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Abstract

Vlasov equation is solved for charged particles in two-dimensional ax-
isymmetric plasma models using: i) convenient curvilinear (cylindrical,
spherical, toroidal) coordinates, ii) Fourier expansions of the perturbed
distribution functions over the gyrophase angle in velocity space, iii)
smallness of the magnetization parameters, iv) new variables by the con-
servation integrals to describe the bounce periodic motion of the trapped
and untrapped particles along the equilibrium magnetic field line. An ap-
proach developed in the paper allows us to evaluate the main contribution
of untrapped and trapped particles to the transverse and longitudinal
dielectric permittivity elements for radio frequency waves in tokamaks,
mirror-traps, and Earth’s magnetosphere.

1 Introduction

Since plasma is an ensemble of charged particles (ions and electrons) its be-
havior can be described by the kinetic equation for the probability distribution
functions, Fy(t,r,v), of a-kind particles in the six-dimensional phase (r,v)-
volume. In the general case, F, is a function of 7 variables: t-time, 3 variables
in velocity space v, and 3 variables in geometric space r. In plasma theory, the
corresponding kinetic equation is known as the Vlasov equation [10] or colli-
sionless Boltzmann equation, where the generalized force acting the particles is
defined as the Lorentz force. The Vlasov equation, for the perturbed distribu-
tion functions
fa(t,r,v) = Fo(t,r,v) — Fou(r,v)
*Supported by CNPq of Brazil, grant 300637/01-2
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can be written as
0fa
ot

+(VV)fa+eaHO[vxh]%—_ei (E+VXH) OFyq M

Mgec ov M, c ov '’

where Fy, is the steady-state (or equilibrium) distribution function of particles
with mass M, and charge e,; index a = e, i1, ig, ... corresponds to electrons (e)
and any kind of the possible ions, i.e., i1,12, ... = H(hydrodgn), D(deuterium),
T(tritium), ...; E and H are the perturbed electric and magnetic fields; Hy is
the modulus of an equilibrium magnetic field Hy(r); h=Hy/Hy; c is the speed
of light; V = 9/dr; (vh) and [vxh] are the scalar and vector products of two
vectors, respectively.

After solving Eq. (1), one can calculate the basic moments of plasma distri-
bution function such as the fluctuation of plasma density n(t,r) (as the zeroth
moment of f,)

€,81,02,..

= 3 / Fulle =, v @)

the perturbed current density components, j(¢,r) (as the first moments of f,),

€,11,12,...

ito=Y e / Vit p, )y 3)

the plasma pressure transverse and along the Hy-field lines (as the second mo-
ments of f,), heat conductivity components (as the third moments of f,), and
others.

As is well known, any wave process in magnetized plasmas can be described
by solving the Maxwell’s equations for (E,H)-components

vxB=—00 vxH= 2 @)
where the Gaussian system of units has been used. The set of Egs. (4) will be
complete if we know the connection between j and (E,H)-fields. Usually this
connection is defined by the wave conductivity tensor o: j; = o FEk, or by the
dielectric tensor €;:
€ir = O, + 47TZ'% (5)
where §;;, are the Kronecker constants; i, k = 1,2, 3 indicate the vector projec-
tions. It means that before solving Egs. (4) we should calculate the €, (or o;)
tensor by solving Eq. (1) and using Eq. (3).



KINETIC EQUATION FOR CHARGED PARTICLES IN ... 143

The main feature of magnetized plasmas is the fact that their dielectric char-
acteristics have different form for different plasma models. This form depends
substantially on the wave frequency w, the plasma parameters (density NV, tem-
perature T') and the geometry of an equilibrium magnetic field Hy(r). Presently,
the linear wave theory is very well developed for the plane waves in both the
isotropic (when Hy = 0) and anisotropic magnetized plasmas in the straight
magnetic field, see, e.g., Ref. [16] and the bibliography therein. However, the
approximation of plane waves is not suitable for such realistic plasma systems as
Earth’s magnetosphere, straight mirror traps and tokamaks. All these plasmas
can be modeled as two-dimensional (2D) axisymmetric configurations with one
minimum of a nonuniform equilibrium magnetic field, where plasma particles
should be split in the two populations of the so-called trapped and untrapped
(or passing, or circulating) particles. Accordingly, Eq. (1) should be solved
separately for each particle group using the specific boundary conditions.

