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Abstract

We consider a system of two conservation laws and the associated
3-dimensional manifold which represents fundamental waves, called wave
manifold.

If the flux functions are polynomial, of degree 2, topological descrip-
tions of shocks and rarefactions are known. Here we present the topo-
logical description of composites, both as curve families in each of the
two sonic surfaces embedded in the wave manifold and as a pair of curve
families in state space. We also prove that composites are stable under
C3-perturbation of the flux functions.

1 Introduction

A system of conservation laws models the evolution in time of a continuum.
When the movement is one-dimensional, the system takes the form

Wi+ F(W), =0, 1)

where W (z,t) € R™ represents the state of the continuum and F' is a map
F : R — R, whose coordinates are called flux functions. In general the
flux functions depend nonlinearly on W, and this causes discontinuities in the
solutions of (1). In gas dynamics, for instance, these discontinuities represent
shock waves.

In analogy with the experiments in shock-tube, analyzed by Riemann, an
initial-value problem for (1) with initial data

(W ifz <o,
W(””’t_o)_{vv2 if 2 >0

is called a Riemann Problem. Furthermore, solutions of the Riemann Problem
must be invariant under rescaling, i.e., invariant under the change of variables
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(x,t) = (ax, at), for a > 0. These fundamental solutions are built as successions
of elementary solutions: shocks, rarefactions, composites.
Shocks are solutions of the form

| Wy forz <st
Wiz,t) = { W, for z > st.

Rarefactions are absolutely continuous solutions of the form W (z/t). Compos-
ites are solutions of the form

V~V1 for x < s;
W(z,t) =< W(z/t) fors; <z < sy
Wy for sy < x.

Many properties of these solutions can be derived from the corresponding wave
curves defined in the wave manifold [1].

In the first non-trivial case (flux functions are polynomials of degree 2),
shock curves were studied in [2] and rarefaction curves in [3]. Here we complete
the topological study of elementary solutions by describing composite curves
and showing their stability. This will put us in position to construct general
solutions for Riemann problems and to show their stability.

More precisely, let us consider the system (1) with two conservation laws,
where W = (u,v)T, W(z,t) € R?, and the flux function F : R — R? is given
by F = (f,g)7, with

flu,v) =v?/2 4 (by + 1)u?/2 4+ a1u + agv
(2)
g(u,v) = uv — byv?/2 + azu + aqv
where, by ¢ {0,4+1,1+ b3/4},03 + 4/(by + 1) # 0 and a3 — ap # 0. This is the
normal form of [2] and [3].

In [3] rarefaction curves were studied for this system, and in [2] shock curves
were considered. A more general study was done in [1] where, in Section 8,
the composite foliation is defined and some general results are proved. At the
end of that section, it is remarked that the structure of the composite foliation
for quadratic models remained to be determined. This paper addresses that
remark.

In order to state our main result, let us recall that the characteristic surface
C and the sonic surfaces S and S’ are cylinders embedded in a three-dimensional
manifold M (the wave manifold [2]). The rarefaction (singular) foliation, de-
scribed in [3], is given by a differential equation. The composite foliation is
defined in [1] as the pullback to S’ of the rarefaction foliation in C' by shock
curves, subject to a condition of speed equality.

Here we obtain an explicit formula for this shock curves pullback map which
we call ¢ and we prove the following theorems.
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Theorem 1 The map ¢ : S — ¥(S") C C is a double cover. It is a local
diffeomorphism, except at a curve whose image does not contain the singular
points of the rarefaction foliations. Furthermore, ¥(S") = C if and only if
b3 +4/(by +1) < 0.

Theorem 2  a. IfQ € C is a singular point of the rarefaction line field, then
there exists a unique point Q' € S' such that Q and Q' are singularities
of the composite line field in S'. As singularities of this line field, @ and
Q' are of the same type (saddle or node) as Q considered as a rarefaction
singularity.

b. The composite (singular) foliation has neither saddle connections nor pe-
riodic orbits.

c. Ifb3+4/(by+1) > 0 the composite foliation has two other singular points,
which are the points in the inflection locus S'NCNS where the rarefaction
curves are tangent to the inflection locus.

Theorem 3 The composite singular foliation is structurally stable for C® per-
turbations of the fluz function provided that b3+ 4/(by + 1) < 0.

We believe that the conclusion of Theorem 3 is true even if this inequality is
reversed.

We also describe the projection of the composite foliation in state space
((u,v)-space), which we also call composite foliations, and we prove the following
theorem (a more precise formulation of this theorem will be given later.)

Theorem 4 In state space, the rarefaction foliations are the projections of the
composite foliation from S, provided that b3+4/(by+1) < 0. If this inequality is
reversed, then in state space there are regions where exactly one of the following
statements is true.

a. The composite foliation is not defined.

b. Both rarefaction foliations are also composite foliations.

c. Only one rarefaction foliation is also a composite.

In Section 2 we present, without proofs, the main results from [3] and [2]
that will be used in this paper. We also present the definitions and notation
to be used in what follows and describe the intersection of shock curves with

the characteristic surface. In Section 3 we describe the intersection of shock
curves with the sonic surface S’. We can then define ¢ and prove Theorem 1.
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In Section 4 we study the differential equation of the composite foliation in the
sonic surface, prove Theorems 2 and 3, and describe the image of ¢ as well as
the composite foliations in state space, thereby proving Theorem 4.

In this work we had to perform computations involving polynomials of degree
3 and 4, which were done with Maple (Maple is a trademark of the University
of Waterloo).

2 Preliminaries

2.1 The wave manifold and shock curves

Following section 2 of [2], we consider equation (1), with F' given by (2). We
know that a shock

Wy forxz < st
W(z,1) _{ W, for x > st.

is a weak solution if and only if W, W5 and s satisfy the Rankine-Hugoniot
condition

F(W1) = F(WQ) = S(W1 = Wz) (3)

If we let W) = (u,v) and W, = (u/,v'), and eliminate s from (3), we get

[ (u,v) = f(u', )] (v = V') = [g(u,v) — g(u',v")](u — w') = 0. (4)

This equation defines a set P that is the union of the 2-plane u = «', v =’
with a three-dimensional manifold M3, called the Wave Manifold for system
(1). In M?® we consider the shock curves defined by du = dv = 0. Classical
shock curves are the projections of these curves onto the (v, v')-plane. We can
also consider the shock! curves, defined by du’ = dv' = 0.

