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Abstract

Air sometimes is pumped in injection wells in order to preserve the
pressure and to expel oil to producing wells. A low temperature oxi-
dation usually occurs in such a situation. The aims are increasing the
oil production and guaranteeing that all the oxygen is consumed before
reaching the production wells, where it would be a safety hazard. In this
work we consider a simplified model for the flow and we find some oxi-
dation fronts, described by heteroclinic connections in a non-hyperbolic
system of three ordinary differential equations associated to the model.

1 Introduction

In this work we study oxidation fronts for a system of gas and oil moving
linearly in porous media. We assume that the injected gas is pure oxygen, and
that it forms carbon dioxide in a exothermic chemical reaction. We also assume
that this carbon dioxide becomes totally dissolved in the oil phase as soon as
it is generated. For simplicity, it will be assumed that the density of the oil
phase is independent of the concentration of the dissolved carbon dioxide. The
viscosity of the oil phase depends on the temperature. The effect of carbon
dioxide concentration on the oil phase viscosity will be ignored. Densities of
gas and oil will be assumed to be independent of temperature. To avoid effects
due to volumetric changes, we make the unphysical assumption that gas and
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oil have the same density. We assume that the heat capacity of oil and gas is
negligible compared to rock capacity, so that all generated heat is used to warm
the rock. We use an Arrhenius type law for the reaction rate. We neglect heat
loss to the rock formation, so that this oxidation gives rise to a temperature
front with small amplitude. In [8] and [9] it was shown that if this heat loss is
not neglected, the combustion may give rise to pulses rather than fronts, and
oxidation will be incomplete.

We assume that at the right of the front there is a non-oxidized mixture
of gaseous (oxygen) and oleic phases, at reservoir temperature. At the left of
the front, there is only an oleic phase, with a certain dissolved carbon dioxide,
at a higher temperature resulting from oxidation. We remark that if air is
injected, we have to keep track of the portion of the gaseous phase which has
been oxidized, so an extra variable and an extra equation are needed.

The Arrhenius type reaction rate law we use states that the total amount
of oxygen mass consumed per unit time is proportional to the oxygen available
and to a temperature dependent factor, see [2].

g=Ae Tw, if §>0, and q=0 if 0<6<6, (1)

where A, is the Arrhenius’s rate coefficient, E, is the activation energy, and 6,
is the temperature where the reaction starts.

Our aim in this paper is to discuss the oxidation fronts as traveling waves.
We show that under certain conditions such waves exist and are well determined.

The equations for the model are obtained as in [4], and they are described
in Section 2. In Section 3, we describe the chemical reaction fronts as traveling
waves. In Section 4, the orbits of the ordinary differential equations for the
traveling waves are found. Section 5 is devoted to discussion of our results.

2 The model

Throughout this section, the subscripts g and o refer to the gaseous and oleic
phases, respectively, and r to the porous rock phase. We will follow Refer-
ence [1]. The flow is described by state quantities depending on (z,t), the space
and time coordinates. They are denoted as follow: s; = s;(z,t), j = g, o, is the
saturation of phase j in the fluid, i.e., the fraction of the porous volume occu-
pied by phase j; and 0 = 6(z,t), is the temperature, which is assumed to be the
same for gas, oil, and rock at each (z,t). The density of phase j, j = g, o, r,
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is denoted by p;. The other relevant quantities related to phase j, j = g, o, are
denoted by: v; is the seepage velocity; and ); is the relative mobility, which is
a function of saturation s; and temperature 6, defined by

_ Ki(s))

Most) = LA @
Here, p; is the viscosity, i.e, its intrinsic resistance to motion; and k; is the
relative permeability, it is a dimensionless function of saturation s;, measured
in the laboratory, also, it is a phase dependent quantity such that Kk; is the
porous medium capability of allowing the flow of phase j, where K is the abso-
lute permeability of the rock, which measures the porous medium capability of
allowing fluid flow. Gas viscosity and the absolute permeability are assumed to
be constant. However, oil viscosity depends strongly on temperature. Finally,
the porosity of the rock is denoted by ¢, which is the total fraction of the rock
volume available to the fluids, where we take it to be constant by assuming that
the rock is homogeneous.

