudo-differential
operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187.

[13] da Silva, R., Estimativas a priori em espagos de Hardy para campos veto-
riais complezos localmente resoliveis, Tese de Doutorado, UFSCar, DM
(2000).

[14] Dehman, B., Resolubilité local pour des equations semi-linéaires complexes,
Can. J. Math. 42 (1990), 126-140.



14 J. HOUNIE

[15] Garabedian, P., An unsolvable equation, Proc. Amer. Math. Soc. 25
(1970), 207-208.

[16] Grusin, V., A certain ezample of an equation without solutions, Mat.
Zametki. 10 (1971), 125-128.

[17] Guan, P., Holder regularity of subelliptic pseudo-differential operators,
Ph. D. Thesis, Princeton, (1989).

[18] Goodman, J.; Yang, D., Local solvability of nonlinear partial differential
equations of real principal type, unpublished preprint, (1989), 63 pages.

[19] Hamilton, R., The inverse function theorem of Nash-Moser, Bulletin of
the AMS 7 (1982), 65-222.

[20] Hérmander, L., On the theory of general partial differential operators,
Acta Math. 94 (1955), 161-248.

[21] Hormander, L., Differential operators of principal type, Math. Ann. 140
(1960), 124-146.

[22] Hormander, L., Differential equations without solutions, ~Math. Ann.
140 (1960), 169-173.

(23] Hérmander, L., Pseudo-differential equations of principal type, Singular-
ities in Boundary Value Problems, NATO Adv. Study Inst. Ser., Nijhoff,
The Haghe (1981).

[24] Hérmander, L., Propagation of singularities and semi-global existence the-
orems for (pseudo)-differential operators of principal type, Ann. of Math.
108 (1978), 569-609.

[25] Hounie, J., Local solvability of first order linear operators with Lipschitz
coefficients, Duke Math. J. 62 (1991), 467-477.

[26] Hounie, J., Global Cauchy problems modulo Flat functions, Advances in
Math. 51 (1984), 240-252.

[27] Hounie, J., Local solvability of partial differential equations, Rev. Un.
Mat. Argentina Proceedings of the X ELAM, Cérdoba, Arg. 37 (1991)
77-86



FIFTY YEARS OF LOCAL SOLVABILITY 15

[28] Hounie, J.; Moraes Melo, M.E., Local solvability of first order linear oper-
ators with Lipschitz coefficients in two variables, J. of Diff. Equations,
121 (1995), 406-416.

[29] Hounie, J.; Moraes Melo, M.E., Local a priori estimates in LP for first order
linear operators with non smooth coefficients, Manuscripta Mathematica,
94 (1997), 151-167.

[30] Hounie, J.; Malagutti, P., O teorema de Nash-Moser e suas aplicagdes,
XIX Coldquio Brasileiro de Matemética, IMPA, 143 p., (1993).

[31] Hounie, J.; Perdigéo, E., On local solvability in LP of first-order equations,
J. of Math. An. and Appl., 197 (1996), 42-53.

[32] Hounie, J.; Santiago, P., On local solvability of semilinear equations,
Comm. P. D. E.; 20 (1995), 1777-1789.

[33] Hounie, J.; da Silva, E., A similarity principle for locally solvable vector
fields, preprint, 29 p.

[34] Hounie, J.; Tavares, J., The Hartogs’ property for tube structures, Indag.
Mat.,New Series, 1 (1990), 51-61.

[35] Hounie, J.; Tavares, J., On removable singularities of locally solvable dif-
ferential operators, Inventiones Math. 126 (1996), 589-625

[36] Kenig, C., Progress on two problems posed by Riviere, Contemp. Math.
107 (1990), 101-107.

[37] Kenig, C.; Tomas, P., On conjectures of Riviére and Schtrichartz, Bull.
Amer. Math. Soc. 1 (1979), 694-697.

[38] Kenig, C.; Tomas, P., L? behavior of certain second order differential
equations, Trans. Amer. Math. Soc. 262 (1980), 521-531.

[39] Lewy, H., An ezample of a smooth linear partial differential equation with-
out solution, Ann. Math. 66 (1957), 155-158.

[40] Littman, W., The wave operator and LP norms, J. Math. Mech. 12
(1963), 55-68.



16 J. HOUNIE

[41] Mizohata, S., Solution nulles e solutions non analytiques, J. of Math.
Kyoto U. 1 (1962),271-302.

[42] Moyer, R. D., Local solvability in two dimensions: Necessary conditions
for the principal type case, Mimeographed manuscript.  University of
Kansas, (1978), (9 pages).

[43] Moser, J., A new technique for the construction of solutions of nonlinear
differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824
1831.

[44] Mendoza, G.;Treves, F., Local solvability in a class of overdetermined
systems of linear PDE, Duke Math. J. 63 (1991), 355-377.

[45] Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math.
63 (1956), 20-63.

[46] Nirenberg, L.; Treves, F., Solvability of a first-order linear differential
equation, Comm. Pure Applied Math. 16 (1963), 331-351.

[47] Nirenberg, L.; Treves, F., On local solvability of linear partial differential
equations, I: Necessary conditions, II: Sufficient conditions, Comm.
Pure Applied Math. 23 (1970), 1-38; 459-510. Correction, ibid. 24
(1971), 279-278.

(48] Treves, F., Integral representation of solutions of first order linear partial
differential equations, I Ann. Scuola Norm. Sup. Pisa 3 (1976), 1-35.

[49] Treves, F., Integral representation of solutions of first order linear partial
differential equations, II Astérisque 34/35 (1976), 341-357.

[50] Treves, F., Approzimation and representation of functions and distribu-
tions annthilated by a system of complexr vector fields, Centre de Mathé-

matiques. Ecole Polytechnique, Palaiseau, France (1981).
[61] Treves, F., Hypo-analytic structures, Princeton University Press (1992).

[62] Treves, F., A remark on the Poincaré lemma in analytic complezes with
nondegenerate Levi form, Comm. in P.D.E. 7 (1982), 1467-1482.



FIFTY YEARS OF LOCAL SOLVABILITY 17

[63] Treves, F., On the local integrability and local solvability of systems of
vector fields, Acta Math. 151 (1983),1-48.

[64] Treves, F., Study of a model in the theory of complezes of pseudo-differ-
ential operators, Ann. of Math., 104 (1976), 269-324.

Departamento de Matematica
Universidade Federal de Sao Carlos
13565-905, Sao Carlos, SP

Brazil

hounie@dm.ufscar.br



18

J. HOUNIE