2 Vlasov Equation for Plasma Particles in an
Arbitrary Magnetic Field

In this paper, we derive the kinetic equation in the convenient form for 2D mag-
netospheric, toroidal and mirror-trapped plasma models. Of course, the initial
Eq. (1) should be solved separately for each concrete 2D plasma configuration
using one set of coordinates or another. However, since the above mentioned
models are axisymmetric we can rewrite Eq. (1) in the usual cylindrical coor-
dinates (r, ¢, z) for plasmas in the arbitrary three-dimensional Hy (r)-field:

g_{ +v,(bV) f + %(Vh)f/f - {Q * % [2b(hV)n + h(bV)n — h(nV)b

Lohhs _bibe w} } -~ {m(nV)f +) [n(hv)h N M] W
r r r do ’

hzn¢

1 hgn,
to- [Uin(nV)b + Uﬁh(hV)b + Uﬁ q;"n -2
L

} %} +sino {v (bV)f
honz | o L] 2 YA
+ [b(hV)h — T} Vf-— [va(bV)n +vjh(hV)n -y .

AR

(6)
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o) _ af Bf _ eH()
Vf_ULav” ”a'UJ_ 2= Mc’

and the index « of the particle species is omitted. In Eq. (6), for the vector
values A={E,H,v,j}, we use the normal A;, binormal A,, and parallel A;
projections relative to Hy: A = Ajn+Asb+Ash, so that

A=A, = A, + Agng + An,
Ay = Ay = Anby + Agby + Asb, (7)
Az = AH Aqh, + A¢h¢ + A,h,

where n, b, h are the normal, binormal, and parallel unit vectors relative to
H()Z
h = Hy/H,, n=[bx h], b =[h x n]. (8)

In particular, for magnetospheric and mirror trapped plasmas, the vector n is
directed outside the magnetic shell and b is directed along the angle ¢. More-
over, in velocity space we use the polar coordinates (v, ,o) instead of (vq,vs)
by the transformation

V] = vV COS O, vy = v, sino, v3 = 7. 9)

For axisymmetric tokamaks with circular (as well as elliptic and/or D-
shaped) cross-sections of the toroidal magnetic surfaces, Eq. (6) can be readily
simplified under the conditions i) Hy is independent of ¢, and ii) the normal
component (perpendicular to the magnetic surface) of an equilibrium magnetic
field is equal to zero, i.e., Hy, = Hy, = 0, or (nHg)=0. The corresponding
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kinetic equation, its solution and dielectric tensor evaluation for such toroidal
plasmas will be presented in Section 4, in the general case of the arbitrary
tokamak aspect ratio.

As regard to the axisymmetric 2D magnetosphere (as well the straight mirror
traps), Eq. (6) can be simplified substantially when the Hys component of the
geomagnetic field is equal to zero, Hyy = 0. In this case, n, b, h have such
cylindrical projections:

h = (hrvoahz)a n= (hzvoa_hv‘)a b= (0,1,0). (10)

3 Magnetospheric Plasma

As was mentioned above, to study the wave processes in the Earth’s magne-
tosphere/plasmasphere it is necessary to solve the Maxwell’s equations with a
“nonlocal” dielectric tensor. For the low-frequency oscillations this tensor can
be derived by solving the drift-kinetic equation, e.g., following the methods de-
veloped in Refs. [3,5,8,15]. As for the high-frequency waves near the ion (or
electron) cyclotron frequencies, the dielectric characteristics should be evalu-
ated by the solution of the Vlasov equation for trapped particles taking into
account the 2D inhomogeneities of geomagnetic field and plasma parameters [4,
6].

If axis z of cylindrical coordinates is directed along the magnetic axis, the
Earth’s magnetosphere can be considered as an axisymmetric mirror trap which
is symmetric relatively to z and homogeneous in the angle ¢, see Fig. 1.

