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Abstract

We describe and compare two inverse algorithms to recover the cen-
ter and other parameters describing reentry currents associated to atrial
flutter. Noninvasive measurements at different locations away from the
atrial tissue are assumed to be recorded in the form of magnetic field time
series generated by the reentry current. Signal processing in time domain
and a least-square procedure are used to identify and locate the reentry
current. Using synthetic experiments, we show that a new method em-
ploying (i) a continuously measured atrial electric signal to synchronize
the magnetic measurements and (ii) a three-dimensional description of
the reentry pattern leads to a considerably more robust recovery method,
as compared to a former method that did not employ the electric signal.
Our hope is to improve this method to provide a basis for a noninvasive
and inexpensive but accurate diagnostic tool for locating reentry current
patterns.

1 Introduction

Cardiac arrhythmia known as atrial flutter is usually associated with a reentrant
excitation of atrium cells. In such a situation, instead of the normal activation
originating at the right atrium sinus node and propagating toward the ventri-
cles, the electrical activity starts to rotate continuously within the atrium. For
drug intolerant patients, current therapy consists of locating the reentrant exci-
tation and interrupting its path by application of radio-frequency energy, the so
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called ablation technique. Both procedures (anatomical location and ablation)
involve catheter invasion and X-ray exposition [6]. A first step towards a non-
invasive therapy consists of locating and characterizing the reentrant current
noninvasively. Recent studies point to an emerging technique called magneto-
cardiography, or simply MCG, which may cope with such a task. It is known
that electrical data, such as ECG, allow detection of the arrhythmia pathology
but cannot provide enough information to locate the exact reentry path. Better
results are achieved when measuring magnetic activity from different spatial lo-
cations above the heart and combining magnetic and electric information. The
drawback of such MCG systems lies in the high cost of the array of magnetic
detectors.

A new MCG system is now under evaluation [4]. It is designed to be cost
effective and yet to provide enough information for recovering flutter character-
istics and location. It consists of a single mobile magnetic detector (a SQUID
gradiometer), used to register magnetic activity at several positions over the
heart. Taking advantage of the quasi-periodicity in time of the reentry current,
these records at different locations may then be combined and processed in or-
der to provide essentially the same information that would be obtained with
multiple detectors. This is what we call the pre-processing phase. Following
this phase, the pre-processed data is further analyzed by more sophisticated
algorithms that will finally retrieve physical and geometric flutter parameters,
such as location. This is the inverse problem phase. This MCG system replaces
expensive multiple detector systems by a single mobile detector powered by so-
phisticated mathematical tools. Since the magnetic measurements are obtained
by a single mobile detector at different positions, they are data for different
time periods, which are periodic functions recorded with different phases, i.e.
the records are asynchronous. Of course, all the magnetic records are supposed
to have the same period, the reentry current period. In previous works [1], a
2-D asynchronous inverse problem algorithm was presented in the context of a
special experiment using animal atrial tissue. The reentry current mathematical
model used in that implementation was two-dimensional (2-D) and the inverse
problem solver was developed to deal with asynchronous data. A simple 2-D
model for the reentry current seemed to be adequate since the animal heart
tissue was arranged in a planar configuration during the experiments.

In this paper we propose, implement, test and compare synthetically two
new and improved inverse problem algorithms: a 3-D algorithm that deals with
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Figure 1: 3-D circulating current dipole model

asynchronous data and a 3-D algorithm that has been further improved to deal
with synchronous data. Both algorithms extend the reentry current model to a
more general three dimensional (3-D) space setup, a step towards future nonin-
vasive human experimentation. The magnetic data synchronization is achieved
using electrical measurements. We tested both algorithms and compared their
performance using synthetic data. In our synthetic experiments both methods
achieved very good results but the synchronous version was much more robust.

The remainder of this paper is organized as follows. The next section de-
scribes the 3-D circulating dipole model we use for the reentry current. Section
3 describes the asynchronous and synchronous versions of the inverse problem
implementation. Section 4 presents the graphical environment and programs
developed for the pre-processing and the inverse problem solving phases. Sec-
tion 5 presents and discusses our numerical experiments. Finally, Section 6

presents our conclusions and discusses work we intend to do in the near future.