Rarefactions and composite solutions also generate rarefaction curves and
composite curves, which are defined in appropriate two-dimensional submani-
folds of M3, and they project onto the (u',v')-plane to produce classical rar-
efaction and composite curves.

Computations in M? are easier using the coordinates from [2]:
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ﬂ:b1u+bgv+a1—a4, ﬂ:U-f'aQ,

U =biu' + bt +a; —ay, UV =0"+ay,
X=u—u, X=a-14,
Y =v-1, VY=0-17,
U= (u+)/2, U=(a+a)/2,
V=(v+v)/2, V=@+1)/2,
c=az— ap.

In terms of X,Y,U,V, we see that P is defined by
(XYW —~X¥YTU +eX?=0.
Let Z=Y/X. In the space (X,Y,f],V,Z), P is given by
X1 -28V -20+¢) =0,
and
Y =7X.
The plane X =0, Y = 0 is a solution, reflecting the fact that u = v, v = v’ is
a solution.By omitting this trivial case, we get the manifold M? given by
1-ZW—-2ZU+c=0

and
Y =7X.

Notice that Z is a direction, so M? is actually a submanifold of R* x RP!,
or equivalently, of ®* x S'. In [2] it was shown that M? is a Moebius band
crossed with R. Since there are no special features at Z = oo, in what follows
we will use only U,V, Z, X coordinates and consider M3 as given by G = 0
in (U,V,Z,X)-space, where G = (1 — Z%)V — ZU + c. Going back to the
Rankine-Hugoniot equations (3), we get the following expression for the speed:

s=ZV+m+ (b +1)(U - b.V) /by, (5)

where m = a; + (by + 1) (a4 + b2as — a;)/b;.
The shock curves in M? are given by du = dv = 0, i.e.,

dX + 2dU =0,
dY +2dV = 0,

or equivalently
dK =0, dL=0,
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where B ~ B
K=uX+2U-2bV, L=2V+7ZX.

The shock’ curves are obtained changing X to —X in the expressions for K and
L.

Given a pair of real numbers k, [, consider the shock curve defined by K = k
and L = [. This curve is the set of points (U, V, Z, X) satisfying the system

G=(1-2V-20+c=0
K=bX+20-20V =k (6)
L=ZX+2V =1

This is a linear system in U, V, and X with determinant 2Zp(Z), where
p(Z) = Z2 4+ by Z + by — 1. So, if Zp(Z) # 0, shock curves are parametrized by
Z. Solving the above system when Zp(Z) # 0, one gets

U= (kZ? — 0122 + (2cby — k) Z + by (1 + 2¢))/[2Zp(Z))
V = (—=kZ + byl + 2¢)/[2p(2)] (7)
X =022+ (k+bl)Z — (I +20))/[Zp(Z)).

Since we assume that the discriminant b3 —4(b, — 1) of p is nozero, p has distinct
roots; if these roots are real, let us denote them by z; < 2. Also, let zg = 0.
Shock curves are singular along one or three straight lines B;, i = 0, 1, 2, defined
by: ~
~  zU-—c ps
=z, V= ﬁ X = =2[(z*+ 1)U — 2cz]
— %

b1 + byz;
bl(l o= 21‘2)2 ’

In the same fashion, shock’ curves are singular along the straight lines B,
obtained from B; by changing X into —X. Let B = U2 B;, and B’ = U2 | B..
The local structure of shock curves near B; is the same as that of the curves
22 — y? = ¢, z = ¢’ near the z-axis in 3.

From (7) it is clear that the number of connected components in a generic
shock curve is given by the number of real roots of Zp(Z). It is easy to see
that if [ # —2c the shock curve does not intersect the plane Iy : Z = 0 (and
in particular the straight line By). Also, if b3 — (4b; — 1) > 0, it is clear that
Z — z; factors from the numerator and from the denominator of the expression
of V in (7) if and only if —kz; + byl + 2¢ = 0. With some more work we can see
that it factors also from the numerators and denominators of the expressions of
U and of X. So, if —kz; + b1l + 2¢ # 0, then the shock curve does not intersect
the planes II; : Z = z;, 1 =1, 2.

Let us now describe shock curves that intersect the singular set B. For
simplicity we will consider only By. If I = —2¢, the shock curve has two parts:
a straight line given by

Z=0,V=—c U= (k—2cb — b, X)/2, (8)
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denoted by shly, and a curve given by

U = (kZ? +2cb Z + (2chy — k) /[2p(Z)]
V = (=kZ — 2¢(by — 1))/[2p(Z)] (9)
X = (—2¢Z + (k — 2cby)) /p(2),

denoted by shcy. Notice that the intersection shlyNshcy of these parts is a point
belonging to By. Also, the lines shly fill the plane Iy as k varies. If k = 2cbs
the intersection point of the shock curve and By lies in the plane X = 0; this
point is denoted by Q.

If b2 — (4b; — 1) > 0, the same situation occurs for shock curves through
points in By or Bs. In each case the shock curve decomposes into a straight
line shl; and a curve shc;, with shl; N she; being a point belonging to B;. If
k = 2¢(22;+b2)/(1+22) and | = —2¢/(1+22), then the point shl; Nshc; also lies
in the plane X = 0. We will denote this point by @;, for i = 1,2. If p(Z) has
complex roots, all shock curves are connected (remember that Z is a direction,
and we must glue Z = +oo with Z = —oco to get M?). It is then clear that shcy
is a closed curve. If p(Z) has real roots, shock curves are open and have three
connected components in general, except for the ones that intersect B, which
have two connected components.

We define the sonic surface S in M?® as the set of points where the speed s
is extremal along a shock curve, i.e., where the differential forms dG, dK, dL
and ds are linearly dependent. In the same fashion, we define the sonic’ surface
S'" by requiring dG, dK', dL' and ds to be linearly dependent. In [2] it is shown
that S is given by the equation

AyU + AyV + AxX =0,
where
Ay =2(Z%+b,+1)

Ay =27(Z% — byZ + by + 3)
Ax = =72 —by(by + 1)Z + by + 1.

Similarly, the equation for S’ is

AUU + 14\/‘7 —AxX =0. (10)

Both S and S’ are cylinders embedded in M?. Let us consider their intersection.
There are two cases:

1. b3+4/(by+1) < 0. The intersection is formed only by the inflection locus,
to be defined in the next section.