The conservation of mass of the gaseous phase is

0 0]
&(QSpgSy) = —B_I(ngg) — (6Pg39) (BP0S0)1 - 3)
The conservation of mass of the oleic phase is
D (6p030) =~ (pove) + (8p05,) (6p)s ()
ot PoSo0) = axpoo PgSg)\PPo)S0q -
The total flow of the fluid is given by
V= v, + Y, (5)

while the total mobility of the fluid, is

A=A+, (6)
and hence
_ Opy Opo
v = K)\y% K)\o 8;1; § (7)

Considering the capillary pressure p.(s,) = pg — Po, With g’s’: < 0, and Eq.
(7), we have

Opg . Opc v opo _ ope v
o = o d fy (8)

or KA\ at oz

or K\’
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where f; is called the “fractional flow function” of phase j = g, 0. These
functions depend on s; and 6; they are defined by

fi(s5,0) = Ai(s;,0)/ A 9)
Substituting (5)-(9) in (3) and (4), after some manipulations we obtain

ad 0 0 ope
a(qﬁpgsg) + a_x(pgfgv) = a_x(Kpg)‘ofga%) - (¢pgsg)(¢p030)Qa (10)

0

0 0 Op.
a((ﬁposo) = a_x(pofov) = __(Kpo)‘ofga_];) i (¢pgsg)(¢po$o)q . (11)

ox

To avoid effects due to volumetric changes, we make the unphysical as-
sumption that the fluid densities are constant and identical (p, = p, = p). This
assumption becomes our analysis easier because the two last equations may be
substituted by only one equation, as the following: Egs. (10) and (11), after to
be divided by p, are equivalent to the following equations,

0 0 _ 0 op. 2
a(ﬁbso) + a_x(vfo) = _K%(/\ofg B ) +¢ PSgSoq (12)
ov

This last equation shows that v = v(¢), which may be given by the boundary
condition, and will be assumed to be constant.
Since we are assuming that all generated heat is used to warm the rock, the

conservation of energy may be written as

%(pTCTH) = 6% (mw?ﬁ) + ¢*p*Asysoq - (14)
where C,, k, and A, are the heat capacity of the rock at constant pressure, the
heat conductivity of the rock, and the energy released by oxidation, respectively.
Here, all these quantities are assumed to be constant.

From now on we will substitute s, by 1 — s,. Let us also introduce the
positive constants

_¢3P2A _ ol 2
=0 '=wc and x = ¢’p, (15)
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and the nonnegative function
dpc
h(s,0) = gfo (16)

where we use that A,f, = Ayf,- In principle, h(s,H) vanishes for s = 0 and
s = 1, but to simplify our analysis we consider it as a positive function in
0<s<1,6>0.

We will omit the index o in s, and in f,. So, the oil saturation will be
denoted by s, and the fractional flow function of oil, which depend on s and T,
will be denoted by f. To scale out ¢ and v, we can set

t=¢t and z=03. (17)

For simplicity of notation, we drop the tildes, obtaining from (12) and (14), the
following system

0 0 0

L= (%) (1 s)sa (19
09 0 80
o5 = 9 Vgt —s)sq. (19)

Following standard modeling of two-phase flow in porous media, see [1], we will
assume that f(s,f) is a nonnegative C?—function, S-shaped in s for each 0,
with f(0,0) = 0 and f(1,0) = 1. Also, we assume that %é vanishes for s = 0
and s = 1 for each 6, andthat%>0for0<s<1.

3 Oxidation traveling waves

Since the effects of capillary pressure and thermal conductivity have been take

in account the system (18)-(19) has parabolic terms, characterized by the second

derivatives. Thus, it is natural to look for solutions as traveling waves, see [11].
Next, the following definition will be needed.

Definition 1 A state (s,0) is called non-ozidized if s < 1 and 6 < Oy, and it
is called oxidized if s = 1 and 0 > 6y, where 0y is the temperature where the
reaction starts.

In this model traveling waves must represent oxidation fronts propagating
with certain speed, leaving an oxidized state behind, denoted by (s~,67), which
advances into a non-oxidized state ahead, denoted by (s*,0%). In the non-
oxidized region the reaction rate ¢, from Definition 1 vanishes because 6 < 6. In
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this case the system (18)-(19) is decoupled. We can first find the temperature by
solving the linear heat equation obtained from (19) and then find the saturation
by solving the scalar Buckley-Leverett’s equation obtained form (18).

