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EXPONENTIAL DECAY FOR A SYSTEM OF
ELASTIC WAVES WITH A NONLINEAR
LOCALIZED DAMPING

Ruy Coimbra Charao *® Vanilde Bisognin ®
Eleni Bisognin f ®

Abstract

We show that the total energy of the solutions of a system in Elasticity
Theory perturbed with a dissipative localized nonlinear term, but with a
linear behavior, decay exponentially to zero, that is, denoting by E(t) the
first order total energy associated to the system, then there exist positive
constants C' and +y satisfying:

E(t) < CE(0)e™.

1 Introduction

In this work we study decay and properties of the solutions for the following
initial boundary value problem related with the system of elastic waves with a

localized damping given by a nonlinear term, but with a linear behavior

ug — b?Au — (a? = b*)V divu + p(z, u) = 0, in QxR (1)
u(z,0) = up(z), u(z,0) =u(z) in Q (2)
u(x,t) =0 inI'xR (3)

where the medium € is a bounded domain in R® with C' boundary I'. The
function u(z,t) = (u!(z,t),u?(z,t),v*(z,t)) is the vector displacement, Au =
(Aul(z,t), Au®(x,t), Aud(z,t)) is the Laplacian operator, divu is the usual
divergent of u and V is the gradient operator. The coefficients a and b are
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related with Lamé coefficients of Elasticity Theory, a? > b*> > 0, (see [3]). This
system has applications in geophysics and seismic waves propagation.

The vector function p, which appear in (1), represents a localized dissipative
term. Therefore, our interest in this work is to show the exponential decay of
total energy for the system (1)-(3) using suitable hypotheses on the dissipation
p which is localized in a neighborhood of part of the boundary of €.

To prove this result we use some energy identities for the solution of the
system (1)- (3) which are obtained choosing localized multipliers and using
ideas of Control Theory (see J.-L. Lions [12], V. Komornik [10] and A. Haraux
7).

In the case that a®> = b?> we have a vector wave equation. Many results
related to wave equation can be generalized for the system (1). It is important
to observe that the solutions of the system (1) are more complicated than the
solutions of the wave equation. In fact, we observe that the solutions of the free
system of elastic waves are a superposition of two waves which propagate with
different phase velocities a and b (see [5]).

The stabilization of the system of elastic waves in a unbounded domain
was studied by B. Kapitonov [8] and R. C. Chardo [4]. For bounded domains
the stabilization of the system (1) with linear localized unbounded damping
was studied by M. A. Astaburuaga and R. C. Chardo [6] and only algebraic
decay rate was obtained for the total energy. To show the result, they use some
estimates and multipliers which are not equal with that ones we used here.
Moreover, the manner to estimate the dissipative term is different. In the case
of wave equation, stabilization results can be found in M. Nakao [15], [16], E.
Zuazua [18], P. Martinez [13], [14] and L. R. T. Tébou [17] and the references
therein.

The system (1) with p = 0 damped by a linear boundary feedback was
studied by F. Alabau and V.Komornik [1] and they proved uniform stabilization.
In [2] F. Alabau and Komornik considered an anisotropic system of elasticity
and established uniform decay rates when feedback control is acting via natural

and physically implementable boundary conditions. Their results require even
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more stringent geometric conditions. In fact, they must assume that the domain
is a sphere.
Next, we give the hypotheses on the dissipative term and we prove some

technical lemmas in order to obtain the main result.

2 Hypotheses
Let us consider the following hypotheses on the nonlinear function p(z, s)

p: Ax R = R?,
p(x,8)-5>0, VreQ, VseR
a(z)|s|® < p(z,s) s, Ve, VseR
lp(z, s)| < Ca(x)|s|, Yz€Q, VseR

where C is a positive constant and a(z) is a bounded function such that

a: Q=R (8)
a(z)>0 in Q 9)
a(r)>a,>0 in wcCcq (10)

with a, constant and w is a neighborhood of part of the boundary of Q. Thus,
the nonlinearity p(z, u;) is effective only on a part of . The dot “ - ” represents

the usual inner product in R3.

3 Existence of Solutions and Exponential De-
cay

About the existence of solutions for the system (1)-(3) we can prove in a stan-

dard way (Theory of Semigroups) the following Theorem.