2. b3+4/(by +1) > 0. The intersection is formed by the inflection locus and
by two straight lines constituting what is called double sonic locus.
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2.2 Rarefactions

The characteristic surface C in M? is defined by X = 0. It is also a cylinder.
In the characteristic surface we have the rarefaction line field, given by the
differential equation ZdU —dV = 0 or, equivalently, ZdK — b;dL = 0. This line
field is singular at the points ; = B; N C, which are the same as B, N C. So,
depending on whether p(z) has real or complex roots, the line field has one or
three singular points. Let us briefly recount how these results are obtained.

Recall that a rarefaction is an absolutely continuous solution of the form
W (z/t). Putting this expression in equation (1), we get DF(W)W' = sW’,
where W indicates differentiation of W with respect to s = x/t. This is the
differential equation of the eigenspaces of DF. So, whenever DF has distinct
real eigenvalues, there will be a pair of independent line fields. The integral
curves of these line fields produce two curve families constituting the rarefaction
foliation.

Writing F' = (f, g) and W' = (du, dv), the equation above becomes:

fudu + fodv = sdu
Gudu + gydv = sdv.

Eliminating s we get
fo(dv/du)® + (fu — g»)dv/du — g, = 0.

To study this equation, we set z = dv/du, and study the differential equation
zdu — dv = 0 in the surface C defined by f,22 + (f, — g»)2 — g» = 0. Since f
and g are quadratic, this equation is linear in 4 and v, and this makes it easy
to use v and z or v and z as coordinates to study the differential equation in C.

In C we obtain a (non-orientable) line field that we can integrate, obtaining
a curve family. We can then project this foliation onto the (u,v)-plane to get
two curve families, which are the classical rarefaction curves.

In [2] and [1] it is shown that the surface C can be identified with the X =0
section of M3, the zdu — dv = 0 equation becoming ZdU — dV = 0. Indeed,
replacing f and g by their expressions as functions of u and v, the equation of
C becomes:

(v + ag)2® + (bru+ byv + a1 — ag)z — (v +a3) =0,

or
iz + (2> —1)5—c=0,

and the differential equation becomes zdu — (b + baz)dt = 0. It is shown in [3]
that C is a cylinder embedded in 2 x ®P!, when we identify 2 = —oo with
2z = +00.
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Points (@, 7, z) such that E = 42+ 4%(7 + ¢) < 0 are never in C. The ellipse
E = 0 separates the (@, 7)-plane into the hyperbolic region (£ > 0, where there
are two rarefaction curve families, transversal to each other) and the elliptic
region (E < 0, where there are no rarefaction curves). With respect to C, these
regions correspond to the vertical lines (4 = @g, ¥ = 0p, ) either intersecting
C transversally in two points or else not intersecting C. Points on the ellipse
correspond to points in C' where the vertical lines are tangent to C. In F = 0,
the two foliations become tangent, but they remain transversal to the ellipse,
except at the projection of the singularities of the rarefaction foliation. Notice
that in M? these vertical lines are exactly the shock curves.

Let 7 : C — R? be defined by (&, 9, 2) = (4, 9). The inverse image by =
of the ellipse E = 0 is called the fold curve, because it is the singular set of this
projection, and all points on E = 0 are fold points. The fold is a simple closed
curve that does not bound a disk in C. The foliation in each side of the fold
projects in one of the rarefaction foliations in the (u,v)-plane.

In C the rarefaction foliation is non-orientable, and as we mentioned, has
singularities at the intersection points of B and C. The singular points are in
the fold curve, and they are the only points where the foliation is not transversal
to this curve.

The structure of the rarefaction curve family in C is described in [3]. It
depends on the number and type of singularities of the line field. There are
three cases, according to the number of saddle points.

D1: b3—4(b; —1) < 0 or, equivalently, 14b3/4 < b;. There is only one singular
point, which is a saddle.

D2: 0 < b < 1+b%/4. There are three singularities, two of which are saddles,
and one is a node.

D3: b; < 0. There are three singular points, all saddles.

The points in C where the speed function s is critical along the rarefactions
form a curve called inflection locus. As we mentioned in the previous subsection,
it is part of the intersection S N S’. The inflection locus is transversal to the
rarefactions, except at the intersection points with the double sonic locus. This
divides case D3 in two:

D3.1 b3+4/(b;+1) < 0. In this case the double sonic locus is empty, and there
are no tangency points.

D3.2 b3+4/(b; + 1) > 0. In this case, the double sonic locus is not empty, and
there are tangency points.

In cases D1 and D2, since b; > 0, we have b2 + 4/(b; + 1) > 0. So D3.1 is the
only case with empty double sonic locus.
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2.3 Shock curves and the characteristic surface C

This subsection is the only part of this preliminaries that is contained in neither
[3] nor [2].

A shock curve intersects C' if and only if there exists a solution of equation
(6) with X = 0. If Zp(Z) # 0, we can use equations (7). Thus a necessary
condition is that (k+byl)2+4l(l4+2¢c) > 0. AsU = (k+byl)/2 and V = /2 the
curve (k+byl)2+41(l4+2¢) = 0 is the ellipse E = 0 we met in the previous section.
Recall that it is the boundary of the elliptic region in the (&, 9)-plane (or (k,1)-
plane). We have seen that for (k, ) in the elliptic region, the shock curve given
by K =k, L = [ does not intersect C; for (k,[) outside of the elliptic region
the shock curve cuts C at two distinct points, and for (k,l) on the boundary
of the elliptic region, the shock curve has a double intersection point with C.
In terms of transversality it is easy to see that the shock curves are transversal
to C everywhere except along the fold curve. If Zp(Z) = 0 we have equations
(8) and (9). It is easy to see that both shil; and shc; intersect C transversally,
1 = 0,1,2. The intersection points coincide if and only if shl; N she; € C. In
this case, as noticed previously, shl; N she; = B;NC = @y, is a singular point
of the rarefaction foliation.

3 The composite map

As we remarked before, the equation for S’ is

14[][]v + Avf/ = AxX = 0

The composite foliation in S’ is defined as follows. Given a point in S’; one
follows the shock curve through this point until it reaches C. This defines a
map ¢ : S — C. The composite foliation in S’ is defined as the pullback by
1) of the rarefaction foliation in C.