2 A 3-D model for reentry currents

Our starting point is the assumption that the electrical activity may be rep-
resented by a simple model: a current dipole describing a circular path and
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pointing tangentially within the planar piece of atrial tissue. Experiments with
rabbit heart tissues [7] have indeed characterized the rotating pattern of propa-
gation as the underlying mechanism of such arrhythmias. The magnetic field B
at a point &, in space, generated by a dipole cf, is given by Biot-Savart’s Law:

-
—

4 ,LL()dXﬂT
B="— 1
dr |Z]3 (1)

where 7 is the distance between the measuring point Z, and the dipole position
fdi

z= (xpa Yp, 0) - (xda Yd, Zd)' (2)
The dipole vector d is characterized by dipole intensity s and the unit direction
vector obtained from the time derivative of the position vector Z:

d=s—. 3)

As shown in Fig. 1, the continuous rotation of the dipole on a circle with radius r
and center 7, is described by angle 8, on plane P. § increases linearly with time.
Plane P has normal vector equal to N = (—sin accos B8, — sin B sin «, cos ),
where the angle « describes the rotation of the plane P around the y axis and
the angle 8 describes the rotation of P around the z axis, as shown in Fig. 1. If
a = =0, P would be positioned on the horizontal plane, as in the 2-D model
studied in [1]. After some calculations we can write the dipole position vector

Ty as:

Z4(0) = Ze+r(cos B cos a cos @—sin B sin 6, sin 3 cos a cos §+cos [ sin 6, sin a cos §).

) )
We calculate dxZ using Egs. (4), (3) and (2). Extracting the vertical component
in Eq. (1), we can write the magnetic field at position 7, as a function of 6:

B(9) = [rcosa—ucos@—vcosasin@ , (5)

s
R
where u = (2, — x) cos B+ (Yp — Ye) sin 8, v = —(zp, — xc) sin B + (yp — Ye) cos B
and 7 is determined from Eq. (2).

Eq. (5) completes the very simple model for the magnetic field generated
by cardiac reentry currents proposed by [1]. From now on we call it simply
the circulating dipole model and use it to recover the dipole radius r, center
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position &, the o and § plane angles and the intensity s, in the hope that this
information will agree with the reentry current characteristics and location.
In the next section we describe our data pre-processing and inverse problem
algorithms.

3 The inverse problem

We apply least square procedures for retrieving the relevant dipole parame-
ters enumerated in Section 2. Creating cost functions that compare measured
magnetic data and simulated data based on the circulating dipole model, our
algorithms aim at finding the best dipole model parameters to minimize the
difference between the recorded and the simulated data.

We developed two algorithms that differ in the way measured magnetic data
are used and therefore employ different cost functions. Otherwise, both apply
the same least square procedure, the Nelder-Mead [3], which is known to be a
robust and reliable simplex search method. Another feature in common is that
both algorithms work with frequency-domain data. Thus, instead of using time-
dependent data, Fourier coefficients of the time series data are used. Since our
data are essentially periodic, each time series can be represented by a Fourier
series with coefficients as below:

~

ComsBo) = /0 (cos(nt), sin(nt)) B () dt, (6)

where p = 1,2,...,positions, is the index of the magnetic measurements taken
at different positions, and n = 0,1,2,3,... is the Fourier harmonic index, T is
the reentry current period and ép is the magnetic time series itself.

Although theory only ensures the time-frequency equivalence with infinitely
many harmonics, we show in Section 5 that we may reliably reconstruct the sig-
nal with very few harmonics, saving substantial computing effort. In addition,
many filtering and pre-processing methods may be applied on the frequency-
domain data in order to reduce undesirable environmental noise introduced
during measurement, as we show in Section 4. In the future, this feature will
be very helpful when using inexpensive high critical temperature SQUIDs.

In order to simulate the reentry current we use the dipole model described in
Section 2. Combining Eqs. (5) and (6), it follows that the simulated harmonics
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are given by:

- 1o . -
(G Sy i) = 5 [ (cos(nd) sin(u6)) By(6 + gy, i) 8, (1)

where p and n are the indices of the position detector and the harmonic number
as before, B, is the magnetic flux calculated by Eq. (5) and the vector dip
contains the dipole parameters of the circulating magnetic dipole model:

d;p = (T,s,xc,yc,zc,a, 5) (8)

The unknown phase ¢ is included in the equations above in order to allow
alignment in time of the simulated data B with the timing record B. In addition,
due to the serial magnetic detection procedure, each position record possesses
its own phase ¢,. The two algorithms described in Sections 3.1 and 3.2 differ
in the processing of these phases.

