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THERMAL RADIATION IN A STEADY
NAVIER-STOKES FLOW

Luisa Consiglieri *®

Abstract

In this work, we prove an existence result for a coupled system of
partial differential equations, valid for dimensions two and three. To
prove this mathematical result, we use a fixed point argument for multi-
valued mappings. The main part of this work is to obtain estimates in
the presence of L!-data and to prove continuous dependence with respect
to given parameters. For a two-dimensional case, it can be recognized
as thermoconvective flow for a Navier-Stokes fluid with heat transfer by
radiation on a part of the boundary of the domain.

1 Introduction

All bodies emit radiant energy continuously. The intensity of the emissions de-
pends on the temperature and on the nature of the surface. Thermal radiation
is the process by which heat is transferred from a body by virtue of its temper-
ature, thus it is defined as radiant energy emitted by a medium by virtue of its
temperature (see [7]).

Usually, thermal radiation appears when a hot surface is in contact with a
transparent medium with relatively low heat conductivity or when a body is
placed in an enclosure whose walls are at a temperature below that of the body
(the temperature of the body will decrease even if the enclosure is evacuated).

Almost every material partly absorbs, partly reflects and partly transmits
radiation incident on its surface. An ideal radiator, also called black body, is
a body which emits and absorbs at any temperature the maximum possible
amount of radiation at any given wavelength (it does not reflect any thermal
radiation energy).
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In the literature, it is frequent to find gray bodies whose emissivity is in-
dependent of the wavelength of the radiation. That is, at a given temperature
the ratio of the monochromatic emissive power of a body to the monochromatic
emissive power of a black body at the same wavelength is constant over the
entire wavelength spectrum. The monochromatic emissive power denotes the
radiation quantity at a given wavelength A:

E\©0) = GAW;

where 6 denotes the temperature, €, is the percentage of black body radiation
emitted by the surface at the wavelength A and C; and Cs are Planck constants.
For a black body, the following relation is well known

/ E\d)\ = o6,
0

where o is the Stefan-Boltzmann constant.

Unfortunately, most surfaces encountered in engineering applications do not
behave like black or gray bodies, as such as for instance Navier-Stokes fluids.

In this work, we introduce the thermal radiation for Navier-Stokes flows but
it also can be done to a thermal flow of generalized fluids (see [2]). In compliance
with the nonlinear character of this class of fluids, a general constitutive law for
the heat flux must be considered.

We assume that the medium surrounding the body is nonparticipating, that
is, it does neither absorb nor scatter the radiation.

Recently, initial boundary value problems for viscous heat-conducting one-
dimensional real gases were studied in [6] and references therein, under various
growth constraints. A numerical simulation of a steady state three-dimensional
problem for only the conduction/radiation transfer process to rigid and opaque
bodies can be found in [9]. A nonlocal boundary value problem results from the
self-illuminating radiation on the surface (see [10]).

The outline of this work is as follows. In the next section, we formulate the
problem. In Section 3, we give the assumptions and we state the main result.
In Section 4, we present the main proof. It consists of the existence of weak
solutions for approximated problems, L!-theory to the independent term of
an equation with partial derivatives, continuous dependness and a fixed point
theorem for multivalued mappings to permit obtain the main result. These
different techniques give to the physical model an interesting mathematical
problem.
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2 Statement of the problem

Let © be a bounded open subset of IR", n = 2,3. The flow of Navier-Stokes
fluids is described by

_ Ou; .
V.u_,—;axi_o in & 1)
(u-V)u=V-[u@)Vu]+{f-Vr in Q (2)
u-Ve=pu@)|Vu?-V-q+g in Q (3)

where u = (u;), i =1, ...,n, denotes the velocity, Vu is the Jacobi matrix, u
denotes the viscosity, § the temperature, 7 the pressure, e denotes the specific
internal energy and f = (f;) and ¢ are the given external body forces and heat
sources, respectively. The constitutive law for the heat flux vector q = (¢;) is
the Fourier law

a = —k(0)Ve; (4)

where k£ denotes the heat conductivity. The relation between the energy and
the temperature is a linear function e = C6, where we assume C = 1 for the
sake of simplicity.