From now on we will use lower case letters for coordinates of points in C,
and capital letters for coordinates of points in M? on the same shock curve.
Given a point (4,7, z,0) € C we let k = 24— 2by¥, and [ = 20. The coordinates
k and [ are essentially the same as the original coordinates u and v; indeed,
k=2bju+2(a; — ag — baaz) and | = 2(v + as).

3.1 Shock curves and the sonic surface S’

Here we will see that a shock curve intersects S’ at 4, 2, or 0 points, depending
on k and . Substituting U, V and X in the equation of S’ by their expressions
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in terms of Z, we get from (7) the following polynomial:

T(Z) =(2¢ + bok + ) Z* — 2(k — byl) Z3
+[(by + 1)4c + (by + 1)bok + (by + 1) (b2 + 2)I — 41) Z?
—2(by + 1)(k + b2l) Z + (by + 1)*(2¢ + 1).

Real roots of T'(Z) correspond to intersection points of the shock curve and 5.
Tangency points are obtained by solving the system

{ﬂm:o
T(Z) =0,

where we use a dot to indicate differentiation with respect to Z.

Remark 1 The polynomial T(Z) has Z = 0 as a root if | = —2c¢. It is easy
to see that in this case T(Z)/Z is the same polynomial we would get using the
equations of shcy instead of (7). The same is true for the roots of p(Z).

If we write T(Z) = a(Z)k+B(Z)l+~(Z), we can regard the previous system
as a linear system in &k and [, viz.,

ok + Bl = —y
ak + Bl = —4.

If aB — Bé # 0, this system can be solved, to obtain

k=—2(Z24b +1)(022% — 4Z — by(by + 1))c/ D,
(11)
l=-2(Z22+b +1)%¢/D,

where D = (b + 1)Z* — 4byZ3 + 2(by + 3)Z? + (by + 1)2.
A straightforward computation shows that & and [ defined by (11) satisfy E = 0.
In particular, this also shows that the denominator D of £ and ! has no real
roots, since if such a root existed, then either it would be a root of Z2 +b, +1
or | would become unbounded, and it is easy to see that the denominator and
Z? 4+ by + 1 have no common root. )

More tangency points are obtained if af — &8 and oy — éy have common
real roots. If z, is a common real root of a8 — B¢ and ay — ¢, then we have a
line r, in the (k,{)-plane, defined by a(24)k + 8(24)l +7(2a) = 0, as part of the
solution of the linear system. It is easy to see that a8 — S& and oy — yc& have
Z2% 4 by(by + 1)Z — (by + 1) as their greatest common divisor. Recall that this
expression is — Ay, the coefficient of X in equation (10). This polynomial has
real roots if and only if b2 —4/(b, + 1) > 0; in this case let the roots be denoted
by z, and z,. A simple computation shows that r, and r;, are both tangent to
the ellipse F = 0. Since S and S’ are defined by equations which are linear in
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all variables except Z, it is clear that Z = z, and Z = z; define two lines which
are part of the intersection of S and S’. These lines, as we mentioned in section
1, constitute the double sonic locus.

Let us study the intersection of the shock curve by @; with S’. Tak-
ing k = 2ch; and [ = —2¢, the polynomial T becomes 2¢Z%(b, — Z)?. The
double root Z = 0 reflects the fact that shly and shcy intersect, respectiv-
elly, C and S’ transversally at Q. The double root Z = 2/by defines a
point @ where shcy is tangent to S’. Using equations (7) or (9) we obtain

Q)= (U(Q)), V(Qh), X(Qp)), where
T(Qp) = 2¢by(by +2)/(4 + (by + 1)B3),

V(Qp) = —cb3(by + 1)/(4 + (by + 1)b3),
X (Qp) = —4chy/ (4 + (by +1)b2).

If b2 — (4b, — 1) > 0, taking k = 2¢(22; + bo) /(1 + 22) and | = —2¢/(1 + 2?) the
polynomial T becomes [2¢(boz; + b2 + b1 — 1)/ (1 + 22)|(Z — %)*(Z — 2)?, where
z = [(by +1)/(1 — b1)]z;. The double root 2 defines a point @} where shc; is
tangent to S’. As before using equations (7) we compute the coordinates of the
point @}. Let us introduce the notation A = b2 +4/(b; +1). First, we have the
following result.

Proposition 1 Suppose A < 0 ( case D3.1).

a. If E <0, then the (k,1)-shock curve does not intersect S'.

b. If E = 0, then the (k,l)-shock curve intersects S’ tangentially at two
distinct points.

c. If E > 0, then the (k,l)-shock curve intersects S' transversely at four
distinct points.

Proof: Computing 0k/0Z and 0l/0Z from (11), we see that they become zero
simultaneously if and only if A > 0, so we have a parametrization for the whole
ellipse. Actually, as Z varies from —oo to +00, the ellipse is covered twice. To
see that, for (k, ) outside of the elliptic region, T'(Z) has four distinct real roots,
and for (k, ) inside the elliptic region, T'(Z) has four complex roots, it is enough
to evaluate T'(Z) at one point in each region. At the center of the ellipse, where
l = —cand k = —byl, T(Z) becomes c[(by+1)Z* —4by Z3+2(b,+1) Z*+ (b, +1)?],
which has no real roots. On the other hand, taking [ = 0 and k¥ — oo, we get
T(Z) = b Z* — 223 + by(by + 1)Z? — 2(by + 1) Z, which has four real roots.

Let us summarize the information on how shock curves intersect C and S’.
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o If (k,1) lies outside of the elliptic region, the shock curve intersects C' at
two distinct points and intersects S’ at four distinct points.

o If (k1) lies on the ellipse, the shock curve is tangent to C' at one point,
and tangent to S’ at two distinct points, except in the case of singularities
of the rarefactions. If (k,[) is such that the corresponding point @; € C
is a singularity for the rarefactions, then @; € C NS’ and the shock
curve through @; is formed by a straight line shl; and a curve shc;, both
transversal to C' and to S’ in @);. Also, S'Nshl; = Q;, S'Nshe; = {Qi, Q}
for some point @)}, and shc; is tangent to S’ at Q.

o If (k1) lies inside the elliptic region, the shock curve does not intersect
either C or S'.