Theorem 1 (Existence of Solutions) Let 2 be a C' bounded open set in

R3 and p a function with the conditions (4)-(7). Then, for each initial data
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u, € (HLH())?, uy € (L2(Q))3, there exists a unique solution u = u(x,t) of the
system (1)-(3) in the class
u € C(R; (H, ()°) N C'(R; (L*()°) (11)
Our goal in this work is to prove the uniform stabilization of the total energy
E(?),
1
B(t) = / sl + B |Vl + (@ — B) (divw)? do (12)
Q

3
where |Vu|? = Z |Vut|? and u = u(x,t) is the solution of (1)-(3).

i=1
We note that the the following identity holds for the solution of (1)-(3)

E(S)—-E(T) = /T/ p(x,up) - ug dx ds, (13)

for all T and S such that 0 < S < TS< OZ
The identity (13) is obtained taking inner product between equation (1)-(3)
and u; and integrating over [S, T] x§). So, the energy is a nonincreasing function
of t because p(x,u;) - us > 0 always. Then, it is possible that the energy decay

in some rate. In fact, we have the following result.

Theorem 2 (Exponential Decay) Under the hypotheses on function p(z, s)
and Theorem 1, the total energy for the solution u = u(x,t) of the problem
(1)-(3) has the following asymptotic behavior in time

E(t) = E(u(z,t)) < CE(0)e™", t>0 (14)
where C' and o are positive constants.

In order to prove this theorem we need some Lemmas and special estimates

about the solution u(z, t).

4 Technical Lemmas

Lemma 1 Let E: R" — R* be a nonincreasing function. If there exists a real

constant o > 0 such that

/ " Bwd < Les) (15)
S g
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for all S and T such that 0 < S < T < +o0, then
E@t) < E(0)e™", t>0 (16)
Proof. See V. Komornik [9], [10] ( See also P. Martinez [13]).

Lemma 2 (Energy Identities) Let h: Q — R® be a vector field of C'—class,
& € CP(R?) and u the solution of (1) — (3). Then, for 0 < S < T < +oo we

have the identities

T T
/2ut‘ud:v‘ —2//|uti2dxdt
Q s s Ja

+2/5 /ﬂ (0| Vul® + (a® — b°) (divu)?] dxdt+/s /ﬂ?p(x,ut).udxdt =(07)
1

/(Qh(x)*Vu) utdx //dwh [lue|” = 0| Vul|* = (¢® — b%)(div u)®] dz dt

h’E ou’ ou Oh* ou? Ou
2 2 _ 12 =
T / / Z [ Oz, Ox; Oy, il —¢ )8:1:,- Oz; axk] S

1,7,k=1

+/S /ﬂ(2h(m) * Vu) - p(z, us) da dt

- /ST/F () [Juel? = 0P| Vuf? — (a? — 1?) (divu)?] dT dt
+ /ST/r [bZ(Qh* Vu) - g—z + (a® — b%)(2h x Vu) - ndiv u] dr dt

(18)
/ Uy - fudx / /f —ue? + 0| Vul* + (a® — b°)(divw)®] da dt
/ / [—|u|2A§ b?)vg-udm] il (19)
+//p(x,ut)-§udxdt20
s Ja
where n = n(x) is the outward unit normal on the boundary I' and g—’; =

ul ou? ogud -y Jul : : i 3.
(Bn ' B ) with pm the normal derivative of u* , 1 =1,2,3.
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Proof. The identity (17) is obtained taking inner product of the equation
(1) with the multiplier M (u) = 2u and integrating in  x [S,T]. The identity
(18) is obtained in the same way with the vector multiplier M (u) = 2h* Vu =
2 (h-Vul, h- Vu? h-Vu?) € R®. Finally, the identity (19) is obtained with the
multiplier M (u) = £ u.

Now we want to estimate the integrals on the boundary in the identity (18)
which appears in Lemma 2. To do this, we consider €2, a subset of €2, 2, C €2,
z, € R fixed and

[o=T(z0) ={z €l (z —x,) - n(z) >0} (20)
We assume that exists € > 0 such that
QNV, cwcCc (21)

where V, = V,[[', U (Q\ Q,)] is a neighborhood of T', U (2 \ Q,) with radius
€ > 0. The set w is given in (8)-(10)
We consider numbers €5 > £ > &, > 0, such that € < € and we define the
sets
0, =V, =V, I[L,U(Q\Q)] i=0,1,2. (22)
We note that (2, \ ©1) N O, is an empty set, therefore we can construct a
function ¢ € C2°(R?) such that

0<y <1, (23)
=1 in 0\ Oy, (24)
»=0 in 0o, (25)

Now, with the above considerations we have

Lemma 3 Let u be the solution of system (1)-(3). Then
T
/ V() (@ — 20) - 1 [Jwe]® — b°|Vul® — (a® — b?) (divu)®] dT dt
S o
r ou
-I—/ / 20% (v () (x — 2,) * Vu) - —dI dt
s Joqo on

T
+/ / 2(a® — b%) (¥ (z) (x — 7,) * Vu) - ndivudl dt < 0
s Jago
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where n = n(x) is the normal in x € T.