As a result, the Vlasov equation for the perturbed distribution function:
f=f@t,r,¢,2,v1,0,v)), in any axisymmetric mirror trap with 2D equilibrium
magnetic field Hy(r, z) = (Ho,, 0, Hy,) has the following form

oo (B 81
rano {25 [ (7 -3 ik w
+% cos 20 (r%% + aah;) Vf+ %sin?o (r%% + %h;> g—(]; =
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Figure 1: Spherical coordinates (R, 8, ¢) for an axisymmetric magnetosphere,
where ¢ is the azimuthal angle in an equatorial plane; Ry is the radius of the
Earth.
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Further, the perturbed distribution function is expanded in a Fourier series
over the polar (or gyrophase) angle o in velocity space:

+o0
ft,r ¢,z,v,0,v)) = Z filr,z,v1,v)) exp(—iwt + ing + ilo) (12)
1
accounting that the problem is homogeneous in time ¢ and angle ¢; therefore
the perturbed values (including the {E,H,j}-components) are proportional to
~ exp(—iwt + ing), where n is an integer. Due to this procedure, we reduce the
problem to solve the differential equations with respect to four partial deriva-
tives for fi(r, z,v1,v))-harmonics, whereas the initial Egs. (1, 6) include seven
partial derivatives. Moreover, to evaluate the main contribution of plasma par-
ticles to the perturbed current density components it is enough to find the
fi-harmonics with [ = 0, £1.

Of course, by substituting the Fourier expansion (12) into Eq. (11) we get
a set of coupled equations: i.e., the equation for f; contains the harmonics f;11
and firo. However, for magnetized plasmas this coupling can be taken into
account by the standard approximation using the small "magnetization” pa-
rameter 75 /l, << 1, when the Larmor radius ry = v2T Mc¢/(eHy) (of particles
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with the mass M, charge e, and temperature T') is much less than the scale
length !, of the inhomogeneity of the plasma-wave parameters in the direction
perpendicular to Hy. Thus, to evaluate the €11, €19, €91, €20, and €33 dielectric
tensor components, we should solve the following three equations:

. 0 0 _eH,
—iwfi + ’U”hTa—];l + Utha—Q - Zlﬁzﬁ
v, (10 Oh, ofi ofi\ _
+7 (rarrhr+ 8,2) (UL(?U\ UHBUL =@ (13)

where [ =0, +1, and
e e .
Qo = 7 Eju £, Qu1 = 55 (En F iEp)vLFo. (14)

Note that Egs. (11-14) can be employed to study a wide class of plasma con-
figurations with an axisymmetric equilibrium magnetic field and given h, and
h,. For example, these equations were initially used to evaluate the dielectric
characteristics in the straight cylindrical magnetic mirror machine [13], and for
magnetospheric plasmas with circular magnetic field lines [4-6].

Since the intrinsic geomagnetic field of the Earth (and other planets) has
the dipole configuration, let us rewrite Eq. (13) for plasmas in the concrete
dipole magnetic field

3
Hy(R,0) = By (%) V1+3sin’ 6 (15)

where Ry is the Earth’s radius, R is the geocentric distance, 6 is the geomagnetic
latitude, By is the magnetic field in an equatorial plane on the Earth’s surface
(R = Ry, 0 = 0). The new variables (R, 6) are introduced instead of (r,z) as
r = Rcosf, z= Rsinf.

To solve Eq. (13) we use the standard method of switching to new variables
in velocity space associated with the conservation integrals of energy: v? -I—’Uﬁ =
const, magnetic moment: v /2Hy = const, and the equation of the Hy-field
line: R/ cos®6@ = const. Introducing the variables v, y1, L (instead of vy, v, R)

2 Ho(L,0) R
B AT — Vidotsy) L=—""_ 16
. UYL . v2Hy(L,0)’ Ry cos?6 ()

we seek the perturbed distribution function as

ol
fl(rvzaUHavL) =ZflS(L,0,'U,IJ,). (17)
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As a result, the Vlasov equation for harmonics fj and fi, can be rewritten
as the first order differential equation with respect to the #-variable

Veost 8 — p/ T+ 35 o is LB () MV 1H35070) f0 o (g
cost V1 + 3sin’0 90 v L3 cosb6 el

where L, v, u are as parameters in this equation, [ = 0, £1, and other definitions

are
LF, 1 in? 0 N 2

i [T a2
T cos® 0 wovg, v

. eRyLFy\/ uV'1 + 3sin® 0 S 5 BT 0 B, -

Qi =s 27T cos36 (Bn Fi5y), T CO_MC'( )

By the indexes s = £1, we differ the particles with positive and negative
values of parallel velocity,