If 'y and T" are two disjoint complementary parts of the sufficiently regular
boundary 052, the radiation corresponds to the mixed condition (the tempera-
ture is given on a part of the boundary)

0 =0on Iy (5)
k()V6-n+~(6) =honT, (6)

where n = (n;) is the exterior unit normal to 09 and v is a general function
with same characteristics of radiation, which may depend on the wavelength.
As particular cases, when I' denotes a boundary part of a convex black body, v
and h are y(f) = 06* and h = A, respectively, where A\, denotes the intensity
of the radiation coming to the surface outside of the system. When I' denotes
a boundary part of a nonconvex gray body, h = h(e, As, K) and 7 may be
represented by
¥(0) =o(I — K)(I - (1—e)K) ‘et

where € denotes the emissivity of the surface and K describes the self illumi-
nation, whose explicit form of the integral operator is known for example in
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[11]. In this case, the intensity of emitted radiation is the sum of the Stefan-
Boltzmann heat radiation and the reflect part of the irradiation seen by the
surface.

Finally, the particles in the vicinity of the surface are slowed down by virtue
of viscous forces. Thus, the fluid particles adjacent to the surface stick to it and

have zero velocity relative to the boundary:

u=0 on 99N. (7)

3 Main result
We assume that  : IR — IR is a continuous function such that
Jp,p>0: p<pl)<p, VEENR; (8)
k : IR — IR§ is a continuous function such that
I k>0: k<k(E) <k VEelR 9)

v : IR — IR is a continuous function such that

v(£)sign(§) >0, VE€IR; (10)
B<g<iT FH>0: h@ISHER veeR ()

Remark 1 We observe that although the assumption (10) is fictitious, in the
physical problem when the temperature is a nonnegative function, the assump-
tion has meanful.

Let us define our admissible spaces using Sobolev and Lebesgue spaces. For
each p > 1,

V = {veW Q)" : V-v=0in Q},
W, = {#eW'(Q): 6=00nT,} and W=W,

are endowed with the standard norms. We also assume that

f e [L2(Q)]Y (12)
g€ LY(Q), h € L\(). (13)
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From standard techniques, the problem (1)-(7) may be formulated as
(P): Find (u, #) sufficiently regular satisfying (5),(7) and

/u®v:Vud:r+/,u(0)Vu:Vvdac
Q

/f~vda:7 YveV; (14)
0 )

/Q (£(0)V6 — 6u] - Vo d + /F o8 ds = (15)

2/(g+u(0)[Vu|2)¢ dr + /h¢> ds, Yo € Wpp-1),
Q r

reminding that

n
(u-V)w-v= Z wwjv; =u®v:Vw, VYu,v,weR"
ij=1

Now, we are able to state the main result of this paper.

Proposition 1 Under the assumptions (8)-(13), there ezists a solution (u,0) €
V' xW, to the problem defined by (14)-(15), for allng/(g+n—1) <p < n/(n—1).

This existence result uses similar argument of the paper [4], where the ther-
moconvective flow without thermal radiation of a class of non-Newtonian fluids
is studied. The restriction p < n/(n — 1) means that p/(p — 1) > n, conse-
quently Wpp-1) = L®(Q) and Wpp—1) < L=(I'). So the right hand side of
equation (15) is well defined. While the restriction ng/(¢ +n — 1) < p implies
that W, << L(T").

We remark that when n = 2 and ¢ = 4 we have 8/5 < p < 2. Thus there
exists a solution to the thermal radiation problem in the two-dimensional space.

4 Proof of the main result

We begin to introduce an existence result (proof may be found in the paper [1,
pages 218-220]).

Theorem 1 Let E be a locally convexr Hausdorff topological vector space and
let K be a nonempty convex compact set in E. If

U:K—{ReP(K): R#0,R closed conver }

is an upper semicontinuous mapping then ¥ has at least one fized point, i.e.,
e € U(e) for somee € K.
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Let us establish the existence result to the problem (P). For each p > 1,
we define the nonempty convex compact set, when it is considered the weak
topology on V' x W, by

K:={weV: |wlv <R} x{£eWp: |¢llw, < Ra}, (16)
where Ry, Ry > 0 are conveniently chosen. We construct the mapping
(w,§) e K »u=u(w,§) —0=0(u)

where u = u(w,£) € V is the solution to the problem defined by

/w®v:Vudx+/y(§)Vu:Vvdz:/f~vdm, Vv eV, (17)
Q Q Q

and 0 = 0(¢,u) € W, is a SOLA solution to the problem defined by
/ 6(€) V0 — 6u] - Vo dz + / 1(E)d ds = (18)
Q iR
— [+ n@TuPiods + [hods, Vo€ Wy,
Q B