Proof. From the construction of the function 1 we can see that 1 o = 0

Qo
outside of (09, \ T',) N 98 In fact, if z & (0Q, \ T,) N OQ and = € 09, then
z e 0,NN, C O, Thus, we have

1(09,) = /s - V() (T — T0) - 1 [Jwe]® — b |Vul® — (a® — b?) (divw)?®] dT dt
& B ou
+/s /ano [Qb ((z)(x — o) * Vu) - 7
12(a? — B) (W (@) (x — z0) * V) - ndiv u} dr dt

= / / ¥(z)(z — 7o) - 1 [Jue)* — B°|Vul? — (a® — b°) (divw)?] dT dt
[89,\T'0]NAQ

l 2 ou
+/s /[ano\ro]nan [Zb W(@)(e = a0) * Vo) 877
+2(a? — b (¥(2)(z — z,) * V) - div u] dr dt

(26)
In this point we observe that Vu! =
Lions [12]). Then we have
ou’
(2U(z)(z — 7,) * Vu) - — = Z(zqf z)(x )3_7)
8u ou'
= 2V (x T
Z < =2y ) I
o’
=2V (z)(z —x) an (27)
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and

2 (z)(x — x) * Vu) -n divu = 2(2\11(3:)(:1: —3,) - Vu)n' divu

i=1
= i 20 (z)(z — z,) - a—wn)ni divu
; on

i

3
= 2U(z)(z — x0) - divuZni?;:]
§=1

= 2U(x)(z — x,) - 0 (divu)? (28)

where 1 = (n*,7%,1?) is the normal on T' = 0.
0
Substituting (27) and (28) in (26) and observing that 6—1; = 0 on 05 (because
u(z,t) =0 on OQ X R) we obtain that

I(0%2,) = / /ano\ro)maﬂw(x)(x — &) - [-0% |Vul* — (a® — b?) (divw)?] dT" dt

4 /ST /(ano\ro)nan 2W(e)la = 2o) ) {b2 an 2

i 9 2
[ [ wea-a) [62 o
5 J[89,\I]noa

because (z — z,) - n(z) < 0 on 002\ I'(z,). We have used the fact that Z—Z
|Vul? on 0.

Here we fixed a real arbitrary number A > 0 and we need the following

+ (a? — b%)(div u)2} dr dt

+ (a® — %) (div u)2} dr dt <0

(29)

2

estimates.

Lemma 4 Let u be the solution of (1)-(3). Then there exists a positive constant

C > 0 such that

)-urdz| < CE(S), Vt>S (30)

) - p(x, uy da:dt‘ / E(t)dt+ — / /\p(:z: ug)|* dzdt  (31)

where M(u) = 2U(z)(z — z,) * Vu + 2u and V() is the function defined in
(23)-(25).
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Proof. The proof of Lemma 4 is a consequence of Holder and Poincare’s

inequalities and the fact that E(t) is a nonincreasing function.

Lemma 5 Let u be the solution of (1)-(3). Then there exists a positive constant
C such that

/ST /mo1 [b2|v”|2 + (a” = %) (div u)2] dadt

1 T T
gcma+c@+q/)/ Mmma+c/'/ ol et
6 S QNO,y S QNOs

J i 6 T
+/ / |us|* ddt + 5/ E(t)dt
S QNO2 S

with § > 0 a real number to be chosen later.