3.1 The asynchronous scheme

Since the magnetic signal B is periodic, its R.M.S. energy
I|1B(o)| = = B(0 + )% df does not depend on the phase ¢. Similarly, the
energy assomated with the n-th harmonic

‘Ap,n(‘P)F = ‘Cp,n(‘P)V + |Sp,n(90)|2 9)

does not depend on the phase ¢ either. When C,, and S, are obtained from
Eq. (7), we use A,, for the simulated data; when C,, and S,, are obtained
from recorded data given by Eq. (6), we use A\p,n.

Based on these considerations, the following asynchronous scheme was de-
veloped:

e Pre-processing phase: here the Fourier coefficients for the magnetic records
are generated using the FFT [5] algorithm and several other filtering tech-
niques in order to extract the harmonics as described in Eq. (6).

e Inverse problem phase: we apply the simplex search algorithm mentioned
before to minimize the following cost function:

F(dip) = Z | = A a(diD) P, (10)



MAGNETOCARDIOGRAPHIC LOCATION ... WAVES 103

where K is a normalization factor, p and n indicate the detector positions
and the harmonic number as before, the vector dfp carries the dipole
parameters of interest as described by Eq. (8), and A\p,n and A,, are
respectively the recorded and simulated harmonic R.M.S. norm as in Eq.

9)-

Examining the cost function in Eq. (10), we notice that the scheme does
not align, or synchronize, any of the measured and simulated signals, since it
does not use information contained in the phases ¢,. It analyzes the spatial
distributed information as it was recorded, asynchronously. We can already
suspect that this algorithm cannot fully replace a multiple detector MCG sys-
tem, where data is recorded synchronously and thus both spatial and temporal
information are available. Here the time correlation between the samples is
lost. Mathematical analysis also supports this claim. Indeed, using frequency-
domain information contained in A,,, instead of using both C,, and S, one
is not able to reconstruct reliably the time-domain signal (except in symmetric
and atypical cases where either C,,, or S, , vanishes). The method we propose
now solves this problem.

3.2 The synchronous scheme

As stated before, we need a method that handles the various (and unequal)
phases ¢, which appear in Eq. (7). In fact, these phases originate from three
sources of asynchronism. The first one comes from slow frequency decrease
observed in animal experiments. The second one comes from the measurement
procedure, which is sequential and therefore adds different phases to different
record positions. The third source is due to the mathematical dipole model
we proposed, i.e. the phase difference between the simulated data and the
real recorded data. Thus, we need first to synchronize the spatially distributed
recorded data in order to simulate a multiple detector system. Then, we align
the simulated and the recorded data. To accomplish the first step we use a
natural clock, the heart. Measuring without interruption the voltage of an
electrode placed at a fixed point of the atrial tissue while measuring magnetic
activity at every position, the electric signal can be used as a common clock. For
each position, we simultaneously record two signals, the magnetic signal Ep and
the electrical signal Ep. This information is enough to synchronize all recorded
magnetic signals. Once this is done, a new cost function is applied during the
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minimum search procedure. This cost function carries a new parameter, the

phase between the recorded and the simulated data. Below we describe the

details of the synchronous scheme:

4

e Pre-processing phase: again the Fourier coefficients for both Ep and Ep

records are generated by using an FFT algorithm and several other fil-
tering techniques. The recorded data are synchronized in the frequency-
domain. We extract the fundamental harmonic phase ¢E, of each E
record by: cos g, = fo »(t) coswt dt and sin g, = fo E »(t) sinwt dt .
The magnetic records are then shifted by adding the corresponding phase
©g, to all of its harmonics Cpn and S, ,, (calculated by Eq. (6)):

(?p,n> — ( cos(ng,) sin(n(pEp)) Qp,n (11)
Spin —sin(nyg,) cos(neg,) S

Executing this procedure for each recorded pair E‘p and Ep, all magnetic
signals C), and S, end up synchronized.

Inverse problem phase: we apply the Nelder-Mead simplex search algo-
rithm to minimize the following cost function:

F(eps dzp I Z [Con — Comnles de)‘Z + [Spn — Spin(s de)|27 (12)

where K is a normalization factor, p and n indicate the detector position
and the harmonic number as before, the vector dfp carries the dipole
parameters of interest as described by Eq. (8), and the phase ¢ takes into
account the time lag between the simulated and real data and is used in
Cpn and S, as shown in Eq. (7). Finally, the harmonics C,,, and S,
are the measured magnetic data synchronized by Eq. (11).