The notion of Solution Obtained as Limit of Approximations (SOLA) was in-
troduced by Dall’Aglio in [5] and means the only solution which is found by
means of approximations.
FEzistence and uniqueness of solution to the problem (17)

The existence of a unique solution u = u(w,&) € V to the problem defined
by (17), satisfying the following estimate, independently of w and &,

f
IValla < % 19)

is a classical result of Navier-Stokes theory (see for instance [8]).
FEzistence and uniqueness of solution to the problem (18)

Let us prove the existence of a solution § € W, to the problem defined by
(18) satisfying

IVllp0 < Cllglhe + Ihllyr + allulf)?/Erin--pE-p, (20)

where C = C(k, 2, p,n) is a positive constant, for all 1 < p < n/(n—1).
First, we introduce the operator A : W — W’ such that

(A(9), 6) = /Q k() V0 — 6u] - Vo dz + /r ) s,
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Since ¢ € W — LA~ D/(=2(T") and n < 4, the boundedness property holds

IA®) lwr < Ell6llw + [16]|2n/n-2.0ll0ll2n/ 2.0 + 17O ll2n-1)/m,1-

As we also have § € W — LX"=D/("=2/(T), we get ||7(6)||2(a—1)/nr < FC|0]%,
remarking that 2¢(n —1)/n < 2(n — 1)/(n — 2) means ¢ < n/(n — 2).
Thus the existence of 6,,, € W satisfying

(40w, 0 = [

Q

(9+ Fu)é dz + /r e (21)

where Fp, = p(€)|Vul?/(1 + (1/m)u(€)|Vul?), is obtained (see [8]) using the
fact that the operator A is pseudomonotone, semicontinuous and coercive which
follow from (9)-(10) and the anti-symmetry property of the coercive term, and
recalling that ¢ < 2(n —1)/(n — 2) and n > 2, the operator

feWm—0eLil)— () €R

is strongly continuous.

Next, in order to get an estimate to the solution 6,,, independently on m,
we refer the additional difficulty of the L!-data. Thus, we apply the argument
introduced by Boccardo and Gallouet. This technique uses an estimate in a
strip to obtain the final estimate in whole space, in spite of the exponent to the
admissible space is less than n/(n — 1).

Indeed, it begins by considering ¢(6,,) as a test function in (21), where ¢ is
the real function defined by

-1 if e<—-M-1

e+ M if —-M-1<e<-M
ple)=<¢ 0 it —-M<e<M

e— M if M<e<M+1

1 if M+1l<e.

Since we get

92

/Qemu.w(em) = /Qu~V¢( ™) do =0 and /ny(ﬂm)gb(ﬂm) ds > 0,

it follows
e+ llhllue + Allull,

k / V0,02 dz < ||g
By
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in the strip Byy = {2 € Q1 M < |0(z)] < M + 1}, for each M € IN. We
may proceed as in paper [3] to recover the explicited estimate (20). Indeed, for
p<2

/2
/ V6,n|? dz < (/ V6,2 dz)p |Bp|@ P72 <
BM BM

c (Lthat Vhus RSP [ g e )]
Bm

k M (2=p)pn/(2n—=2p)

By recourse to the comparison test of series and taking into account that

(2-p)/2 1
pn/(n—p)
Z /B 6] dz ) M (2—p)pn/(2n—2p) =

MeIN

-p 1 p/2
on/(n-)
<(X / Ol da”) ( )
MeIN

MEIN

is satisfied for exponents 2/(2 — p) and 2/p, it follows
1V ||”

lglle + Al e + Allallf (2-p)(n—p)/(2pm) o2
<( % ) 6 e Z e - p)) '

Reminding that p < n/(n — 1) the Dirichlet series converges and applying
Sobolev imbedding it yields the estimate (20).
Using the estimate (20) independent of m, we can pass to the limit when

m tends to infinity and we obtain the required solution. Indeed, there exists
6 € W, such that for a subsequence

