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KURAMOTO-SIVASHINSKY APPROXIMATION
FOR THE TWO-PHASE FLOW OF A DUSTY GAS

Gleb G. Doronin *® Nikolai A. Lar’kin ®

Abstract

Initial and initial-boundary value problems for the Kuramoto-Siva-
shinsky model, describing two-phase flows of a dusty gas, are considered.
Existence and uniqueness of global strong solutions for small initial data
are proved.

1 Introduction

Historically, interest in two-phase flows of a dusty gas (i.e., gas or fluid with
suspended particles) dates from the 1940s. There were engineering troubles
concerned with the loss of jet thrust of missiles constructed using the solid
fuel. Flame fronts, containing dust particles after fuel combustion, created (by
hypothesis) some kind of barriers which made smooth flow in an engine noz-
zle doubtful. Later, in laboratory experiments, it was observed that adding
dust to a gas flowing turbulently through a pipe results in a reduction in the
pressure gradient required to maintain the flow at its original rate, [8, 20]. In
the following years, there were a number of mathematical works related to this
phenomenon, [3,4,5,6,9,12,15,16,18]. Unfortunately, a complete mathematical
analysis was lacking, namely global-in-time solvability questions of the cor-
responding mathematical models. Such analysis seems indispensable because
nowadays multiphase models of “medium - solid particles” type include not only
dusty gases, but also other important phenomena of physical or engineering in-
terest such as enhanced oil recovery, ecological catastrophes, creation of new
materials and technologies, and others, [15].

In this paper we propose to model the carrier phase of a dusty gas by the
Kuramoto-Sivashinsky (KS) equation (2.1), which is widely used in the theory
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of viscous turbulent flow and in the study of propagation of flame fronts, [10,
19]. The latter ones provide classical examples of dusty media. The particles
are modelled by the system of first-order nonlinear hyperbolic equations (2.2)
and (2.3) coupled with (2.1) by the right-hand side term. Thus we have a
nonlinear parabolic-hyperbolic system modelling flow of a viscous liquid with
solid particles.

Generally speaking, it is known that nonlinear hyperbolic equations, do not
possess solutions that are regular globally in time, [17]. On the other hand,
the presence of a linear damping makes it possible to prove existence of global
regular solutions for small initial data, [14]. The system (2.1)-(2.3) also contains
an implicit linear damping in (2.2), namely the term K (u— v), that guarantees
global solvability of the mixed problem and of the Cauchy problem for (2.1)-
(2.3) provided the initial data are sufficiently small in norms of (2.6). This
stipulates that the constant A in (2.6) is less then K/7, where K > 0 defines
the dissipativity of (2.2). To illustrate this crucial condition, let us consider the

following Cauchy problem (see also [7]):
ug + Ku = u?, K >0,

u(0) = up > 0.
If K =0, the solution is
u(t) = uo/ (1 — uot)

which blows up at ¢ = 1/ug. If K is a positive constant, then
u(t) = Ke %ty /(K — (1 — e %Y)uy),

and it can be seen that for K > ug, u(t) is smooth for all £ > 0,. However, for
K < ug at instant t = (1/K)In(uo/(uo — k)) the solution blows up.

From the physical point of a view, growth of the initial data means desta-
bilization of the “fluid - particles” system which is stabilized by viscosity (the
term viggq,) and by friction (the terms K(u — v) and au). The dissipative
term au in (2.1) is needed only for the Cauchy problem. For the mixed prob-
lem one can omit it, replacing by a relation between v and p which is due to
the destabilizing effect of uu,, and by the dissipativeness of vt zzy.

There are few published results concerning the mathematical correctness
of dusty gas models. We chose the KS equation for a liquid phase in order
to prove existence of global strong solutions, because for a fluid governed by
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the Euler equations, we proved in [5] that the Cauchy problem does not have
even solutions local in time within classes of functions with a finite number of
derivatives. For liquid flow governed by the Navier-Stokes system, the Cauchy
problem for the liquid-particles model admits existence of strong local solutions,
[4]. We do not know any published results in the theory of two-phase flow of
dusty gas which used the KS equation to model the liquid phase.

Our goal is to study well-posedness of the mixed problem and the Cauchy
problem for this model. Here we prove the existence and uniqueness of strong
global solutions for small initial data. The method of successive approximations,

compactness arguments and continuation of local solutions are used.