Computer implementation

We implemented the previous algorithm phases, pre-processing and inverse

problem, in the Matlab 6.0 environment. Pre-processing is done using a graphi-

cal and user-friendly interface program, depicted in Fig. 2, offering many useful

signal processing options to help the user in tasks such as harmonics extrac-

tion, filtering and data synchronization. The input may be a file containing the
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measured magnetic B, and electric I, time series. Once this file is loaded, the
FFT’s of the signals are computed. In the current version, the signals are pro-
cessed by two filters, a DC and a Hanning window filter. The DC component
is removed because it cannot be reliably measured by the current DC SQUID
laboratory instrument. (This is unfortunate, since earlier studies [1] indicate
that the DC harmonic contains more information than the other harmonics.)
The harmonics can be automatically extracted from the FFT signal or may be
mouse-selected by the user. The user can also choose whether synchronization
between the E, and B, signals is desired or not.

The inverse problem implementation utilizes a flexible Matlab function that
we call “Optimize”. It applies the Nelder-Mead simplex search method to the
cost functions described in Egs. (10) or (12). It reads the harmonic file gener-
ated by the pre-processing program and writes out the best dipole out and the
cost achieved through optimization. Its interface provides control of parameters
such as: the dipole ini initial estimate, the number of detector positions np to
be considered, the number of harmonics nh to be used, and the termination tol-
erance tol for the simplex search method, among others. In addition, the user
may choose whether to use the synchronous or the asynchronous cost functions.

5 Numerical results

Both asynchronous and synchronous algorithms were tested using synthetic
data; we will use real laboratory data in the future. Using Eq. (5), the magnetic
time series B, were generated for 21 different detector positions. We used the
following synthetic dipole description:

m_in = (Ta Sy Ty Yes Zcy O /B)
= (0.9cm, 3.Ow/m27 0.3cm, 0.8cm, 1.9cm, 1.0rad, 0.4rad),

for a 4.5 Hz frequency of 4.5Hz and added phase ¢ = 1.1rad, simulating the
time lag between the measured and simulated signals. The detector positions
7, are the same as those used in previous animal experiments [4]. They lie on
the z axis or on the y axis, in a horizontal plane lying two centimeters above
the atrial tissue, forming a cross pattern with equally spaced points in a range
from -2.5cm to 2.5cm. We simulated the electric signals E, with a simple cosine
function with the same frequency as that of the circulating dipole, since it is
used only for synchronization. We then used the pre-processing program to
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Figure 2: Pre-processing Matlab graphical environment

extract up to 6 harmonics from the time series data and to synchronize them
with the E, signals, as described in the previous sections. We generated two files
with the pre-processing program. One of the files contains extracted but not
synchronized harmonics that are used in the asynchronous algorithm described
in Sec. 3.1. The other file contains synchronized harmonics that are used in our
synchronous scheme as described in Sec. 3.2. All tests were carried out on a
Pentium III 700MHz processor with 256 MBytes of memory running in a Linux
operating system.

In our first test we generated 20 random initial dipole guesses, which are
different but have the same R.M.S. distance from the vector min described in
Eq. (13), i.e. Hm_in—zﬁzH = 2.5. We use them in the “Optimize” program with
input parameters (described in Sec. 4) nh = 6, np = 21 and tol = 1.0e-04. Both
asynchronous and synchronous algorithms rendered dipole gut parameters very
close to the original ones in miin. Choosing among the 20 runs the one that
attained the smallest cost, it follows that the asynchronous and synchronous
methods achieved errors of 7.8e-05 and 1.3e-05 respectively, where we used again
the R.M.S. norm to compute the error, i.e. error = ||[min — out||. We hope
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that this procedure simulates a typical application usage, where the user runs
our algorithm with a few initial guesses and then chooses the best solution as
indicated by our algorithm. It is important to remember that the chosen dipole
out is not necessarily the one with minimum error because the user usually does
not know the correct dipole solution. Therefore we use the one with minimum
cost in our tests. While the error attained by the synchronous algorithm is 6
times smaller than the error achieved by the asynchronous algorithm, the latter
is faster. Its average running time was 60 seconds and 1600 steps, while the
synchronous method algorithm took an average time of 88 seconds and 2300
steps per run. However, the computing cost is a secondary consideration.