Om — 0 in W),

Easily, we pass to the limit in (21), remarking that p > qn/(¢ +n — 1) implies
that
0 — 0in LYT),q < p(n —1)/(n — p), and a.e. in I

Thus, recalling the assumption (11) and applying Lebesgue theorem, we obtain
Y(0m) — v(0) in L'(T) and a.e. in T, (22)

Finally, the uniqueness of SOLA solution follows by same arguments as in [5].
Taking two different approximations of F, in (21) we have different solutions,
namely 6, and 6,,. Then, choosing ¢(0,, — ém) in problems (21) of 6,, and
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0,,, we obtain an estimate analogous to (20) which permits to pass to the limit
when m tends to the infinity. Thus the limit solution is unique.
Ezistence of a fized point to the problem (17)-(18)

For each (w,§) € K we define ¥(w,&) = {u} x {#}. Indeed, ¥ is well
defined. We proved that ¥(u,£) is a nonempty subset of K, if Ry and R, in
(16) are such that

[£ll2.0
1L

B s I nipre{-s)@-a]]

and R2 Z C(E,Q,P, n)(”g”l,ﬂ + ||h

Uniqueness of u and # garantee that ¥U(w,¢) is a convex set. The closedness is
a particular case of the continuous dependence of the solutions.

The upper semicontinuity of ¥ for the weak topology is also a consequence
of continuous dependence of the solutions with respect to the given parameters,
due to the closed graph’s theorem to multivalued mappings (see [1, p.413]).

So it remains to prove the continuous dependence of the solutions. We
consider sequences {(w,,&,)} C K and {(u,, 0,)} C ¥(w,,§,) such that

w, = winV and § — { in W,,.
By a compactness property, we have
w, — win L"(Q) and §, — & in L*(Q),

where r < 2n/(n — 2) and s < pn/(n — p).
Since u,, are the solutions of (17), ¢,, for all n € IN, satisfying the estimate
(19), we can extract a subsequence such that

u, ~uin V.

Then the convective term (w, - V)u, v — (w - V)u-v in L'(Q), choosing
r=n<2n/(n—2)ifn <4.
Taking into account that

&)V = u(€)Vv in I*(Q),

we pass to the limit the problem (17) when n — +oo. Let us now pass to
the limit the problem (18), when 1 — 4o00. A compactness result gives u, —
uin L"(f2) and a.e. in Q.
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Let us verify that
(&) IV, > = u(€)|Vul® in L'().

First step, if v/u(&,)|Vu,| weakly converges to 1/u(€)|Vu| in L?(2) then

from lower semicontinuity of the L?-norm it follows

lim inf / (&) Vg |? do > / u(€)[Vul? d.
Q Q

n—+oo

Indeed, taking an arbitrary v € [L?(Q)]", \/u(&,)v is strongly convergent to
V(€)v in [L3(Q)]", and consequently the weak convergence arises

/ﬂy/u(fn)Wun\v dz — /ﬂ V()| Vulv da.

Second step, if we choose v = u, as a test function in (17) and we pass to
the limit when 7 tends to the infinity, it yields

limsup/ (&) | Vu,? dz < / f-udz= / w(€)|Vul? da.
Q Q Q

7—+00

Thus, we conclude that

/,u(§)|Vu|2 dr < lim inf/ (&) Vu,? dz < lim sup/ p(&) | Vu,|? dz <
Q N+ Jq —400 JO

1+

< / ()| Vuf? dx.

From the estimate (20) we extract a subsequence (denoted by the same
manner) such that
0, — 0 in W,

Then, the convective term 6,u, - V¢ — fu - V¢ in L'(Q), with r =n/(n — 1).

From compactness results, it arises
6, — 0 in L*(2), a.e. in © and in LY(T),t < p(n—1)/(n—p), a.e. in .
Consequently, by similar argument used to prove (22),
v(0,) — v(#) in L*(T') and a.e. in I

Finally, we pass to the limit the problem (18), when n — o0, taking into
account that

k(&) Ve — k(€)V¢ in LF/P-D(Q).
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Thus, we conclude (u,6) € ¥(w, ), and the fixed point theorem 1 guaran-
tees the existence of (u,#) € K such that (u,0) € ¥(u,#). This is the desired
solution.

a

We observe that it is still an open problem to apply thermal effects to the
following types of fluids: fluids of the differential type, of grade n, of rate type
and integral type.
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