In order to treat the case A > 0, let us introduce some definitions and
notations. Let ¢y be the intersection point of r, and r4: go = (0, —20%). Let
us call fa the arc of ellipse bounded by the tangency points that is farther from
qo; similarly the closer is called cl. Let tri be the region bounded by cl, r, and
Ty, and T RI the region bounded by 7,, 7, and fa. Finally let R1, R2, R3, R4
be the four regions which form ®? — TRI. Thus R1 is the region opposed by
the vertex to TRI, the others following trigonometrically as shown in Figure 1.

R3

R4 TRI

T 2

R
Figure 1: Regions of the (k,l)-plane for the case A >0

We have already seen that regarding (11) as a parametrized curve, the point
(k(Z),1(Z)) lies on the ellipse E = 0. A straightforward computation shows
that (11) is a parametrization of either fa or cl. It is easy to see that z, and
2z are the only values of Z where 0k/0Z and 0l/0Z are both zero in (11),
and that they are simple roots of 0k/0Z and 0l/0Z, indicating that the point
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(k(Z),1(Z)) actually retraces its path in the opposite direction. Replacing &
and [ in (11) by K and L and adding the X component from the equation of
S', we get a parametrization of a curve in S’ and see that 0X/0Z is nonzero at
2, and at zp, indicating that in S” we have a regular closed curve that is covered
twice as Z goes from —oo to +00.

Definition 1 The curve defined in the previous paragraph is called the sonic
fold.

One can ask which arc of ellipse (cl or fa) in the (k, [)-plane is the projection
of the tangency curve from S’. A straightforward computation shows that it
is ¢l in cases D1 and D2 and fa in case D3.2. The idea is to compare the [
coordinates of ¢y and of (0,0), noticing that (0,0) is obtained by (11) if and
only if by +1 < 0. (Without loss of generality we can assume ¢ > 0.) We then
have

Proposition 2 : Suppose A > 0 and by < 0, ( case D3.2).
a. If E <0, then the (k,l)-shock curve does not intersect S’
b. If (k1) lies in tri, then the (k,l)-shock curve does not intersect S'.

c. If (k,1) lies in R1 or R3, then the (k,l)-shock curve intersects S’ in four
distinct points.

d. If (k1) lies in R2 or R4, then the (k,l)-shock curve intersects S' in two
distinct points

Proposition 3 Suppose A > 0 and by > 0 ( case D1 and D2).
a. If E <0, then the (k,l)-shock curve does not intersect S'.
b. If (k1) lies in R1 or R3, then the (k,l)-shock curve does not intersect S'.

c. If (k,1) lies in tri, then the (k,l)-shock curve intersects S’ in four distinct
points.

d. If (k,1) lies in R2 or R4, then the (k,l)-shock curve intersects S' in two
distinct points.

Proof of Proposition 2. As in the proof of Proposition 1, the same argument
shows that T'(Z) has no real root for (k,[) inside the ellipse. Since, in case
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D3.2, fa is the projection of the sonic fold, if (k,!) is in ¢r4, then T'(Z) has no
real root. Checking the number of roots of P(Z) at the points

(400, 0), (—00,0), (0, +00), (0, —c0),

we get that T'(Z) has 4 roots at (0,4+00) and (0, —oco0) (because b < 0), and
T(Z) has 2 roots at (—00,0), (+00,0) if by +1 > 0 and 4 roots otherwise.

The points on the ellipse with horizontal tangent are (0,0) and (2cbs, —2c).
The lines 7, and r, intersect at ¢ = (0, —2c(by + 1)/b1). It is clear that the
ellipse is contained in the half-plane ! < 0. There are two possible cases, as
shown in Figures 2 and 3, according to the relative positions of gy and the
points of horizontal tangency.

Case 1. g lies in the [ > 0 half plane. This occurs if —1 < b; < 0.

R1

R2

R4

R3

Figure 2: The (k,l)-plane in case 1 of Proposition 2

Case 2. ¢ lies in the [ < 0 half-plane above the point (2¢cby, —2¢). This
occurs if b; < —1.

The case with ¢q lying in the [ < 0 half-plane below (2cbs, —2¢) does not
occur because b; < 0.

In case 1, we can use the points at infinity on the £ and [-axis as representa-
tives of R1 to R4 to conclude that there are 2 roots for R2 and R4 and 4 roots
for R1 and R3.

In case 2, the 4 points at infinity on the coordinate axes lie in R1 and R3,
and there are 4 roots in these regions. To study regions R2 and R4, we write
the equations of r, and 7, in the form k = ¢,/ + &, and k = ¢l + &. We then
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n %

R3
g0

R1

R2

Figure 3: The (k,!)-plane in case 2 of Proposition 2

consider the line k = e/ 47 which passes through gy with € = (¢, +¢;)/2. Taking
T(Z) at the infinite point of this line and writing the condition on b; and bs
for T'(Z) to have multiple roots, we get a curve in the (by, b2)-plane that does
not intersect the region defined by A > 0 and b; + 1 < 0. Thus it is enough to
verify that T'(Z) has only two real roots for a pair (b1, bs) in this region. O

Proof of Proposition 3. As in the proof of Proposition 2, we can use the
points at infinity on the £ and [ axis as representatives of regions R1 to R4
to conclude that there are no roots for regions R1 and R3 and two roots for
regions R2 and R4. It remains to be shown that there are four roots for (k,[) in
tri. For that it is sufficient to verify that T(Z) has four real roots at the point
k= 0, [l =—2c. O

As before, if we put together the information on how a shock curve intersects
C and S’, we see that, depending on where the point lies in C, the shock curve
through it will intersect S’ at either 4, 2 or 0 points.

The fold is divided in two arcs. For points in one arc, the shock curve is
tangent to C and tangent to S’ at two distinct points. For points in the other
arc, the shock curve is still tangent to C' but does not intersect S’.

There are two curves in C, defined by z = 2z, and z = z,, where z, and z,
are the roots of Z2 + by(by +1)Z — (b) + 1) = 0. Along these curves the shock
curve intersects C transversally (except at the inverse image of the tangency
points), but it intersects S’ tangentially at two distinct points.
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3.2 Definition of the shock curve pullback map.

We now define the map 1 : S" — C by following shock curves. We still have
a problem of choosing between two points in C' to define the image of ¥. This
difficulty will be solved by the following Lemma. Recall that II; is the plane
Z=2z,1=0,1,2.