2 Main results

For T > 0,let Q@ = {(x,t) : z € Q, t € (0,7)} where Q C R is either the
interval Q@ = (0,1) for the mixed problem or the line = R for the Cauchy
problem. In @ we consider the following problem:

Ut + Uy + PlUzy + Vlgrrr + 0u = mK (v — u), (2.1)
v+ vvy = K(u — v), (2.2)
my + (mv)e = 0, (2.3)
u(z,0) = up(z), v(z,0)=uwv(x), m(z,0)=my(z) >0, (2.4)

BT by s

Here u and v are velocities of the medium and of solid particles respectively;
m is the concentration of particles; u, v and « are positive constant viscosity and
friction coefficients, and K > 0 is the constant coefficient of phase interaction.
The force mK (u — v) is equivalent to the net effect of the dust on the gas. For
example, if spherical dust particles of radius R are used in the model, K is given
by the Stokes drag formula as 67 uR.

Remark 1 In the case of the bounded domain Q = (0,1), we use for the viscous
fluid in (2.1) the sticking condition: u = 0 at the walls x = 0,1, which is
natural for viscous flows. On the other hand, putting u = 0 in the hyperbolic
equation (2.2), it can be seen that the lines = 0,1 are the characteristics of
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(2.2), and along these lines we have v(0,t) = v(1,t) = 0. Physically, this fact
means that if a solid particle meets the walls x = 0,1 with velocity equal to
zero, it remains at the same place and has zero velocity for all t > 0. The
condition U, (0,t) = Uz (1,t) = 0 is common for this type of problems (see, for
instance, [13]), and it can be replaced by u,(0,t) = uy(1,t) = 0. This justifies
the formulation of the mized problem (2.1)-(2.5).

We define a real A\ as follows:

1/2
= [llwoll* + K (Jluol® + lv/movoll*) /2a + K (luol* + [|v/mowo|*)/2v]

1/2
+ [l II” + K (lluoll* + llv/movo|*) /1] - (2.6)
Hereafter all the norms || - || are in L?(€2).

The main results of this paper are the following.

Theorem 1 Let Q = (0,1), 0 < p < min{e, v}, K > 0, ug € H*(Q) N H; (Q),
vo € H2(Q) N HY(Q) and mey € HY(Q). If X\ < K/7, then for all T > 0 the
problem (2.1)-(2.5) has a unique strong solution:

u € L*®(0,T; H*(Q) N H}(Q)) N L*(0, T; H*(Q) N HL(Q)),

uy € L*(0,T; L*(2)),
v € L™(0,T; H*(Q) N Hy (),

vy € L®(0,T; H(2)), (2.7)
m € L, (0,T; H'(Q)) N L>(0, T; L'(Q)),
m > 0,

my € L2(0,T; L*()).

Theorem 2 Let @ =R, 0 < p < min{e,v}, K >0, ug € H*(Q), vy € H2(Q)
and my € H*(Q)NL*(Q). If A < K/17, then the Cauchy problem (2.1)-(2.4) has
a unique strong solution satisfying (2.8) for all T > 0.

Scheme of the Proof. We prove these theorems simultaneously in the
following way. First, by exploiting the method of successive approximations,
we construct a local solution. Then, using a priori estimates and small initial
data (in norm (2.6)), we extend the local solution to the whole interval (0,T).
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3 Preliminary results

Lemma 1 For any wo(z) € HX(Q)NH () and f(x,t) € L*(0,T; H*()) there
is a t; > 0 such that there exists a unique solution w € L>®(0,t,; H*(Q)) of the
problem

wy + ww, = K(f —w),

w(z,0) = wo(z),

w(0,t) =w(1,t) =0, if Q=(0,1)

which satisfies the inequality

t
|w@@w<a(ww@®+KAum@@mm)»emmy (3.1)

Proof. The proof can be found in [4], p. 954.
O

Lemma 2 Let L > 0 be fized. For any po(z) € H?*(—L,L) N H}(~L,L) and
f(z,t) € LQ((—L7 L) x (0, T)), there exists a unique solution of the problem

Dt + PPz + MPoz + VDsoer + 0p = f(x, 1), (32)

p(z,0) = po(z), (3.3)

p(=L,t) = p(L,t) = pra(—L,t) = puu(L,t) =0 if Q= (-L,L) (34)
such thatVt € (0,T)

t t
m%mw+Amm®mwsq(wm@+lwm®mw)@m

Proof.  The proof of Lemma 2 can be found in [2]. The estimate (3.5)
does not depend on L, so we consider the problem (3.2)-(3.4) in any interval
(=L,L), L > 0 and then, passing to the limit as L — oo, we obtain a solution
of the Cauchy problem (3.2), (3.3) (see, for instance, [11]).

Lemma 3 Let
a(z,t) € L® (0, T; H*(Q) N Hy(R))
b(x,t) € L* (0, T; H'()),
f(z,t) € L2 (0, T; H()),
qo(z) € H(Q).