Proof. Since R3\ O, N O; = § we can construct a function ¢ € C2°(R) such
that

0<E<1 (32)
=1, in O (33)
£€=0, in R3\O, (34)

With this function we obtain from identity (19) in Lemma 2:

/T/ [bZ\VuP + (a? — B)(div u)g} P
S JONnO;
= /ST/nf(fU) [52|Vu\2 + (a® - bQ)(diUU)2]dxdt

= —/j/ﬂﬁu-p(m,ut)dxdt—/qu-utd$’:+/ST/Qf|ut|2d$dt (35)

¢ bz 2 2 2 .
i [5|u| AE — (a® = ¥)VE - udivu] dudt
S Q
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Using the fact that £ = 0 outside the set O, we have

&(x)u - p(z, up)dadt| =
0

(x)u - p(x, ur)dzdt
QNO-

S
T
<[ [ lullpta.uldoct
S QNO2
1 N 2 2
<! [[uf? + p(o, u)?] dudt (36)
2Js Jano,

and

‘/ E(z)u- Utd.’,E' ‘ <|u2 |ut2> dz ‘
g e,

< CB()|, < o BT)
<CE(S), 0<S<T. (37)

because E(t) is non increasing and we have used Poincare’s inequality.

Because £ = 0 outside Oy, we note that

d i i
/ / £ (%) el ddt < / / e Pzt (38)
S Q S QNO-,

Finally, we estimate

//—\UI2A€ (a? ~ 1) VE - wdiv ] dudt

:/ / 7|u|2A§— (4 ~ 1)VE - udiv ] dudt
S JanO;

T
< 0/ / [[uf? + [ulldivuf] dads
s QNO;
1 o 2 4 2 2 ’ - 2
C{14+<) lul*dzdt + = (a® — b°) (divu)® dzdt
6 S QNO» 4 S Q
L " . § [T
Gl +=<) lu[?dzdt + = [ E(t)dt (39)
0" Js QNO: 2Js

Substituting (36)-(39) in (35) we obtain Lemma 5.
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Lemma 6 We consider u the solution of problem (1)-(3). Then there exists a

positive constant C' such that

T )\ T
/ / |ul*dzdt < C E(S) + —/ E(t)dt
S QNO2 2 S

T C T
+ C/ / |p(z, us) [P dzdt + X/ /|ut|2dxdt
s Ja s Ju

where X\ > 0 is the same number in Lemma 4.

Proof. We use the fact that R3 \w N O, = () to construct a function ¢ €
C>(R?) such that

0<p<1 (40)
p=1 in O (41)
=0, in R\w (42)

For fixed t, we consider v the solution of the vector elliptic problem

b?Av + (a* — b*)Vdivv = p(x)u  in Q (43)
v=0, on I =00 (44)

Taking the inner product between the equation (43) and v, integrating on

2, using (44) and Poincare’s inequality, we can conclude that

/|v|2d:1:§0/ |u|?dx (45)
Q Q

On the other hand we observe that v; is the solution of the problem

b?Av; + (a® — b*)Vdiv v, = p(z)u;  in Q (46)
v, =0, on T =00 (47)

In the same way we have obtained (45) we conclude that

/Q\vt|2d3:§C/Qcp(x)|ut\2dx (48)
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Now, taking the inner product of equation (1) with the vector function v

and integrating in Q x [S, 7], we obtain

T
0:/v~utdx
Q

T
+ / / [—ve - ug — bPu - Av — (a® — b°)u - Vdivv + v - p(z, uy)| dedt
Q

S

From this identity and the fact that v is the solution of (43)-(44) and using

the definition of function ¢(z), we have

/ / |u*dzdt < / / (z)|ul*dzdt (49)
Qno:
T
z/v-utda: —/ /Ut-utdxdt
Q s Ja
s
T
+/ /v~p(x,ut) dzdt
s Ja

We are going to estimate the terms of (49). We have

T
/ v-ude| | < CE(S) (50)

Q

s
T C T A T

vy - wpdzdt| < —/ /|ut\2dxdt+ f/ E(t)dt (51)

Q
/v-p(:v,ut)da:dt / lo(z, us) Pdzdt + = / E(t (52)

)

where we have used the estimates (45), (48), Poincaré’s inequality and the

definition of the function ¢.
Using (50)-(52) in (49) the Lemma 6 follows.