Lemma 1 Letqe C, ¢ € C and Q € M? —UZII; be points in the same shock
curve such that Q # q,q'. Let s be the shock speed given by equation (5). Then
[s(Q) — s(9)][s(Q) — s(¢")] =0 if and only if Q € S'. (This is a particular case
of a general result from [1], Section 8.)

Proof: Let 4, ¥ and z be the coordinates of g. Then the coordinates of ¢
are @, ¥ and 2/, where z and 2’ are roots of (1 — 22)¥ — z&i + ¢ = 0. Let
k = 2@ — 2byp and [ = 25. Let U, V, Z and X be the coordinates of Q. Recall
that K = 20U — bV + b, X and L = 20 + ZX.

Using (5), a straightforward computation shows that

5(@) ~ s(@)s(@) — &) = (@) [iz + ) + 22 — ) + lo(@)+
2P+ (24 z')(blb%l(a —bf) o)+ (511: L i — b))l

Since z + 2’ = —i/9 and 2z’ — (9 + ¢) /¥, we get an expression for
[5(Q) — s(9)][s(Q) — s(¢')] in terms of @, 9, U, V, Z and X.

Replacing @ and ¥ by their expressions in terms of k£ and [/, and replacing
[77 V and X by their expressions in (7), we get a polynomial in Z of degree 6,
which is precisely T'(Z)g(Z), where ¢g(Z) = (1 — Z*)0 — Zii + c. Since Q # ¢, ¢
we have ¢g(Z) # 0. It follows that [s(Q) — s(g)][s(Q) — s(¢’)] = 0 if, and only if
QReSs. O

Corollary 1 Let ¢ and ¢' be points in C in the same shock curve ly. Then

1. If ly intersects S' at four points they can be reordered as Q;, 1 < i < 4
such that s(Q1)s(Q2) = s(q) # s(@s) = s(Q4) = s(¢).

2. If ly intersects S’ at two points Q1 and Q2, then s(Q1) = s(Q2) = s(q) or
5(Q1) = s(Q2) = s(¢).

Proof: From the proof of the Lemma 1 we have

[s(Q) — s(9)][s(Q) — 5(¢)] = 9(2)T(2).
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Since the equation above is symmetric in ¢ and ¢’ it follows that its left hand
side is a product of polynomials of degree 3 in Z. The roots z and 2’ of g(2)
correspond to @ = ¢ and @ = ¢/, so if T'(Z) has four distinct real roots we must
have two roots of s(Q) — s(¢) and the other two roots of s(Q) — s(¢').

If T(Z) has two complex roots, then they must both be roots of one of the
polynomials s(Q) — s(q) or s(Q) — s(¢'); the two real roots will be roots of the
other polynomial. 0

We can define ¢ : S" — C as follows: Given @ € S’, we let (@) be the
point of C which lies in the same shock curve as @ and has the same value of
s. Since II; N S’ = BY, we are actually defining ¢ in ' — U?ZOBQ, but v extends
by continuity to the whole of S'.

In order to obtain an expression for 1, we use k, [, z as coordinates in C
and K, L, Z, X as coordinates in S’. Then we have £k = K and | = L. To
obtain the expression for z in terms of K, L, Z and X we write s(K, L, Z, X) =
s(k,l,z,0), obtaining 2L = Z(L — ZX) — (b + 1)X , and from this we get
2=7—(Z?+ b+ 1)X/L. (For points with L = 0 it is just a matter of using
1/Z instead of Z as coordinate.) So we define (K, L, Z, X) by

=X
YK, L,Z,X)=4q I=L (12)
z2=7Z—(Z*+b+1)X/L.

Remark 2 IfQ € C, then the expression for z becomes just z = Z, and we get
P(Q) = Q as we should.

Let us show that ¢ given by (12) is a well defined map from S’ to C. Let
(K,L,Z,X) € S" Let X(Z) and f/(Z) be the expressions of X and V respec-
tively, given by (7). Replace X and V by X(Z) and V(Z) in the expression
of z in (12), and call 2(Z) the result. Compute X (2(Z)), and verify that its
numerator is a multiple of 7. Since (K, L, Z, X) € S’ implies that T(Z) = 0,
this shows that X (2(Z)) = 0. So % is a well defined map from S’ to C, such
that for @ € S"— B’, we have s(Q) = s(¥(Q)). In particular this shows that all
shock curves originating from S’ intersect C, although in the case A > 0 there
are shock curves which intersect C' but not S'.

Let us write the expression of ¢ as defined by (12) in coordinates (@, z) for
C and (U, Z) for S'. A straightforward computation gives
5.0 + 55

U,2Z) — (U + v, ———
( ) (m Yo 55U + 64

),

with v;, 4= 0,1 and d;, 1 < j <4, given by

b Z% + (by — B3)Z° + 3b22% + by (b + 3)Z
(1-22)(Z2+ by + 1)Z — (by +1)) ’

Yo =
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(b3 — 1) 2% — 4by Z% — 2(b1 — 1) 2% — (b — 1)?
(1—=2%)(Z2+by(by +1)Z — (b + 1))

=

and
0 =2%4+b +1,
0y = —c(by +2)Z,
by = b, 2% — 27,
8y =c(Z2 = boZ + 1).

Computing the determinant of its differential, one gets an expression n(ff AR
which is a quotient between polynomials in U and Z. Its denominator is just
(Z% = 1)(83U + d4)? and its numerator is a product 7,7, with

m=[be+1)2%=2Z +b, + 1|0 + (2% - (b + b+ 2)Z + 1),
M=[(bs—1)Z% = 2Z — by — 1)U + ¢(Z2 — (b, — by — 2)Z + 1).

Since the curves 7, = 0 and 1, = 0 do not intersect, the curve n = 0 is a regular
curve, with at least two connected components. A straigthforward computation
shows that it intersects the fold and the sonic fold in isolated points, none of
which is @; or @}, for i = 0,1,2. If A > 0, we have to use X and Z as
coordinates in order to study a neighborhood of the lines Z = z,, Z = z,, where
Zq and z, are the roots of Ax.

We can now prove Theorem 1.

Theorem 1 The map ¢ : S — (S") C C is a double cover. It is a local
diffeomorphism, except at the singular curve of 1. Furthermore, ¥(S") = C if
and only if A < 0.