88 G. G. DORONIN N. A. LAR’KIN

Then there exists a unique solution

q(z,t) € L* (0,T; HI(Q)) (3.6)
of the following problem:
@+ ag, +bg = f, (3.7)
q(2,0) = qo(x), (3-8)
q(0,t) =¢q(1,t) =0 if Q=(0,1). (3.9)

Proof. In fact, multiplying (3.7) by ¢, integrating over @; = 2 x (0,¢) and
using Gronwall’s lemma, we obtain

lal?(t) < (llaoll® + 11y ) €7 t € (0,7, (3.10)
where C] is a positive constant.

Differentiating (3.7) with respect to x, multiplying by ¢, and integrating
over €2, we have

1 1
Q|| (t +/ (—aa:Q?ﬁ- = aqz o+ 020000 +qu) dx = / fagzdz. (3.11
L8 )+ [ (Sast? + 2asd [ fgde. 310

Notice that

/ byqq, dx| <
0
<C

< sup |q|(£)[1bal|(#)lla1(£)

lgll? + llgz1* - llg=ll < C(llal* + llgz]*),

where the constant C' > 0 does not depend on ¢. Therefore, integrating (3.11)
over (0,t) and using the Cauchy and Gronwall inequalities, we conclude that

lael?(®) < (gl + 132 ) €77, ¢ € (0,T). (3.12)
Estimates (3.10) and (3.12) imply (3.6).

4 Local solution

Let u = 0. For n > 1, n € N, we define approximations u", v" and m™ as
solutions of the following problem:

uf + uu? + pul, + vu?, .+ ou” = mPK(v" — u"h), (4.1)
VP + " = K" — o), (4.2)
mp + (m"o"), =0, (43)

u™(z,0) = ug(z), v™(x,0) =uvy(x), m"(x,0)=mg(z), (4.4)
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By Lemma 1, we conclude that for any vy € H?(2) N H}(2) there exists
t; > 0 such that for all 0 < ¢ < ¢;, equation (4.2) with initial and boundary
conditions (4.4) and (4.5) (in the case of the mixed problem) has a unique
solution such that

t
[ e (8) < C (nvou%p(mff / ||u"-1||§,2m)(7)m), (46)

where the constant C, does not depend on v™.
The approximations m"(z,t) for ¢ € (0,¢;) can be found by formula [17], p.
141:

'\

m"(z,t) = mo(y"(O;m, t)) exp {—/Ot %(y”(T;x,t),T) dT} >0, (4.7)

where y™(7;z,t) is a solution of the Cauchy problem

dy
7 =V w) ytt) =g,
which is defined for every v™ € L*°(0,¢1; H*(Q)).
Setting f(z,t) = Km™(v" —u™ ') in (3.2) and taking into account Lemma

2, (4.6) and (4.7), we conclude from (4.1) that V¢ € (0,%;):
t
I )+ [ 10 () d
0

t
scu(nuou%ﬂ(m / ||Km”<v"—u”*)nizm)mdf), (4.8)

where the constant C, does not depend on u™.

Thus, all the approximations u™, v™ and m" are defined on (0,%¢;) and (4.6)-
(4.8) hold.

The next step is to show that these approximations are uniformly bounded
in n € N on some interval (0,t2). Inequality (4.8) implies

t
™ 2y (8) < Tt oy + / / K2 (m")2 " —un P dz dr
i
< ooy + 2K [ sup 2 (o2 + [~ ) ) dr
0o

t
< 2K2/ An_l(T)Bn_l(T) dr + “Uo”ip(ﬂ),t = (0,t1)7 (49)
0
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where
"y T s . 1/2
A 1(r)z||mo||zl<mexp{zcv [ ol + 5 / " By ) ds}

and =
B (r) = ||wo|l* + K/ [~ () ds + lu" (7).
0

For arbitrary R > 2|[ug||32(q), We have put u® = 0 < R. The inductive
hypothesis

sup [|u" [y (1) <R
0<r<ty

implies

t1
sup [|u"||20)(7) < ||uo||3p<m+2K2/0 F(R,7)G(R,T)dr,

0<r<ty

where

2
F(R,7) = ”monipm)e?%n/IIUOIIHz(erKRT

and
G(R7 T) = ||U0||§12(Q) + KR+ R.