\/ V1 + 3sin”0
v = sv 1— —

cos® @

(21)

relative to Hy. Note, in Egs. (13) and (18) we neglect the drift corrections
assuming the drift frequencies are much less than the bounce frequencies. This
assumption is valid when

nvpL? nv
T exl and -

— << 1 22
RoQo LRy|w — Qe/L?| (22)

where €2, is the cyclotron frequency vt is the thermal velocity of plasma par-
ticles, and n is the azimuthal wave number over ¢ (east-west direction).
Depending on p, the domain of f is defined by the inequalities:

1
L25\/AL —3 —

where +6,(1) are the local mirror (or reflection) points for trapped particles at

<u<l and —0:(p) < 0 < 0:() (23)

a given (by L) magnetic field line, which are defined by the zeros of parallel
velocity, v = 0:
cos® 0, — p/1+ 3sin? 4, = 0. (24)

The corresponding boundary condition for f? is the continuity of f at the
reflection points, i.e.,
[T (0 = f7(£60). (25)
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Note, due to the Earth’s atmosphere, the untrapped particles will be ther-
malized by the collisions with atmospheric molecules and atoms, before reaching
the Earth’s surface. Any particle with y < L=23(4L — 3)7%5 will not survive
more than one half of the bounce time and will be precipitated into the atmo-
sphere.

After solving Eq. (18), the two-dimensional normal, j,(f, L), and binormal,
Jo(8, L), current density components can be expressed as j, = 0.5[j1 +j_1] and
Jo = 0.5[j1 — j_1] , where

(0, L) = 21)10(9)2/ ‘F];l(_e—w dudv, [==%1. (26)

For the parallel current density component, we have

7@ Z / / fo(0, L,v, u) dp dv (27)

where i 5g
COS
= L . =Y 28
Ho= 125 /iL — 3 O = Frsers (28)

Taking into account that the trapped particles, with a given parameter u, exe-
cute the bounce periodic motion with the bounce period proportional to

% V1+3sin’6
T = Tp(p) = 4/ Akl R (29)
o —n0
the solution of Eq. (18), for example, for f{,, is
2T . ww
= 3 e (2et0) + i) (30)
p=—00
where
—iseRoLv/1iF,G! 0 1 in?
f;l:s: olvyiko ”’S(M), 7':/ cosn wdn (31)
* o 2urTw (p’v/'UT —sZ) 0 1 — p/b(n)
w QRoww * cos 1/1 1+ 3sin?y 2mur
Z; = = 2
! m}TL2 1—pu/b(y) o RyLT, (32)
”/2 Eu (1) 2 WeoR
Gls:/ 0 ex [—z’ 7 —isl— OCTj|d7' 33
0 By B d B 72, C(7) (33)
() = % cosyp [1+ 3sin?y 7(0) [% costp |1+ 3sin®

T—p/b@) " " m Jo b))\ 1-p/b()
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As a result, the contribution of unspecified kind of plasma particles to the
transverse current density component is given by

4mg RoL +°° %0 udp

717(0)_%([4’ 9) 4w7r1 "'l) ; p——oo \/T

00 o4 1
2 /0 W - |:z'p27_—7:7'(9) ] ‘”C‘;’j‘) cE)|du  (35)
where wzo = 47 Ne?/M is the square of the plasma frequency for particles with
charge e, mass M, and density N (number of particles in ¢m3). It should
be noted that Eq. (35) is written in the general form and can be applied to
define the contribution of trapped particles to the perpendicular current density
components in an axisymmetric magnetosphere with an arbitrary configuration
of the closed magnetic field lines. The perturbed longitudinal current can be
derived by analogy (Ref. [5]).

In order to solve two-dimensional wave equations, we should expand pre-
liminary the perturbed values in a Fourier series over 6. So, for the transverse
components of the current density 5(#)j; and electric field E;, we have:

+oo !
0)5i(L,0) = Z F™(L) e E(L,0) =Y EM™(L) &5 (36)
where the points +6,(L) = +arccos(1/v/L) are the beginning and the end of a
given (by L) magnetic field line on the Earth’s surface, and E; = E,, — ilE, if
| = £1. This procedure converts the operator, representing the dielectric tensor,
into a matrix whose elements are calculated independently on the solutions of
Maxwell’s equations. As a result,

4 m m,m m
7”‘ Zel’ 'E™) (37)

and, after the summation over s = =+1, the contribution of a given kind of
plasma particles to the transverse permittivity elements, e;"’m’(L), is