Proof: Corollary 1 shows that 9~!(q) consists of two points in S’ for every
point ¢ in C. Actually we have shown this only for points out of the fold curve,
but it is easy to see that it is also true for points in the fold. Using equations (7)
and (9), we solve (12) locally in K, L, Z and X and show that the local inverse
of 9 is a continuous map. So 7 is a local homeomorphism such that every point
in C has two pre-images in S’. By the inverse function theorem, v is a local
diffeomorphism at all points such that 77([7 ,Z) # 0. The surjectiveness of 9
follows easily from Proposition 1. O

4 The composite line field

4.1 The composite foliation in S’

Let w =zdk — b1dl, so that w = 0 is the differential equation of the rarefaction
line field in C. The composite line field is then defined by ¥*(w) =0, i.e.,

[Z — (22 + b, + 1)X/L)dK — b;dL = 0,
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or

(ZL — (22 + b, +1)X)dK — b LdL = 0, (13)

since we are examining points with L # 0.
Let us now prove Theorem 2.

Theorem 2  a. IfQ € C is a singular point of the rarefaction line field, then
there exist Q' € S’ such that Q and Q' are singularities of the composite
line field in S'. As singularities of the composite line field, @ and @'
have the same type (saddle or node) as Q considered as a rarefaction
singularity.

b. The composite (singular) foliation has neither saddle connections nor pe-
riodic orbits.

c. If A > 0 then the composite foliation has two other singular points, which
are the points on the inflection locus S'NC NS where the rarefactions are
tangent to the locus.

Proof: Using U and Z as coordinates in S', equation (13) becomes

(.U + 00)dU + (6202 + 61U + ¢o)dZ = 0,

where 0;, i = 0,1, and ¢;, j = 0,1,2, are polynomials in Z. In order to find
the singularities of this equation we solve the equation (0.U+6y) =0in U and
substitute in (¢oU? + ¢,U + ¢y) = 0, getting the equation in Z:

8¢201(Z — 1)3(Z +1)3(beZ — 2)Z(Z2 + boZ + by — 1)
[(by — 1)Z2% — bo(by + 1) Z + (by 4+ 1)]][Z% + ba(by + 1) Z — by — 1] = 0.

We have to remember that in order to use U and Z as coordinates we must
assume Z2 —1 # 0 as well as Z2+by(by +1)Z — by — 1 # 0. The first restriction
comes from solving G = 0 in V and the second from solving the equation for S’
in X, since Z2 + by(by +1)Z — by — 1 is just the X-coefficient in (10).

The equation Z(Z% + bZ + by — 1) = 0 yields the singularities of the rar-
efaction line field, as we should expect, since these points belong to the in-
tersection C'N S’. These are the points Qo, @1, @2. The equation (bsZ —
2)[(by — 1)Z2% — by(by + 1)Z + (by + 1)%] = 0 yields three other singular points,

by @1, Q5. In order to see this, first note that 2] and 2} are the roots of
(by —1)Z2 — by(by + 1)Z + (by + 1)2. Next, compute 6y/0; for Z = 2/by, Z = 2}
and Z = 2}, verifying that we obtain exactly U(Q}), U(Q) and U(Q}), respec-
tively.

It is easy to see that @} belongs to the sonic fold but not to the singular
set of ¢, for all 4; and the same is true for Q;; so @}, and @Q; (as singularities
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of the composite foliation) are of the same type as @; as a singularity of the
rarefaction foliation. So if b; < 0 there are six saddles; if 0 < b, < 1 + b3/4
there are four saddles and two nodes; and if 1+b2/4 < b; there are two saddles.

If A >0, we must use X and Z as coordinates to study the neighborhoods
of the double sonic locus (the set SNS”). A straightforward computation shows
that there are two other singular points, which are the points in C' N S" where
the inflection locus is tangent to the rarefactions. We have not yet determined
the type of these singularities.

If we go back to state space, i.e, we consider the image of the composites
through the projection (K, L, Z, X) — (K, L), we obtain the rarefaction curves
or parts of them, as we showed in Section 3.2. This implies in particular that
there are no saddle connections in S, since there are no saddle connections for
rarefactions, and that the tangency points between rarefactions and inflection
locus do not occur on saddle separatrices, as a simple examination of the pictures
in [3] shows. O

Theorem 3 If A < 0, the composite singular foliation is structurally stable for
C? perturbations of the fluz function.

Proof: The proof is similar to that in [3], and proceeds in two steps.

Step 1. A C® perturbation in the Whitney topology of the flux function produces
a C? perturbation in the equations of S’. This implies that the perturbed S’ is
isotopic to the old one and that the new perturbed line field is C*-close to the
old one.

Step 2. As in [3] we use a modified version of Peixoto’s theorem [Pe] on struc-
tural stability of vector fields on surfaces to obtain the required homeomorphism
between the old S" and the new S’ which preserves the composite (singular) fo-
liation. O

4.2 Composite foliation in state space

As we have mentioned, the rarefaction foliation is defined in the characteris-
tic surface. Projecting onto state space ((u,v)-plane), we get two foliations
transversal everywhere (except along the ellipse), which we also call rarefaction
foliation (in state space). In the same way the composite foliation is defined in
S’ and we also project it onto state space, obtaining the composite foliations
in state space. Since all projections are obtained through shock curves and the
composite foliation (in S’) is obtained through rarefaction foliation (in C) by
a pullback by shock curves, it is clear that the composite foliations (in state
space) are contained in the rarefaction foliations (in state space).

The question we want to answer is the following: outside of the elliptic
region there are two transversal rarefaction foliations. Are they also composite
foliations (i.e., projections in state space of the composite foliation in S’) ?
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The answer is clearly yes if A < 0. If A > 0 it will depend on the Ri, i =1
to 4, regions (see Fig. 1). More precisely:

Theorem 4  a. If by < 0, then in Rl and R3 both rarefaction foliations
are also composite foliations, whereas in R2 only one rarefaction foliation
is a composite foliation. In R4 only the other rarefaction foliation is a
composite foliation. In T RI there is no composite foliations.

b. If 0 < by, then there is no composite foliation in R1 or R3. In R2 only
one rarefaction foliation is a composite foliation. In R4 only the other
rarefaction foliation is a composite foliation. In tri both rarefaction folia-
tions are composite foliations. In the elliptic region there is no composite
foliation.

Notation 1 In the proof of the Theorem 4 we denote by proj the projection
(k,l,2) — (k,1) from the characteristic surface onto state space along shock
curves.