We examine next the effect of using different numbers of positions np, and
of harmonics nh used in our inverse problem schemes. Again 20 random initial
dipole guesses with fixed R.M.S. distance from min are used. Letting nh vary
from 1 to 6 and np vary from 1 to 21, we end up with 21x6x20 = 2520 tests
per method. As before, for each (np,nh) pair we select the best out dipole
by choosing the one that attains the smallest cost. In order to understand
better the effect of the harmonic and position numbers, we show two 2-D plots
instead of a single 3-D plot. Thus, to asses the np effects we sum up all errors
in the variable nh, i.e. error(np) = Yo,_, error(np,nh), and show them in
Fig. 4. The same was done in order to understand how nh affects our schemes,
error(nh) = 222:1 error(np,nh), as shown in Fig. 3. In both figures there are
two bars per point. The left bar shows the asynchronous algorithm errors and
the right one the synchronous values.

We see in Fig. 3 that both methods experience great error reduction when
more than one harmonic is used. On the other hand, using more than 3 harmon-
ics we notice that the magnitude of the errors starts to oscillate. Therefore, we
conclude that a few harmonics are enough for efficiently recovering the dipole
parameters. In addition, comparing the asynchronous and synchronous bars
we verify that the synchronous method achieves better results than the asyn-
chronous one.

The first important information we can extract from Fig. 4 is that indeed
many magnetic detector positions are necessary to recover properly the reentry
current parameters. The errors drop substantially when more than 3 positions
are used in the synchronous algorithm or when more than 6 positions are used
in the asynchronous algorithm. Thus, the synchronous algorithm can recover
the dipole parameters with fewer measurements. This is a great advantage in
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practice. Comparing the error values, it again follows that the synchronous
scheme outperforms the asynchronous scheme.

Finally, we plot slices of the asynchronous and synchronous cost functions
given in Egs. (10) and (12), using 6 harmonics and 21 detector positions, for
the same synthetic generated dipole min. Figures 5 and 6 illustrate how the
following dipole parameters affect the cost functions: the dipole intensity s, the
dipole center y. and z. and the angle 3. The cost function is evaluated for each
of these parameters, considering the other parameters fixed as the min values
in terms of the varying parameter. We see that all figures present a single global
minimum point as expected. But a closer examination of the asynchronous plots
(Fig. 5) shows the presence of many other undesirable local minimum points
for each of the variables y., . and 8. Spurious minima in some of the variables
slow down the search of the global minimum. The synchronous cost function
(Fig. 6) has a more favorable shape. For instance, the shape of the intensity s
is similar to a parabola, the ideal shape for minimum search methods. Finally,
combining the cost function plots and the numerical results previously described
we confirm our statement in Sec. 3: the synchronous scheme is more robust
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than the asynchronous scheme.

6 Conclusions and future work

In this paper we presented two new 3-D inverse problem algorithms for recov-
ering atrial flutter characteristics using magnetocardiographic data: an asyn-
chronous and a synchronous algorithm. Both algorithms extend the reentry
current model previously presented [1] to a more general three dimensional (3-
D) space setup, a step towards noninvasive future human experimentation. In
addition, further improvements were made regarding magnetic data synchro-
nization, resulting in what we called the synchronous scheme. We tested both
algorithms and compared their performance using synthetic data. In our syn-
thetic experiments both methods achieved good results, but the synchronous
algorithm was much more robust than the asynchronous one. We hope that the
single mobile magnetic detector setup described in [4] associated with math-
ematical tools based on our synchronous algorithm will provide a basis for a

noninvasive and inexpensive but accurate diagnostic tool for locating cardiac
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reentry currents.

Our next step is the validation of our techniques using laboratory data
recorded from animal experiments. Experimental setup to obtain reliable data
is still being prepared. In order to proceed towards human experimentation,
we have to improve our filtering techniques to remove the QRS heart signal.
The animal atrial tissue experiments were designed precisely to eliminate the
QRS signal, facilitating the development of recovery algorithms without having
to deal with this complication. In addition, we are currently implementing a
more sophisticated reentry current model employing evolutionary partial dif-
ferential equations [2] related to a planar Hodgkin-Huxley model. This model
will provide a better understanding of the properties underlying cardiac flutter
pathology and validate the effectiveness of the simple circulating current dipole
model. In the future, we hope to tackle a considerably more difficult problem,
ventricular reentry currents associated to sudden death in clinical patients.
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