In the oxidized region, since s = 1 we have that f = 1. Thus the source
terms in (18)-(19) vanish. In this case the Eq. (18) is trivially satisfied, and
(19) becomes a forced linear diffusion equation.

In order to do the analysis of the oxidation fronts it is helpful to write the
source terms in (18) and (19) as derivatives. So, we will introduce an auxiliary
variable () defined by

Q=Q(z,t) = /Oo(l—s)sqda:’. (20)

With this new variable the system (18)-( 19) has to be augmented by one
equation and may be rewritten as

ds of _ 9 05 0Q

E+8x_63:( %)_X&E’ L
00 0, 00 oQ
T = (y2) — gt 22
5~ oz oz "ow @2
0Q
o = (- 9)s4(0) (23)
From (20), the auxiliary variable value related to a non-oxidized state is
given by
lim Q = Q" =0, (24)
0

and it related to an oxidized state by

Jim Q=@ (25)
where we assume that 0 < Q= < oco. In the (s,6,Q)-space, a non-oxidized
state will be denoted by (s™,67,QT), and an oxidized state by (s7,07,Q7).
We recall that from Definition 1 we have that s = 1, st < 1, 87 < 6y and
0~ > by, and from (24) QT = 0. We will assume that 6% = 6.

Definition 2 Given two arbitrary states UT = (s7,07,Q%1) and U~ = (s7, 0",
Q7), a traveling wave solution of system (21) - (23) with propagation speed o,
connecting U~ on the left to U™ on the right, is a smooth solution (3(7), 6(r),
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Q(T)) of this system, depending on the single variable T = x — ot with —o0 <
T < 00, such that

lim (5(7),0(r),Q(r) =U~,  lim (s(r),6(r),Q(r)) =U*,  (26)

T—+00

and
lim (5(r),0(), Q()) = (0,0,0), i (5(),0(r), Q(r)) = (0,0,0). (21)

Substituting s(7), 0(7) and Q(7) in (21)-(23), we can easily prove the follow-
ing proposition relating traveling waves to solutions of an ordinary differential
equations system. We use the notation f* = f(s*,0%) and f~ = f(s7,07).

Proposition 1 Given a non-ozidized state UT = (s7,0" = 05, QT = 0) and
an arbitrary state U~ = (s7,07,Q7), a traveling wave solution of system (21) -
(28) with propagation speed o, connecting U~ on the left to Ut on the right, is
an orbit of the following ordinary differential equations system, satisfying (26)
and (27),

5= X(5,0,Q) = o(s* —5) — (/" — )+ XQ, (28)
6=Y(s,0, Q)= %{a«ﬁ —0)+1Q} (20)
Q =2Z(s, 0, Q) =—h(l—s)sq, (30)

where v is the parameter defined in (15) and h is the positive function of s and
0 defined in (16).
Also, the speed o and the states UT and U~ are related by the following

Rankine-Hugoniot conditions,

o(st—=s)—(fT=f)+xQ =0, (31)
o0 —67)+nQ” =0, (32)
—(1—-s5")s7q(07)=0. (33)

Egs. (31)-(33) are obtained by taking the limit as 7 — —oo in (28)-(30),
respectively.
Remark 1 Egs. (28)-(33) show that the states UT and U~ are singular points
of the system (28)-(30).

Remark 2 If we consider the state U~ = (s7,07,Q~) such that s~ > 0 and
0~ > by, we have q(67) > 0, and from Eq. (33) we have s~ = 1. Consequently,
in this case, U™ is forced to be an oxidized state.
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4 Heteroclinic orbits

In order to formulate our results, the system (28)-(30) will be considered as
depending only on the speed parameter 0. The other parameters v and x will
be fixed. We rewrite this system as the following one-parameter family of vector
fields

D, = X(s, 0, Q; 0) % + Y(s, 0, Q; 0)% + Z(s, 0, Q; U)%. (34)

In this section we consider the non-oxidized state U™ = (s*,07 = 6y, QT =
0) as a fixed state with 0 < s* < 1. The problem that we will consider is
the following: given a value for the speed o, we first find all states U~ (o) =
(s7(0),0 (0),Q (o)) satisfying the Rankine-Hugoniot conditions (31)-(33).
Then, we ask if there exist an orbit ¢ of the system ( 28)-(30) such that w(p) =
Ut and a(p) = U (o) i. e., if there exist a heteroclinic orbit ¢ connecting
U~ (o) to Ut. Notice from Remark 1 that U and U~ (o) are singular points
of this system. Also, from (33) we have s™(0) =1 or s~ (o) =0 or (o) < 6.
Since we are looking for oxidation fronts, the case of interest is when U~ (o) is
an oxidized state. Therefore, we will consider s~ (¢) =1 and 6~ (o) > 6y, as in
Definition 1.