/ u* exp(—u?)
m,m’ __ d Dm le ! d _
“ 2w7rl 5UT9 Z /uo Hep pu— 7 U

ﬂ'dﬂ' m, Am/,l 4
2w7715vT90 /u / DM DTty exp(—u)du (38)
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where

6 0 7(6) . weolR do
Dm’l:/ ( — — 2rp—2L z“’“ca) +
- A cos [ mm 5 - Iz @ TOET

- 0 7(0)  weRo 0
+—1p/ ( —+2 + il CQ) 39
(—d) | toonl| g+ 0mp= = il (©) o) = —M( )
& 6t V1 o 2
D;”vl :/ cos (7rmz - 27rpT(0) — 4l meOC 0 ) GoRgY L Gisin 6’d9
0

o T L2yur b(0) — u
0t / P
(1) / - <7rmﬂ P L L C(e)) crilib et AN
0 ) b L*uvr b() — 1

Thus we see that, due to the geomagnetic field inhomogeneity, the full spec-
trum of an electric field (by 32:-5°) is present in a given (by m) harmonic of the
current density .

To evaluate the longitudinal permittivity elements, we should expand the
perturbed longitudinal (parallel to B) components of the current density j;b(6)
and electric field E” in the following Fourier series over 6:

+oo

(0)(L,0) = Z]H(m) D)elth,  Ey(L6) = ZEH m(L) R (41)
As a result,

47” m,m’ (m/
— " Zf "B (42)

and the contribution of a given klnd of plasma particles to the longitudinal
permittivity elements, eﬁ”’m’(L), is

2 L2R2 il 3
g = P / D AmAr 1 [ +i 7r23w3W<i)}du (43)
27r v5.6p = Ju P pPwy PWp
where
W(z) = (1 +— / e dt) is the plasma dispersion function,
0t
A= /o [cos (wmg) — 27rpT7(_b0)> (—1)?"! cos (7‘(’771;0 +2 p%)} df(44)

" ot 0
Ay = / cos (wma— 2 p—> cosfy/1+ 3sin?0 df +
0 o
| - g 7(0) - 2
+(=1)? cos | Tm- + 2mp——= ) cos 01 + 3sin” 6 dh.(45)
0 0 To
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As was noted above, the expressions (38) and (43) describe the contribu-
tion of any kind of trapped particles to the dielectric tensor elements. The
corresponding expressions for plasma electrons and ions can be obtained from
Eqs.(38-43) by replacing T (temperature), N (density), M (mass) by the elec-
tron T, N, me and ion T;, N;, M; parameters. To obtain the total expressions of
transverse and longitudinal dielectric tensor elements, as usual, it is necessary
to carry out the summation over all kinds of plasma particles.

The dielectric characteristics of a dipole magnetosphere (as is for magneto-
spheric plasmas with circular magnetic field lines [4, 6]) depend substantially on
the geomagnetic field nonuniformity. If w << wp, = 27vy /Ry L1, the imaginary
part of the longitudinal permittivity decreases as ~ v;5. This decreasing is
stronger than ~ vz? for plasmas in the straight magnetic field. If w ~ wj, the
numbers of the basic bounce resonances are defined by the condition p ~ w/w,.

In this case, Im eﬁ”’m

(L) has a maximum for waves with longitudinal wave num-
bers m ~ p. It means that the resonant condition for the effective wave-particle
interaction in magnetospheric plasmas should be understood as the condition
when the wave performs the integer number (p) of oscillations during one bounce

period 27/wy of the trapped particles.

Information related to the basic cyclotron resonance effects is included in
the transverse dielectric tensor components, e;n’m’, derived taking into account
the cyclotron and bounce oscillations of the trapped particles. The effective
cyclotron-bounce interaction between the wave and the trapped particles be-
comes possible in the frequency range w ~ €., /L>. In this case, the numbers of
the basic bounce resonances are defined by p ~ |w — weo/L?|/ws. It means that
the cyclotron resonant condition should be understood as the condition when
the transverse electric field performs the integer number (p) of oscillations dur-
ing one bounce period of particles. In particular, if w > Q.;/ L3, there are two
symmetric ICR-ICR points (at the considered magnetic field line) where the
ion-cyclotron resonance (ICR) is realized exactly (see Fig. 1). The damping
rate of such waves will be defined by the level of ion energy (temperature); i.e.,
the interaction will be effective if the bounce-period of the trapped ions and
their transit time between the ICR-ICR points are comparable to each other.
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4 Toroidal Plasma