O

Lemma 7 We consider u the solution of system (1)-(3) with our previous hy-

potheses. Then there exists a positive constant C' such that

7
2/ E(t)dt+/M utda:
S

<0// |u|2+b2|Vu\2 (@ — ) (divw)’] dads
QNO,

+ / / ) » il e
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Proof. The identity (18) in the Lemma 2 holds with 2, instead of { and
h = ¢(z)(x — z,), where the function ¥ (z) is given in (23)-(25). Thus, using

Lemma 3 we have
T

/ e — ) » Vi) » (53)

0

S

+/ div(v(z)(z — 2,)) [Jw|* — b°|Vul® — (a® — b°) (div u)?] dzdt

+2/ / Z [ axj(@b z)( x—a:a))kgu] guk] dzdt

"z_7k 1

”/ / > [(2 (x)(x—mo))kgujguk]dxdt

0 4,9,k=1

+ / / (2¢(z)(xz — o) * Vu) - p(z, us) dzdt <0
s Ja,

where (¢(x)(z — x,))* means the k—coordinate of the vector 9 (z)(z — z,)-

Now, we observe that

o

(@)(z — 7)) = 02 (&) (a* — ) + pla)bu
where 8, = 1if i = k, 6 = 0if i # k and (z* — z%) is the k— coordinate of the
vector (z — x,) € R3.

Then, because 1/) =11in Q,\ O; (see (24)) it is easy to see that

/ /Q Z [bza - ))kg“] g“k] dadt

0 3.7 k=1

/ / £ 1[“ —bz)aii(w(x)( xa))’“guj guk] drdt

= /5 /ﬂ |:b2¢($) Z |Vu,j‘2 + (a2 _ b2)¢($)(div u)2:| Al

G 0 out Ou
20k kY 9
+/S /Qomol ij;:l [b e xO)@a:fw( )3333 Ox k] Gl

3

+[5T/Qomol,;_l [(a2 b)(a* — ’“)—w( )gujguk]d dt
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Using this fact in (53) we obtain
T

(2¢(:c)(3; —x,) * Vu) - up dz

S

/ / div(¥(z)(z — ,)) [Juel® — V| Vul — (a® — b?)(divw)?] dudt
5 2/5 /Q (V*Y(x)|Vul® + (a® — b%)9 () (div u)?) dzdt (54)
+ /S /O(Qw(m)(x - J;o) * VU) 4 ,0(33., Ut) dxdt

T 3
0 out Ou
_ 20k Lk
2/5 /omolij;_l [b (= xO)axﬂ'w( )89318 k]d b

T 3
0 ou? Ou
_9 2 g2k Lk
/s /0001 w;:l [(a e x”)axi¢( )8:161 Ox ’f] e

From above inequality we have
1k

/Q (@) (@ — 20) * V1) -ty dz (55)

S

+ / ' / o, @)@ ) [~ IV — (0 = )i’ dack
+2 /S ’ /Q o, U@+ @ = Py i) dact

+ /5 ' / () (x — ) * V). plz, ) dode

- /S ' / (@) (o = o)) [l = IV — (o~ ) v ] dac
) / ' / -, [b?w(x)|w|2+ (@ — B)o() (divu)?] dadt

0 ou' ou’
—2// [b2$—$ T ]ddt
) o (@) g o

_2/5 / Z [(a2—b2)($k_a;g)a_xi¢( gzj ggk] dzdt

oMO =1

T
= C/ / [|Ut‘2 + 6% Vul® + (a® — b%)(div u)Q] dxdt
omol
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where we have used the fact that 0 < ¢ <1 and ¢ = 1in £, \ O; and the fact

ha‘
/o /”o O /o ()]'
\

We observe that the positive constant C in (55) depends on

sup |div (i (z)(z — 2o))|

QN0

and

P
max sup [ 220 (e oty
1<jk<3 Q00 0T

Using again the fact that ¢(z) = 1in Q,\ O; and Q = (2N O;) U (2 \ 01),
the inequality (55) implies that

T

/ﬂ il — o) % Va) ~ s s (56)

S

3 /S ' / o, @)@ ) [l = V0 (0 = ) o]
+2/ST/Q IVl + (0 — ) (dive)?] dodt
% /S ' /Q (u(a)(x — )+ V). plr, ) dade
< C/ST/QDM [luel? + 82|Vl + (a2 — B2)(dive)?] dodt
+2 /S ' /Q [ (o i) dodt

T
<(2+ C)/ / [|ue® + 0| Vul? + (a® — b*)(divu)?] dzdt.
s Jano
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Now we note that ¢ = 0in Q\ Q, and div (¢¥(z)(x — 2,)) = 3 in O, \ O1(see
definition of function ). Then, we obtain