We will prove the following result.

Theorem 1 Consider the family of systems of differential equations (28)-(30),
or equivalently, the one parameter family of vector fields ®, given by (84).
Let o be such that o > f} = %f(s+,0+) > 0. If o is large enough, then
there exists a unique heteroclinic orbit connecting the two singular points U~ =
U (o) = (1,07 (0),Q (0)) and Ut = (sT,0% = 6,,0). Here 6=(o) > 6 =
6y and Q~ > 0.

In what follows we will describe the structure of the singular points of ®,.

Lemma 1 Assume that 0 < st < 1. Then the curves 0 — Cy(o) = (0,07,Q™)
ando — Ci(0) = (1,07,Q7), defined by ®,(Cy(c)) = (0,0,0) and ®,(C1(0)) =
(0,0,0), are hyperbolas parametrized by o as in Fig. 1.

Proof. From the equation Z = 0 it follows that s = 0, s = 1 or ¢(f) = 0. Let
us first consider the case, s =1 and X =Y = 0. It yields

+ 1 1—st

oo lt=1, =5

U:Q1+U107 (35)
X X
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Figure 1: Hyperbolas for s~ =0 and s~ = 1.

1—st -1
o— o+ 4+ 5)+(77(f )
X X
Eliminating o in (35)-(36) we obtain

1 1
)—=@+w—- (36)
g ag

@-QE-0) = = - 10=NSD

which is clearly a hyperbola with asymptotes 6 = 0 and @ = Q1.
In the same way the equations s = 0 and X =Y = 0 implies that

f+ +
=——-—0=Q3+v30, (37)
X
= - 1
=0+ £+(ﬁ>—=aﬁv4— (38)
X X o
Therefore,
st ft+
@- Q)0 -8) =uns ==L <o,
The parametric form of the two branches of the hyperbola, in each case,
follows from (35)-(36) and (37)-(38), respectively. O

Remark 3 Lemma 1 shows that for each o € R, o # 0, the vector field ®, has
only one equilibrium point on the plane s = 0 and only one equilibrium on the
plane s = 1.

Remark 4 When 0 — oo we easily have the following limits along curve C,
Q (0) > 00 and 0= (o) = 07 +n(1 — s7)/x; along curve Cy we have 0~ (o) —
0t —nst/x.
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In order to understand the structure of the singular point Ut = (sT,6%,0),
which is an equilibrium of ®, for all o € R, we consider the function

F(S,H,Q) = (f_f++XQ)(0+ _0) —77Q(3+_5)

obtained from the elimination of ¢ in the equations X = 0 and ¥ = 0 in
(28)-(29).

Lemma 2 The set S = {(s,0,Q) | F(s,0,Q) = 0} is a regular surface away
from the point UT. It contains the curves Cy and C, as described in Lemma 1.

The topological structure of S near U™ is of an index-2 Morse singular point

(cone).
F F
Proof. A direct calculation at the point (s*,6%,0) gives F' = %— = ?9_9 =
s
oF
@ = 0. Also,
0 —ff
Hessian(F, (s7,07,0)) = | —=f" -2f —-x|, (39)
n -x 0

where fj = %L(s*,07) > 0 and f; = Z(s*,07) > 0, as stated in the last
paragraph of Section 2.

The three real eigenvalues A1, A2 and A3 of Hessian(F, (s, 07,0)) satisfy the
following relationships:

MAAs =2fFnx +2fon* >0
)\1+/\2+)\3=—2f9+<0.