To describe an axisymmetric tokamak we use the quasi-toroidal coordinates

p)97¢7
r =Ry + pcosb, z = —psinf (46)

where p and Ry are the minor and major radii of the magnetic surface, # and
¢ are the poloidal and toroidal angles, respectively, as shown in Fig. 2. The
poloidal, Hyy, and toroidal, Hy,, projections of an equilibrium magnetic field
H, are

Hoo(p,6) = 1 faeo ((:Z)s g Holp0) =1 ﬂogie = % (47)
satisfying the conditions (VHp) =0 and [V x Hg], = 0. For large aspect
ratio tokamaks, one can use (see, e.g., Refs. [2,9,11,14]) two small parameters:
€ << 1 and Hy << Hyg. In our paper, for low aspect ratio tokamaks, the
Vlasov equation is solved in the general case of arbitrary € < 1 and Hog ~ Hyy.

To solve Vlasov equation we use the standard method of switching to new
variables associated with conservation integrals of energy, v2 + vﬁ = const,
and magnetic moment, v2 /2Hy = const, where the module of an equilibrium
magnetic field is

HE,(p) + Hi(p)

Ho = Hy(p,0) = 1+ecosf

(48)

Introducing the new variables v and y (instead of v and v,)

2
Y __ viHy(p,m/2)
v=4/vj+vi, p= “0Ho(p.0) (49)

the perturbed distribution functions, Eq. (12), can be found as

+1 oo

F(t,p,0,6,v,v0,0) =Y Y f7(p, 0,0, 1) exp(—iwt + ing + ila).  (50)

s l

In the zeroth order over a magnetization parameter, the equations for f§
and f§, can be written as

off
a0

+ ik s(p, 0, v, 1) 7 = Qus , s==+1, 1=0,%1 (51)
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Figure 2: Quasi-toroidal coordinates (p,0,¢) for an axisymmetric tokamak

plasma
where
sep [T
=P pE = N FoELy (52
Qo Thy °7 1 @ur, 2The\/ 1+ ecosf —p” ° +1 (52)
N v? , 2T )
F(] = mexp (—E> 5 Ur = M’ Eil = En q:ZEb (53)
PR Y l (4+ecos€_pdq) spw—+1Q:,/(1+ ecosb) 51)
DT T4 ecos® 2 \1+ecosh qdp hov /1 — /(1 + ecos )
172 2
hp= . gy 0 — O il (55)
¢_H07 # .[J()7 .H(]g w M ¢ ’

After solving Eq. (51) the 2D longitudinal, j, and transverse current density

components,  jn, = j1+j-1, Jo = i(j1 — j-1),
. 1—ecost
Ji(p,8') = me——3— Z /
€
_ me (1 — ecos )" =
Jjx1(p, ) = ( e /

can be expressed as
1— ecos@
/ fo(p, 0, v, p)dudv  (56)

fiay/Fdudv

/ l1—ecosd’ '
1-— 12 1—e2

(57)

/1 ecoso’

By s = £1 we differ the particles with positive and negative parallel velocity

relative to Hg:

= s4/v2% — =
U= Ey U= sv\/ 1+ecos€

m

5(1—ecos®). (58)

"

Depending of u the phase volume of plasma particles should be split in the

two populations of the so-called trapped (subscribe symbol ¢) and untrapped
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-4 -r =2 0 2 T 4

Figure 3: The phase volumes of the trapped and untrapped particles in depen-
dence of the variables p and 6'.

(subscribe symbol u) particles. In our notation such separation can be done by
the p-variable.

As shown in Fig. 3, the intervals
0< pt < o, —r<f <7 (59)
correspond to the untrapped particles, and
P < <ty -0, <6 <6, (60)

correspond to trapped particles, where p, = 1 —€, uy = 1+ ¢, and the reflection
points of the trapped particles, -0;, are defined analyzing the condition v = 0,

0; = 2 arcsin ¢(1 1 Sl ﬂ). (61)