Proof of Theorem 4: It is clear that a region corresponding to four points of
intersection of a shock curve with S” has the two rarefaction foliations as com-
posites and a region where shock curves do not intersect S’ has no composite.
The only regions to be analyzed are those where the shock curves cut S’ at two
points, since both points in S’ are mapped by ¥ to the same point in C. This
means that only one rarefaction foliation is a composite. We want to examine
regions B2 and R4 in all cases and check which component of proj~'(Ri), i = 2,
4, lies in the image of ) and which does not. Let us recall a few facts about
the characteristic surface C' and rarefactions, which can be found in [3]. In
(k, 1, z)-space the characteristic surface C is defined by an equation which is a
second degree polynomial in z and linear in k¥ and [. From this it follows that
C is a ruled surface formed by horizontal lines that make a 360 degree turn as
z goes from —oo to +00. These lines turn around the cylinder with equation
(k + bol)? + 41(1 + 2¢) = 0. Each horizontal line /y in C projects onto a line I;
tangent (at a point g) to the ellipse with equation (k -+ byl)? +4L(I + 2¢) = 0 in
the (k,l)-plane. This is the ellipse E' = 0 that was defined previously.

The inverse image proj~t(l1) is the union of I, and a curve ¢, intersecting
ly at a point py that projects on ¢q. Actually py = proj~'(g), since the ellipse
E = 0 is the set of points which have only one point as inverse image (by
the projection). The typical curve ¢ is like the one obtained from the curve
y = tanz when we identify the lines x = —7/2 and x = 7/2 to transform the
rectangle [—7 /2, 7/2] X [—00, +00] into a cylinder.

In state space let us make pictures of the ellipse £ = 0, a tangent line ¢ to
it and its inverse image in C. We represent C' as a rectangle with z as vertical
coordinate; the cylinder is obtained by identifying z = —oo and z = co. If A is
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a point in state space we also denote by A the points in proj~'(A4). The fold is
represented by the central horizontal line, as in Figure 4. In Figure 4-b there
are two vertical lines; one of them, denoted by r, is part of proj~!(¢) and the
other, denoted by a, is an asymptote for proj—1(t).

R e e
o 4l B

B e |

o o
t | ! 1 !
! fald ' |
| : B L5 |

c i
| : |
(8] | E D |
I=-m e
(a ()]

Figure 4: (a) The ellipse and a line tangent to it. (b) The inverse image of
Figure (a) in C.

If we add a second tangent line, we get Figure 5-a, with two tangent lines
to E ,denoted by t; and t;. Consequently, in Figure 5-b we have four vertical
lines: r; part of proj=i(#;), for i = 1,2, and a; asymptotes for proj=1(¢;), for
i = 1,2. Their relative position is asairer;, from left to right. Using & and
z as coordinates, a simple computation shows that this is the only possible
case. In particular, the case mea;71a2 cannot happen. Actually we could also
have riasai72, and reriasa;, but these configurations are equivalent to the one
shown in Figure 5-b when we identify z = —oo with z = +00.

Now let us consider the lines in state space that bound regions Ri, 7 = 1 to
4, for three cases:

Case a. —1 < by <0, i.e., g = (0,—2cb; /(b1 + 1)) lies in the I > 0 region,
Case b. b < —1, i.e., o lies in the | < 0 region, above the ellipse minimum,

Case c. by > 0, i.e., o lies in the [ < 0 region, below the ellipse minimum.

Using points in the tangent lines and their pre-images by proj as guides, it
is easy to determine which regions in C are proj~!(Ri). Figure 6 illustrates case
(a); the other cases are obtained in same way. In order to see which component
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=0
(a) L]

Figure 5: (a) The ellipse and two lines tangent to it. (b) The inverse image of
the Figure (a) in C.

K R4
R2 Au®

A1 T2

(a)

Figure 6: The inverse image of the regions R2 and R4 in the characteristic
surface for case (a).
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of proj~t(R2) or of proj~'(R4) is in 1(S’), we use the lines [ = —2c and [ = 0
and compute s at points in proj ! of these lines.

It is easy to see that proj~!(I = —2c) contains the line z = 0, i.e., points
of the form (k,—2¢,0). Given ¢ = (k,—2¢,0) in C, let ¢’ be the other point
in C such that proj(q') = proj(q). We want to compute ¥ ~(¢q) and ¥ ~*(¢').
We recall that the shock curve through ¢ has two components shly and shcg
given by equations (8) and (9), respectively. Computing shiy N S’, we obtain

(U = (2cbe — k)/(2(by — 1)),V = —¢,Z = 0,X = (k — 2cbo)/(2(b1 — 1))).

Computing shcy NS’ we obtain three others points. From equation (5) we
compute the speed of shock s at these four points. Comparing these values
with s(¢) and s(¢'), we see that ¢ is in the image of % if and only if k lies
outside of some interval.

Drawing the line [ = —2c¢ in Figure 5 we get Figures 7, 8 and 9, which
correspond, respectively, to cases (a), (b) and (c); this is sufficient in cases (a)
and (c) in order to determine which of the components of proj~'(R2) and of
proj~—t(R4) lie in the image of ¢ and which do not, since the intersection of the
line z = 0 in C with proj~'(R2) or with proj—*(R4) do not lie in the image of
1, as we have just seen.

For case (b), we use the line [ = 0 also and perform the same computations,
since in this case the line z = 0 intersects proj—'(R2) but not proj—'(R4).
Again we use T(Z) and the parametric equations of the shock curve for a point
with [ = 0 and compare s at the points in S’ and the points in C to conclude
that the line z = oo in C intersects R4 outside of the image of v, as in Figure
8.

In Figures 10-12 we use dotted lines to represent the composite foliation in
state space if the preimage of the region Ri, i = 2 or 4, lies below the fold line
and full lines otherwise.
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Figure 7: (b) The components of proj~1(R2) and proj~'(R4) that intersect the
line Z =0 do not lie in the image of V.
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Figure 8: (b) The component of proj~—*(R2) that intersects the line Z = 0 and
the component of proj~—(R4) that intersects the line Z = oo do not lie in the

image of 1.
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(a) (bl

Figure 9: Components of proj~'(R2) and proj—'(R4) that do not lie in the
image of v for case (c).

Figure 11: Composite foliation in state space for case D2.
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Figure 12: Composite foliation in state space for case D3.2.
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