Therefore, two eigenvalues are negative and one is positive. By Morse
Lemma it follows that, locally, F'~1(0) has the topological structure of a cone.
By Lemma 1, Cy,C; C F~1(0). O

Lemma 3 Assume that o > fF. Then the singular point Ut = (st,0% =
0o, QT = 0), with 0 < st < 1, is not an isolated singular point of ®,. More
precisely, UT € S, = {(5,60,Q) | 0 = %’:ﬂ =20 <0} where S, is a
reqular curve ending at U™ ; the tangent space at U™ is given by the vector

ve = (ffn+xo, n(o = ), olo = )" (40)
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Proof. The singular points of ®, are defined by the equation X =Y =7 = 0.
As 0 < st < 1 it follows that Z = 0 if and only if ¢(f) = 0. So 0 < 0T =
6. Therefore, S, = {(5,6,Q) | X =Y =0 and 60 < 6+ = 6,}. Direct
calculations give v, = VX A VY. O

Proposition 2 Suppose o > f, with 0 < s* < 1. Then the line of singulari-
ties S, is normally hyperbolic(attracting). The stable manifold of UT, WS(U*,®,)
18 a reqular surface tangent to the sO-plane at UT. The center manifold of
U, We(UT,®,) is one-dimensional and tangent to v, at UT. The phase por-
trait of ®, near U™ is sketched in Fig. 2.

Figure 2: Singular line ending at UT. Stable manifold at U™ and unstable
manifold at U~.

Proof. At the point Ut = (s7,67,0),

o+ fr ff x

D®,(U*) = 0 o I (41)
0 0 0

where ft = fi(sT,0%), fi = fo(sT,07) and ht = h(sT,0%).
The eigenvalues of D®,(U™) are given by
oh*

)\1:—0'+fs+<0, )\2:—7<O and A3 = 0.

The corresponding eigenvectors are v; = (1,0,0)7, v = (f;, a—fj—%, 0)"
and v, given in (40).
Therefore, by Invariant Manifold Theory, see [5] and [7], it follows that

there exists an invariant surface (stable manifold W*(U™,®,)) tangent to the



78 J.C. DA MOTA A.J. DE SOUZA R.A. GARCIA P.W. TEIXEIRA

eigenspace spanned by {vi,v2} and a center manifold, WU, ®,), tangent
to vy at UT. Also, by continuity and Invariant Manifold Theory, it follows
that S, is a normally (attracting) hyperbolic set with splitting defined by the
eigenvectors of D®,(S,). As @ < 0 it follows that the local region above
WU, ®,) lies in the attracting basin of Ut. O

Proposition 3 Suppose 0 < st <1 and o > 0. Then the singular point U~ =
(1, (o), Q(0)) is a hyperbolic singular point of ®, with dim(W*(U~,®,)) =
2 and dim(W*(U~,®,)) = 1. The tangent space to the unstable manifold
We(U~,®,) is generated by a vector v, where v is a negative vector, i.e., the

three components of v are negative. See Fig. 2.
Proof. Recall that at U™, we have 8~ > 67 = 6, and so ¢(6~) > 0. Also,

-0 0 X
o oh~— h”
Do, (U7) = I =5 bl
h=¢— 0 0
where h™ = h(s™,07) and ¢~ = ¢(07).
The eigenvalues of D®,(U~) are given by the equation

(—i - A(A2+or—xhq)=0.
h

Therefore, the eigenvalues of D®,(U~) are

-
=—T"
%
—0 — /o2 +4xh—q~
Ao = g o+ exhg <0,
2
- 24+ 4vh—q~
s = g+ o2+x q > 0.

The corresponding eigenvectors are

v; =(0,1,0)F,
va =(x7(A1 — A2), —nh (0 + A2), V(0 + A2) (A1 — A2))T,
vs =(x7(\ — As), —=nh™ (0 + A3), (o + As) (A — A3))”-

Direct calculations show that all components of vs are negative. O
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Proposition 4 Suppose 0 < sT < 1 and o > f} is large enough. Then a
branch of W*(®,,U~), where U~ = (1,07, Q7), is contained in the region
defined by R ={(s, 6, Q) | X(s,0, Q) <0, Y(s, 0, Q) < 0}. Moreover, if o is
large enough then a branch of W*(®,,U~) is above W*(®,,U™).

Proof. By Proposition 3, W*(®,,U~) is spanned by the negative vector vs =
(xy(A\1 = A3), —mh~ (0 + A3), 7(o + A3)(M — A3))T. Consider the surfaces Sy =
{(5,60,Q) : X(5,0,Q) =0} and & = {(5,0,Q) : Y(5,0,Q) = —c6 + nQ = 0},
see Fig. 3. The vector field &, = (X, Y, Z) is transversal to both surfaces and
Z|s, < 0 and Z|x < 0, except in the singularities of this vector field. So, the
region R, = {(5,60,Q) : X(s,0,Q,0) < 0,Y(s,60,Q,0) < 0} is an invariant
region for the flow of ®,.