2€L

Recently, the contribution of the trapped and untrapped electrons to the
longitudinal dielectric permittivity was derived in Ref. [12] by solving Eq. (51)
for f§ (I =0). In contrast to them, we solve the Vlasov equation for both the
f¢ and f3, harmonics using i) coordinates with the ”straight” magnetic field
lines, by introducing the new variable ¢ instead of 6:

s - . 1—g @ N 1+e¢ H_’
0(0)—2arctg<,/1+etg2) or 0(0)—2arctg( 1_€tg2 (62)
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ii) new time-like variables 7, (") and 7;(6'), respectively, instead of ¢’
ol
(0, K :/ :H</~co,—,m), 63
@) 0 (1+ k,sin®n)y/1 — ksin’p 2 (©3)
. N . 1 .60\ .
(0, k) =11 (non, arcsin (\/_E sin 5) ,K) ; (64)

to describe the bounce periodic motion of the untrapped and trapped particles

along the magnetic field line. Here we have accounted that the bounce-period
of u-particles is proportional to

Tou(K) = 211 (Ko, 7/2, K) , (65)
whereas the bounce-period of ¢-particles is proportional to
T 1(R) = Al (Kok, /2, R) , (66)

where II(k,,0, k) and II(k,,7/2,k) are the incomplete and complete elliptic
integrals of the third kind. The new variables « (for untrapped particles) and
# (for trapped particles) are introduced instead of u as

2l = L o %
-al+te-p "7k  "T1-¢

The solution of Eq. (51) for untrapped (u) and trapped (¢) particles can be

w(p) = (67)

found in the form

277, (0 ) i
(6,00, 5) Zf, (oo [itp+na) T8 —ing] (69
o, #,0,7) Z (v, exp [ipZ ) inger| (69)

where p is the number of bounce resonances, s = +1, [ = 0,£1, and ¢; =
q/v/1 — € is the tokamak safety factor.
In the new variables, the domain of f;, is

0< k<1, <0 <7 for untrapped particles

and the domain of f}; is

x>

0<k<1, —0,(k) <0 <0, (k) for trapped particles
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where 46,(k) = +2arcsiny/A are the reflection points of the trapped particles
with given A. Fourier-amplitudes fz P and f can be defined after the corre-
sponding bounce-averaging. To evaluate the dielectric tensor elements we use

the Fourier expansions in 6':

/ E I 19!
,]([)7 Z (m) zme and (p,0 ZE zma' (70)

1— ecost 1—ecost
As a result
47 =2 474 9
—]l = Z [eﬁu’m + ezlt’m] E™, and 7]"" = [emm + emt’m] E" (1)
m' -

m,m’
u Gt

to the transverse and longitudinal dielectric permittivity elements, respectively:

! . . .
Here ¢™ ,el";’m and e” are the contributions of u- and ¢-particles
: i

) 4 2 m Am'
e omwwez / K dk /+ o e () A

be T 125 heury/T — € (ko + )2 J_oo (D+ngs—16 —lg)u—Uy(x)"

. /1 +00
E;T;’m — 0.5 wL P +e Z/ / U exXp ( u )Bm Bm du (73)
y 725wheury/1 — € (1+koR)2 ) o pu—Vi(R)

' _ 2w? p? \/n_o (I+¢) Z/ (Kos 51.65) CmCm
€) (p

e = g3 h% vZ (1 — + ng)? (ko + m)15

X [1+2ul + 2ivmus W (uy)] de - (74)
mm _4UJLP \/E_O(1+€)Z/1H(K’D ’27 DmDm x

Il T o hivd (1—e 1+f€l€)15

X [1+ 202 + 2/ W (vp)] di& (75)
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where the following definitions have been used

AT = / cos 4 (m+ng —16)n—1g0(n) — 27 (p + ng — 16 — lg) 7u(, ©)
0 Tb,U("“)

Qepv/2(K0 + K) n Tu(1, K) 1+ K, sin
T () s T g

0t 1+ K, 0227 o
Ble:/ : &cos{(m—%nqt—l&)n lgf(n )—27rp T k)
0

# — sin® 1 bt (R)
. 1.7\ .

F(arcsm( E81n5>’1€) Tbt/%):|}

e(n, &)

b 1 s 2n
/ e Sl? z cos{(m—l—nqt—lé) — lg0(n) + 27p

k — sin
Qepry/2(1 + Kok)

To,e (R

: l inﬁ P & 7i(n, &)
houvr 6(1 + e) ¥ (aI“CSIH (\/;S 2) ’ ) 4K( ) Tb,t(’%) :| }dn (77)
e