T

/Q =)+ V) - mls

S

+ /s /Q " 3 [|wel? = 0| Vul* — (¢® — b*)(div u)?] dzdt
+ 2/5 /Q [0*|Vul® + (a® — b°) (div u)?] dedt
+ / /(2¢(x)(x —z,) * Vu) - p(x, uy) dzdt

<c// [ludl® + BVl + (o — )(divw)?] dads.
QNoy

Adding the identity (17) in Lemma 2 and the inequality (57) it results

/ /M oz, uy) dadt

/ / 3 [|lwe® = 0°|Vul* = (a? ) (div u)?] dzdt
0\ O1

+4/ / B2V ul? + (o — ) (divw)?] dedt — 2 //|ut\ dods

<o [ [l v+ @ o] doat
S QNoOq

Because / = / + / we have
Q Q\01 QNO,

/M(u) u dz +/ /M p(z, u)drdi+ (58)

T
+/ /[b2|Vu|2+(a2—b2)(divu)2] dmdt+/ /\ut|2d:cdt
s Ja s Ja

T
SC// [lef? + 0% Vuf? + (o — b°) (div w)?] dudt
S JONO;

/M u) - utdx
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Thus

/5 2E(t dt+/M(u utdac / /M p(z, uy)dzdt (59)

<C / / [Jue® + 1)2|Vu[2 + (a® — b*)(divu)®] dzdt
s Jano,

where we have indicated by C different positive constants which are independent

of the solution u. The proof of Lemma 7 is complete.

5 Proof of Theorem 2

Combining estimates obtained in Lemma 4 with the inequality in Lemma 7 we

conclude that
T T

5 / E(t)dt < CE(S) +C / / [B2|Vuf? + (@ — 0)(divu)?] dedt
S S QNO,

T C T )\ T
+c/ / lut|2d:cdt+—/ /\p(w,ut)\zdxdt-l——/ E(t)dt
s Jano AlJs Ja 2 /s

Now we use the estimate in Lemma 5 to obtain

/E(t)t<CES)+C// |ug|? dzdt + C( 2+1/5// |u|dzdt
2 Qnoy Qno,
+C/ / \p(x,ut)|2dxdt+0—/ E(t)dt
No,

+C’/ /moz\ut|2dxdt+ / E(t)dt + — / /lp(a: ug) [*dwdt

Then,

/S E(t)dt < CE S)+C/ /mOQ jug|? dadt + C(2 + 1/6) / /mz luf*dad
+C(1+1/,\)/S /Qp(m,ut)Idedt+(C§+%)/:E(t)dt
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(o)
Now we choose § > 0 such that I 1 and we apply the result of Lemma 6

to obtain

T T T
/ E(t)dt < CE(S) +C / / |2 ddt + O\ / E(t)dt
S S QNO2 S

T C T
+C(2—|—1//\)/ /|p(:v,ut)\2da:dt+—/ /|ut|2da:dt
S Q A S w

T T
SCE(S)+C/ /|ut\2d:cdt+0(2+1/)\)/ /|p(:1:,ut)|2dacdt
S Jw S Q

T
+CA / E(t)dt
S

because 2N Oy Cw due to 0 < &9 < €.
Taking A > 0 such that CA < 1/2 we obtain the following estimate for the
total energy

/ST B(t)dt<C [E(S) + /ST/w e |*dadt + /ST/Q Ip(z, Ut)|2d$dt:| (60)

for0<S<T < 4o0.
Finally, using the hypotheses

a(z)|s> < p(z,5) s VreQ, VseR
lp(z,s)| < Ca(x)|s|, Yze€Q, VsecR®
p(z,8)-s>0, YV2eQ, VseR

on the function p(z,s) and the condition a(z) > a, > 0 in w, we have from

estimate (60)
T C T T
/ E(t)dthE(5)+—/ /a(x)|ut\2dxdt+0/ /|p(x,ut)|2da:dt
s Qo Js Ja s Ja

iy
SCE(S)+C’/ /a(x)|ut|2dxdt
s Ja

<C [E(S) + /ST/Qp(a:,ut) - Uy dxdt]

for 0 < S < T < +o0, where C depends on ||a||« and a,. In fact, the hypotheses

on function p say that

a(z)|wl® < p(z,up) - uy
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and
|p(z,ur)” < C?|lal|  a(z)|ul*
Using identity (13) we conclude that
T
/ E(t)dt < C E(S)
s

forall 0 < S < T < +00.

Then, Lemma 2 implies Theorem 2.

O
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