We have that VX = (f, — o, f, x) and VY = %(O7 —o,m). AtU~ € S,N%
it follows that < VX, v3 >= x7(A1 — A3)(A3) < 0 and < VY, v3 >= —n(o +
A3)Azh™ < 0. Therefore, as Ty-W¥(®,,U~) = v3, a branch of W¥(®,,U~) is
contained in the invariant region R,. The portion of this region inside of the
parallelepiped 0 < s < 1,07 <0 <60,0<Q < Q" is shown in Fig. 3.

Now, consider the vector field U1 = %CI)U. For all o # 0, ¥1 and &, have
the same orbits with the same orientation when o > 0. Lettinag o — 00, we
have that ¥y = lim,_,o \Ilé is given by ¥y = (s — 5)3% + %(0‘F - 9)% + O%.

For the vector field ¥y the sf-plane is invariant and W*({U™T, ¥y) = R2.
In fact, UT = (s%,07,0) is the unique singular point of ¥y, and V(s,0) =
(s —s%)?+ (0 — 07)? is a Liapunov function for the vector field Wy,_,, [10].

By the continuity of the stable manifold it follows, for o large enough, that
W(®,,UT) = W5(¥1,UT) is close to W*(¥y,U") in any compact region of
the sf-plane. ’

In fact, for any p > 0, the invariant surface W*(®,,U™) is a graph over the
ball B,(U*) ={(s,0,0) : s* + 6> < p?} C R? x {0} and

Wo(®,,UT)N{(5,0,Q) : s>+ 6* < p°}

is C'— close to B,(U™) for o > 0 large enough and any p > 0.
Now, as W*(®,,U™") is an invariant set it follows that

{(,0,Q) : d((5,0,Q), W*(2,,U™)) > 0} N R,

is an invariant region for @, for all o large enough. Here d(.,.) means a distance
with signal, positive if (s, 0, Q) is above W*(®,, U") and negative otherwise.
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Therefore, for o > 0 large enough and taking p > 20~ (o) = 2[0 + vs 1], see
Eq.( 36) and Remark 4, it follows that W*(U~, ®,) lies in

{(,0,Q) : d((5,6,Q), W*(2,,UT)) > 0} N Ry

As (1,07,0) € B,(U") and U~ = (1,0~,Q7) is above W*(®,,U™") it follows
that W*(U~,®,) C R, is above W*(®,,U"). This ends the proof. O

Proof of Theorem 1. Consider 0 > 0 large enough. According to Propo-
sition 4, the left branch of W*(®,,U~) (see Fig. 2), denoted by W*(®,,U~),
is contained in the invariant region R,, exhibited in Fig. 3, and the curve
WY (®,,U™) lies above the surface W*(®,,U™). Thus, it follows that the w-
limit set of the orbit W*(®,,U™) is the singular point U*. This ends the proof
of Theorem 1. O

i L
\ | -
\ o
\ L 0<n
\ } 7 0
\\ R APV T, R — I
Soaail s>0
U/ Ry
§§§§§§ S,
_____ o s<0
1 ~10 <n
s/ Q<0

Figure 3: Surface S, where § = 0 and ¥ where § = 0. Portion of the region R,
inside of the parallelepiped 0 < s< 1,07 <0<07,0<Q<Q" .

5 Discussion

In this work we used methods of qualitative theory of ordinary differential equa-
tion applied to a mathematical model of partial differential equation describing
an oxidation process in petroleum reservoirs, and we find oxidation fronts as
heteroclinic connections in the ordinary differential equation. For other math-
ematical models and applications, see [3], [6], [8], [9] and [11].
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A problem left is to show that if
of
> ff=—(st,0") >0,
o> =Lt 0

then there exists a heteroclinic connection as stated in the Theorem 1. This
problem is suggested by numerical evidence.

The model considered is oversimplified because we consider that all heat
generated by combustion is used to warm the rock, and that the carbon diox-
ide generated dissolves immediately into the oil phase. We also consider that
densities of oil and gas are equal. If we do not make these simplifications, the
system (18)-(19) has to be augmented by one or two equations, and it becomes
more difficult to apply the qualitative theory. This work is a first step in finding

oxidation fronts in a more realistic model.
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