Qep/2(1 + Kok)
houvy/€(1 + €)

Cy'(k) = /OW cos [(m +ng)n — 27 (p+ ng) T:b(:(’:))] dn (79)
Dy (k) = /0«% cos [(m +ng)n — 2rp—— (Z}(’fi))] dn +
+(=1)1 /09t cos [(m +ng)n+ QWp%] dn (80)
Py 2(Ko + K)

= m [w(l +e)ll (mo, g, H) + lQCK(H)] (81)

V(I%)— 2/)\/ 1+I€o
: mhevr/e( +€)
_ wpy/2(1 4 €) (K, + K) ™ o) — Y dé
o) = g hy vr e (‘”2 = [ 69
€) Kok T . T
o 2R DA+ ( k), K(w) = F (5.5 (84)

p T hg vr \/€

[ (1+eI (nai% g ) + 122 K(fs)] (82)

, K

vp(R

47TN€ q 1.5 he he _ /_)@

2= , — , ) : =—( ) 85
e M & V1— ¢ V1-—¢e =73 gdp 169)
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Note that our ezzml, ezlt’m/, emm,, el"'?t’ml describe the contribution of any kind
of untrapped and trapped particles to the dielectric tensor elements. The cor-
responding expressions for plasma electrons and ions can be obtained by re-
placing T (temperature), N (density), M (mass) , e (charge) by the electron
T, Ne, me, €. and ion T;, N;, M;, e; parameters, respectively. To obtain the total
expressions of the permittivity elements, as usual, it is necessary to carry out
the summation over all species of plasma particles.

The bounce resonance conditions of the effective wave-particle interactions
in a tokamak plasma are the same those derived in Ref. [7] and can be rewritten
as

(p+ng —16 —lg)u—Uyk) =0, Lp=0,4£1,42, ... (86)
for the untrapped particles, where v = v/vr, and
pu—Vi(k) =0, Lp=0,+1,42, .. (87)

for the trapped particles.

It should be noted that the phase coefficients A7}, By, Cy and D]y can be

calculated introducing the Jacobi elliptic functions. In particular,

K(k)
Cp(k) = [ cos [2(m + ng;)am(k, w)—

K(k)
- ngy M dn(k, w)dw 88
e e
2K (k)
D (k) = \/E/_ZK( )cos [2(m + ng;) arcsin (vksn(k, w)) —

0.5711(Kok, w)

— p— cn(k, w)dw. 89
pH(KgH,K(H)):| () (89)
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The corresponding Jacobi elliptic functions are (see also Ref. [1])

tn & Py @D
sn(k, w) = \/EK(/s) ; 1_ A21+1(,€) = 2K (k) (80)

Al+1/2 20+ 7w
en(k, w) = ) Z 14+ qzz+1(,€ cos ( 2K(/-)c) o

_ T 2 ™ - (’i) lmw
dn(k, w) = 2K (k) i K(k) & Z L+ ¢%(x) " K(r) o

24" I€) i lmw
am(k, w) 2K(/§ £ lzl 11+ ¢%(x - K(k) 53)

where ) K(1—k)

(k) = exp [—77 W] e
and ﬁ B w du 95
o) = [ i .

using the new w variables, instead of '

/2 dn
w(f) = L — for untrapped particles,  (96)
0o 1—ksin’y
and
arcsm(‘/; sin ﬂ)
w(l) = / ’ d—n for trapped particles. 97)
0 1—ksin’p

5 Conclusions

In this paper, the kinetic Vlasov equation is written for plasma particles in the
arbitrary three-dimensional equilibrium magnetic field. The transverse and lon-
gitudinal dielectric permittivity elements have been derived for radio frequency
waves by solving the Vlasov equation for trapped and untrapped particles in
two-dimensional axisymmetric toroidal and magnetospheric plasma models.

In particular, our dielectric characteristics can be used for both the large
(e << 1) and low (e < 1) aspect ratio tokamaks to analyze the finite-c effects
in the frequency range of the Alfvén, Fast Magnetosonic, Lower Hybrid, and
Ion/Electron Cyclotron Waves.
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The new dielectric tensor elements evaluated in the paper are suitable to
develop the 2D numerical codes to solve the Maxwell’s equations in tokamak
geometry and Earth’s magnetosphere taking into account the cyclotron and
bounce resonances.
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