Consequently, there exists a real t, > 0 such that for all n € N

sup [[u"|[32(0)(7) <R
0<r<ts

and the estimates (4.6) and (4.7) imply that v and m™ are bounded uniformly

in n on (0,ts).
Now we prove convergence of the approximations. The functions U™ =
ut —u™ L VP =" — 9"t and M™ = m™ — m"™ ! satisfy the following problem:
U +ulU™ + u" U2 + pU2, + VU
=K (m"V"*+o" ' M" — " M — U (4.10)
VR + 0"V + 2V = KU - VT, (4.11)
(
(

+aU"

M+ ("M™ +m" V™), =0 4.12)
U*(z,0) =V"™(z,0) = M"(z,0) =0, 4.13)

U™(0,1) = U™ (0,¢) = U™(1,) = U™ (1,1) = 0,

Vo(0,2) = V™(1,5) = 0, } ifQ=(0,1). (4.14)
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Considering (4.11) and (4.12) as equations of type (3.7) with f depending
on U™"! we obtain from (4.10) by (3.5) that there exist t3 >0 and 0 < 8 < 1
such that

sup [[U™|a2)(t) < B sup [|U™ |2y (t).-
0<t<ts 0<t<ts

Let tp = min(#;), ¢ = 1,2,3. Then a subsequence of {u"} converges in
L>(0,to; H*(2)) which implies convergence of {v"} and {m"} in L>(0,);
H?(Q)) and in L*(0, to; H'(£2)) correspondingly.

The fact that the limit of the approximations is the required solution of
(2.1)-(2.5) is established in the usual way, see [11].

Lemma 4 A solution of (2.1)-(2.5), satisfying (2.8), is unique.

Proof. To prove uniqueness of the solution obtained, we consider two solutions

(u,v,m) and (u,v,m) of (2.1)-(2.5). The functions U = u —u, V =v — v and
M = m — m satisfy the following problem:

=K[m(V -U)+ M@ -], (4.15)
Vi+oV,+v,V=KU-YV), (4.16)
M+ oMy +m,V +mV, +v,M =0, (4.17)
U(x,0) =V(z,0) = M(z,0) =0, (4.18)

B0l = Ul =T = Ul =0, || wes

It is easy to see that equations (4.16) and (4.17) have type (3.7) with f
depending on U. Therefore, applying (3.5) to (4.15), we get

t
U120y (8) < CK / U220 (7)

This implies that U = 0 and, consequently, V' = 0 and M = 0.

5 Global solution

We need global a priori estimates to extend the local solution to the whole
interval (0, 7). First, we define the energy function

E(t) = [lull*(t) + [IVmvl*(®)-
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Then, multiplying (2.1) by u, (2.2) by mv, adding up the results, integrating
over (); and taking into account (2.3), we obtain the first estimate:

E(t)+/0 [Plluael*(7) + allull*(7) + 2K[lvm(u = v)[[*(r)] dr < E(0). (5.1)

Multiplying (2.2) by v and integrating over @, we get

lelP() + K / P dr < Juoll? + K / llP(r)dr.  (5.2)

Differentiating (2.2) twice with respect to x, multiplying the results by v,
and v, and integrating over ();, we obtain the inequalities

t t
[lvell*(2) +/0 (B = sup vz ) lva]|*(r) dr < IIU(')II“rK/0 luz||*(r) dr

1112 K ’ 2 2
< Mlwll® + = d (ll* + llugel®) (r) dr
(5.3)

and
t t
||vm||2(t)+/0 (K—7SIS12p vz lvzall*(7) dr < ||U6'||2+K/0 l[taal*(7) dr. (5.4)
Lemma 5 If A < K/7, then

sup |vg(z,t)| < K/T for allt > 0. (5.5)
Q

Proof. Indeed, when t = 0, supq vz < |lvg]] + Jvgll < A < K/7. Suppose
that supg |vs(z,t.)| = K/7 for some ¢t = t, > 0. Then (5.1)-(5.4) yield

K/7 = sup fug|(t) < [|os|(t) + [|veal (&)

< V|Ivh|I2 + KE(0)/2a + KE(0)/2v + /|[vl]|2 + KE(0)/v = A < K/7.

This contradiction proves Lemma 5.

O

It follows from (2.3) that the concentration m(z,t) satisfies the conservation

law

/m(:c,t)d:cz/mg(:c)dmzc for all ¢ > 0.
) Q
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Moreover, (4.7) implies that m(z,t) > 0.
Thus, if A < K/7, then

u € L®(0,T; H3(Q) N Hy () N L2(0, T; H*(Q) N Hy (),
us € L2(0,T; L*(Q)),

v € L=(0,T; H*(Q) N H} (Q)),

v € L*®(0,T; L*(R)) n L%(0, T; H*(R)),

m € Lig(0,T; H'(Q)) N L*(0,T; L'(Q)),

m > 0,

my € Lis,(0,T; L*(Q))

and these inclusions do not depend on 7" > 0. This allows us to extend the
local solution for all ¢ > 0 (see [1] for details). Uniqueness of the global solution
follows directly from Lemma 4. Theorems 1 and 2 are thereby proved.

O
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